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Abstract

The purpose of this paper is to introduce the nonexpansive multi-valued mapping in CAT (0) spaces. The

convexity and closednes of a fixed point set of such mapping and demiclosed principle for such mapping are also

studied. By viscosity approximation methods, We prove that the proposed implicit iteration net and sequence

both converges strongly to a common fixed point of nonexpansive multi-valued mappings which is also a unique

solution of the variational inequality. The results presented in the paper improve and extend various results in the

current literature.
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1 Introduction

The concept of variational inequalities plays an important role in various kinds of problems in pure and

applied sciences,viscosity approximation methods have attracted the attention of many authors. Many

important results about viscosity approximation methods of nonexpansive mappings was studied in CAT (0)

space. In 1976, the concept of △-convergence in general metric spaces was coined by Lim [1], Kirk et al. [11]

specialized this concept to CAT (0) spaces and proved that it is very similar to the weak convergence in the

Banach space setting. Dhompongsa et al. [8] and Abbas et as. [4] obtained △-convergence theorems for the
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Mann and Ishikawa iterations in the CAT (0) space. In 2013, Rabian [5] [6] and Xin-Dong Liu [7] proved

that viscosity approximation methods for nonexpansive mappings, hierarchical optimization problems and

nonexpansive semigroups in CAT (0) spaces.

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more briefly, a geodesic from x

to y) is a map c from a closed interval [0, l] ⊂ R to X such that c(0) = x,c(l) = y, and d(c(t), c(t′)) = |t− t′|

for all t, t′ ∈ [0, l]. In particular, c is an isometry and d(x, y) = l. The image α of c is called a geodesic

(ormetric) segment joining x and y. When it is unique, this geodesic segment is denoted by [x, y].The space

(X, d) is said to be a geodesic space if every two points of X are joined by a geodesic, and X is said to

be uniquely geodesic if there is exactly one geodesic joining xand y for each x, y ∈ X. A subset Y ⊂ X is

said to be convex if Y includes every geodesic segment joining any two of its points. A geodesic triangle

△(x1, x2, x3) in a geodesic metric space (X, d) consists of three points △(x1, x2, x3) in X (the vertices of

△) and a geodesic segment between each pair of vertices (the edges of △). A comparison triangle for the

geodesic triangle △(x1, x2, x3) in (X, d) is a triangle △(x1, x2, x3) := △(x1, x2, x3) in the Euclidean plane

E2. such that dE2(xi, xj) = d(xi, xj) for all i, j ∈ 1, 2, 3.

A geodesic space is said to be a CAT (0) space if all geodesic triangles satisfy the following comparison

axiom.

CAT (0):Let △ be a geodesic triangle in X, and let △ be a comparison triangle for △. Then △ is said to

satisfy the CAT (0) inequality if for all x, y ∈ △ and all comparison points x, y ∈ △,

d(x, y) ≤ dE2(x, y).

we write (1− t)x⊕ ty for the unique point z in the geodesic segment joining from x to y such that

d(x, z) = td(x, y), d(y, z) = (1− t)d(x, y). (1.1)

We also denote by [x, y] the geodesic segment joining from x to y, that is, [x, y] = {(1−t)x⊕ty : t ∈ [0, 1]}.

A subset C of a CAT (0) space is convex if [x, y] ⊂ C for all x, y ∈ C.

The following lemmas play an important role in our paper.

Lemma 1.1 Let X be a CAT (0) space. Then for any x, y, z, w ∈ X and t, s ∈ [0, 1]

(i) (see [8] ) d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z);

(ii) (see [9] ) d((1− t)x⊕ ty, (1− s)x⊕ sy) ≤ |t− s|d(x, y);

(iii) (see [10] ) d((1− t)x⊕ ty, (1− t)z ⊕ tw) ≤ (1− t)d(x, z) + td(y, w);
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(iv) (see [11]) d((1− t)z ⊕ tx, (1− t)z ⊕ ty) ≤ td(x, y);

(v) (see [8] ) d2((1− t)x⊕ ty, z) ≤ (1− t)d2(x, z) + td2(y, z)− t(1− t)d2(x, y);

If x, y1, y2 are points in a CAT (0) space and if y0 is the midpoint of the segment [y1, y2], then the CAT (0)

inequality implies

d2(y0, x) ≤
1

2
d2(y1, x) +

1

2
d2(y2, x)−

1

4
d2(y1, y2) (1.2)

This is the (CN)-inequality of Bruhat and Tits [12]. In fact ( [10], p.163), a geodesic space is a CAT (0)

space if and only if it satisfies the (CN)-inequality.

It is well known that any complete, simply connected Riemannian manifold having nonpositive sectional

curvature is a CAT (0) space. Other examples include pre-Hilbert spaces, R-trees (see [10]), Euclidean

buildings (see [13]), the complex Hilbert ball with a hyperbolic metric (see [14]), and many others. Complete

CAT (0) spaces are often called Hadamard spaces.

It is proved in [10] that a normed linear space satisfies the (CN)-inequality if and only if it satisfies the

parallelogram identity, i.e., is a pre-Hilbert space; hence it is not so unusual to have an inner product-like

notion in Hadamard spaces. Berg and Nikolaev [15] introduced the concept of quasilinearization as follows.

Let us formally denote a pair (a, b) ∈ X×X by
−→
ab and call it a vector. Then quasilinearization is defined

as a map ⟨., .⟩ : (X ×X,X ×X) → R defined by

⟨
−→
ab,

−→
cd⟩ = 1

2
(d2(a, d) + d2(b, c)− d2(a, c)− d2(b, d)), a, b, c, d ∈ X. (1.3)

It is easily seen that ⟨
−→
ab,

−→
cd⟩ = ⟨

−→
cd,

−→
ab⟩, ⟨

−→
ab,

−→
cd⟩ = −⟨

−→
ba,

−→
cd⟩,and ⟨−→ax,

−→
cd⟩ + ⟨

−→
xb,

−→
cd⟩ = ⟨

−→
ab,

−→
cd⟩ for all

a, b, c, d, x ∈ X.

We say that X satisfies the Cauchy-Schwarz inequality if

⟨
−→
ab,

−→
cd⟩ ≤ d(a, b)d(c, d), a, b, c, d ∈ X. (1.4)

It is known [15] that a geodesically connected metric space is a CAT (0) space if and only if it satisfies

the Cauchy-Schwarz inequality.

In 2010, Kakavandi and Amini [16] introduced the concept of a dual space for CAT (0) spaces as follows.

Consider the map Θ : R×X ×X → C(X) difined by

Θ(t, a, b)(x) = t⟨
−→
ab,−→ax⟩,
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where C(X) is the space of all continuous real-valued functions on X. Then the Cauchy-Schwarz inequality

implies that Θ(t, a, b) is a Lipschitz function with a Lipschitz semi-norm L(Θ(t, a, b)) = td(a, b) for all t ∈ R

and a, b ∈ X, where

L(f) = sup{f(x)− f(y)

d(x, y)
: x, y ∈ X,x ̸= y}

is the Lipschitz semi-norm of the function f : X → R. Now, define the pseudometric D on R×X ×X by

D((t, a, b), (s, c, d)) = L(Θ(t, a, b)−Θ(s, c, d)).

Lemma 1.2 (see [16]) D((t, a, b), (s, c, d)) = 0 if and only if t⟨
−→
ab,−→xy⟩ = s⟨

−→
cd,−→xy⟩ for all x, y ∈ X.

For a complete CAT (0) space (X, d), the pseudometric space (R×X×X,D) can be considered as a subspace

of the pseudometric space (Lip(X,R), L) of all real-valued Lipschitz functions. Also, D defines an equivalence

relation on R×X ×X, where the equivalence class of t
−→
ab := (t, a, b) is

[t
−→
ab] = {s

−→
cd : t⟨

−→
ab,−→xy⟩ = s⟨

−→
cd,−→xy⟩, ∀x, y ∈ X}.

The set X∗ := {[t
−→
ab] : (t, a, b) ∈ R×X×X} is a metric space with metric D, which is called the dual metric

space of (X, d).

In 2012, Dehghan and Rooin [17] introduced the duality mapping in CAT (0) spaces and studied its rela-

tion with subdifferential, by using the concept of quasilinearization. Then they presented a characterization

of metric projection in CAT (0) spaces as follows.

Lemma 1.3 ( [17],Theorem 2.4) Let C be a nonempty convex subset of a complete CAT (0) space X, x ∈ X

and u ∈ C. Then u = PCx if and only if ⟨−→yu,−→ux⟩ ≥ 0 for all y ∈ C

Definition 1.1 Let C be a nonempty subset of a complete CAT (0) space X,and let N(C) and CB(C)

denote the family of nonempty subsets and nonempty bounded closed subsets of C, respectively.The multi-

valued mapping T : C → CB(C) is called nonexpansive iff H(Tx, Ty) ≤ d(x, y) for all x, y ∈ C, where H(., .)

is Hausdorff metric,i.e.,H(Tx, Ty) = max{ sup
x∈Tx

d(x, Ty), sup
y∈Ty

d(y, Tx)}.

A point x ∈ C is called a fixed point of T if x ∈ Tx. We denote by F (T ) the set of all fixed points of T .

Remark 1.1 The existence of fixed points for multivalued nonexpansive mappings in a CAT (0) space was

proved by S. Dhompongsa et al. [8].
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Definition 1.2 Let C be a nonempty subset of a complete CAT (0) space X, the multi-valued mapping

T : C → CB(C) is called quasi- nonexpansive iff F (T ) ̸= ∅ and H(Tx, p) ≤ d(x, p) for all x ∈ C, p ∈ F (T ).

A mapping f of C into itself is called contraction with coefficient α ∈ (0, 1) iff d(f(x), f(y)) ≤ αd(x, y)

for all x, y ∈ C. Banach’s contraction principle guarantees that f has a unique fixed point when C is a

nonempty closed convex subset of a complete metric space.

In 2013, Ranbian Wangkeeree [19] studied the convergence theorems of the following Moudafi’s viscosity

iterations for a nonexpansive self mapping T : For a contraction f on C and t(0, 1), let xt ∈ C be the unique

fixed point of the contraction x→ tf(x)⊕ (1− t)Tx,i.e.,

xt = tf(xt)⊕ (1− t)Txt, (1.5)

and x0 ∈ C is arbitrarily chosen and

xn+1 = αnf(xn)⊕ (1− αn)Txn, n ≥ 0, (1.6)

where αn ∈ (0, 1).They proved that {xt}, {xn} converges strongly to x̃ ∈ F (T ) such that x̃ = PF (T )f(x̃) in

the framework of a CAT(0) space,which is the unique solution of the variational inequality (VIP)

⟨
−−→
x̃f x̃,

−→
xx̃⟩ ≥ 0, x ∈ F (T ). (1.7)

The purpose of this paper is to study the strong convergence about Moudafi’s viscosity approximation

methods for approximating a common fixed point of a nonexpansive multi-valued mapping in CAT (0) spaces.

We prove that the proposed implicit iteration net and sequence both converges strongly to a common fixed

point of nonexpansive multi-valued mappings which is also a unique solution of the variational inequality.

The convexity and closednes of a fixed point set of such mapping and demiclosed principle for such mapping

are also studied. The results presented in the paper improve and extend Rabian’s various results [7] [19] in

the current literature and other.

2 Preliminaries

In order to study our results in the general setup of CAT (0) spaces, we first collect some basic concepts.

Let {xn} be a bounded sequence in CAT (0) space X. For p ∈ X, define a continuous functional r(., {xn}) :

X → [0,+∞) by

r(p, {xn}) = lim sup
n→∞

d(p, xn).
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The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(p, {xn}) : p ∈ X}.

The asymptotic radius rC({xn}) of {xn} with respect to C ⊂ X is given by

rC({xn}) = inf{r(p, {xn}) : p ∈ C}.

The asymptotic center A({xn}) of {xn} is the set

A({xn}) = {p ∈ E : r(p, {xn}) = r({xn})}.

The asymptotic center AC({xn}) of {xn} with respect to C ⊂ X is the set

AC({xn}) = {p ∈ C : r(p, {xn}) = rC({xn})}.

A sequence {xn} in CAT (0) space X is said to △-converge to p ∈ X if p is the unique asymptotic center of

{un} for every subsequence {un} of {xn}. In this case,we call p the △-limit of {xn}.

Remark 2.1 The uniqueness of an asymptotic center implies that the CAT (0) space X satisfies Opial’s

property,i.e.,for given {xn} ⊂ X such that {xn} △-converge to x and given y ∈ X with y ̸= x,

lim sup
n→∞

d(xn, x) < lim sup
n→∞

d(xn, y)

The following lemmas are important in our paper.

Lemma 2.1 (see [8]) If C is a closed convex subset of a complete CAT (0) space and if {xn} is a bounded

sequence in C, then the asymptotic center of {xn} is in C.

Lemma 2.2 (see [8] [26]) Every bounded sequence in a complete CAT (0) space always has a △-convergent

subsequence.

Lemma 2.3 (see [18]) If C is a closed convex subset of X and T : C → X is a asymptotically nonexpansive

mapping, then the conditions {xn} △-convergence to x and d(xn, Txn) → 0 imply x ∈ C and Tx = x.

Having the notion of quasilinearization, Kakavandi and Amini [20] introduced the following notion

of convergence. A sequence {xn} in the complete CAT (0) space (X, d) w-converges to x ∈ X if

limn→∞⟨−−→xxn,−→xy⟩ = 0,i.e.,limn→∞(d2(xn, x) + d2(y, x)− d2(xn, y)) = 0 for all y ∈ X.

It is obvious that convergence in the metric implies w-convergence, and it is easy to check that w-

convergence implies △-convergence , but it is showed in ( [20], Example 4.7) that the converse is not valid.
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However, the following lemma shows another characterization of △-convergence as well as, more explicitly,

a relation between w-convergence and △-convergence.

Lemma 2.4 (see [20], Theorem 2.6) Let X be a complete CAT (0) space, {xn} be a sequence in X,and

x ∈ X. Then {xn} △-convergence to x if and only if lim supn→∞⟨−−→xnx,−→xy⟩ ≤ 0 for all y ∈ X.

Lemma 2.5 (see [19]) Let X be a complete CAT (0) space. Then for all u, x, y ∈ X, the following inequality

holds:

d2(x, u) ≤ d2(y, u) + 2⟨−→xy,−→xu⟩.

Lemma 2.6 (see [19]) Let X be a complete CAT (0) space. For all u, v ∈ X and t ∈ [0, 1], let ut =

tu⊕ (1− t)v. Then,for all x, y ∈ X

(i) ⟨−→utx,−→uty⟩ ≤ t⟨−→ux,−→uty⟩+ (1− t)⟨−→vx,−→uty⟩;

(ii) ⟨−→utx,−→uy⟩ ≤ t⟨−→ux,−→uy⟩+ (1− t)⟨−→vx,−→uy⟩ and ⟨−→utx,−→uty⟩ ≤ t⟨−→ux,−→vy⟩+ (1− t)⟨−→vx,−→vy⟩.

Lemma 2.7 (see [21],Lemma2.1) Let {an} be sequences of nonnegative numbers such that

an+1 ≤ (1− δn)an + δnγn, ∀n ≥ 1,

where {δn},{γn} satisfy following property

(1) {δn} ⊂ (0, 1) and {γn} ⊂ R;

(2)
∑+∞

n=1 δn = +∞;

(3) lim supn→∞ γn ≤ 0 or
∑+∞

n=0 |δnγn| < +∞.

then limn→∞ an = 0.

3 Main results

In this section,we present strong convergence theorem of Moudafi’s viscosity methods for multi valued non-

expansive mappings T in CAT (0) spaces.

For any t ∈ (0, 1) and a contraction f with coefficient α ∈ (0, 1), define the mapping St : C → CB(C) by

St(x) = tf(x)⊕ (1− t)u(x), x ∈ C, u(x) ∈ Tx. (3.1)
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It is not hard to see that St is a contraction on C. Indeed, since d(u(x), u(y) ≤ H(Tx, Ty) for any x, y ∈ C,

we have

d(St(x), St(y)) = d(tf(x)⊕ (1− t)u(x), tf(y)⊕ (1− t)u(y))

≤ d(tf(x)⊕ (1− t)u(x), tf(y)⊕ (1− t)u(x)) + d(tf(y)⊕ (1− t)u(x), tf(y)⊕ (1− t)u(y))

≤ td(f(x), f(y)) + (1− t)d(u(x), u(y))

≤ td(f(x), f(y)) + (1− t)H(Tx, Ty)

≤ (tα+ (1− t))d(x, y)

= (1− t(1− α))d(x, y),

this implies that St is a contraction on C. Then there exists a unique q ∈ C such that

q = St(q) = tf(q)⊕ (1− t)u(q), u(q) ∈ Tq

Now we prove convergence theorem for the following implicit iterative net. Let xt ∈ C be the unique fixed

point of St. thus for any t ∈ (0, 1],

xt = St(xt) = tf(xt)⊕ (1− t)u(xt), u(xt) ∈ T (xt).

First,we prove following demiclosed principle for nonexpansive multi-valued mapping.

Proposition 3.1 If C is a closed convex subset of X and T : C → CB(C) is a nonexpansive multi-valued

mapping, then the conditions {xn} △-convergence to p and d(xn, zn) → 0 (which zn ∈ Txn) imply p ∈ Tp.

Proof. By lemma 2.1,2.2, since {xn} △-convergence to p, hence AC{xn} = p and A{xn} = p.

Letting ψ(x) := lim supn→∞ d(xn, x), from condition d(xn, zn) → 0, we get that

ψ(x) = lim sup
n→∞

d(zn, x).

If p∗ ∈ Tp, then

ψ(p∗) = lim sup
n→∞

d(zn, p∗) ≤ lim sup
n→∞

H(Txn, Tp) ≤ lim sup
n→∞

d(xn, p) = ψ(p).

From (1.2),we have that

d2(xn,
1

2
(p⊕ p∗)) ≤ 1

2
d2(xn, p) +

1

2
d2(xn, p∗)−

1

4
d2(p, p∗).

Letting n→ ∞ and taking superior limit on the both sides, it gets that

ψ2(
1

2
(p⊕ p∗)) ≤ 1

2
ψ2(p) +

1

2
ψ2(p∗)− 1

4
d2(p, p∗),
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that is,

d2(p, p∗) ≤ 2(ψ2(p∗)− ψ2(p)) ≤ 0.

It implies that p∗ = p, so Tp = {p},i.e., p ∈ TP .This completes the proof of Proposition 3.1

Next, we prove the closedness and convexity of fixed point set of nonexpansive multi-valued mapping.

Proposition 3.2 If C is a closed convex subset of X and T : C → CB(C) is a nonexpansive multi-valued

mapping, then F(T) is a closed and convex subset of C.

Proof. As T is continuous, so F (T ) is closed. In order to prove that F (T ) is convex, it is enough to prove

that 1
2 (p⊕ q) ∈ F (T ) where p, q ∈ F (T ). Setting w = 1

2 (p⊕ q) and w∗ ∈ Tw, using (1.2), we have

d2(w∗, w) ≤ 1

2
d2(w∗, p) + 1

2
d2(w∗, q)− 1

4
d2(p, q)

≤ 1

2
H2(Tw, Tp) +

1

2
H2(Tw, Tq)− 1

4
d2(p, q)

≤ 1

2
d2(w, p) +

1

2
d2(w, q)− 1

4
d2(p, q)

≤ 1

2
d2(

1

2
(p⊕ q), p) +

1

2
d2(

1

2
(p⊕ q), q)− 1

4
d2(p, q)

≤ 1

2
(
1

4
d2(q, p)) +

1

2
(
1

4
d2(p, q))− 1

4
d2(p, q) = 0,

it implies that w∗ = w, so Tw = {w},i.e., w ∈ Tw.This completes the proof of Proposition 3.2

Now, we prove strong convergence theorem of Moudafi’s viscosity methods for multi-valued non- expansive

mapping T in CAT (0) spaces.

Theorem 3.1 Let C be a closed convex subset of a complete CAT (0) space X. Let T : C → CB(C) be

a nonexpansive multi-valued mapping, let f be a contraction on C with coefficient 0 < α < 1. For each

t ∈ (0, 1], net {xt} be given by following implicit iterative,

xt = tf(xt)⊕ (1− t)u(xt), u(xt) ∈ T (xt). (3.2)

If F (T ) ̸= ∅, then {xt} converges strongly as t → 0 to x̃ = PF (T )f(x̃) which is equivalent to the following

variational inequality:

⟨
−−−→
x̃f(x̃),

−→
xx̃⟩ ≥ 0, x ∈ F (T ). (3.3)
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Proof. First, for any p ∈ F (T ), we have that

d(xt, p) = d(tf(xt)⊕ (1− t)u(xt), p)

≤ td(f(xt), p) + (1− t)d(u(xt), p)

≤ td(f(xt), p) + (1− t)H(Txt, Tp)

≤ t(d(f(xt), f(p)) + d(f(p), p)) + (1− t)d(xt, p)

≤ (tα+ (1− t))d(xt, p) + td(f(p), p),

that is,

d(xt, p) ≤
1

1− α
d(f(p), p),

hence {xt} is bounded, so are both {u(xt)} and {f(xt)}. We get that

lim
t→0

d(xt, u(xt)) = lim
t→0

d(tf(xt)⊕ (1− t)u(xt), u(xt))

≤ lim
t→0

td(f(xt), u(xt)) = 0

Now we prove that {xt} is relatively compact as t→ 0. In fact,letting m ∈ N and xm := xtm with tm ∈ (0, 1]

and tm → 0 as m→ ∞,

since {xm} is bounded, by Lemma 2.2,2.4,we may assume {xm} △-converges to a point x̃ ∈ F (T ). From

Lemma 2.6, we have

d2(xm, x̃) = ⟨−−→xmx̃,
−−→
xmx̃⟩

≤ tm⟨
−−−−−→
f(xm)x̃,

−−→
xmx̃⟩+ (1− tm)⟨

−−−−−→
u(xm)x̃,

−−→
xmx̃⟩

≤ tm⟨
−−−−−→
f(xm)x̃,

−−→
xmx̃⟩+ (1− tm)d(u(xm), x̃)d(xm, x̃)

≤ tm⟨
−−−−−→
f(xm)x̃,

−−→
xmx̃⟩+ (1− tm)H(Txm, x̃)d(xm, x̃)

≤ tm⟨
−−−−−→
f(xm)x̃,

−−→
xmx̃⟩+ (1− tm)d2(xm, x̃)

≤ tm⟨
−−−−−−−→
f(xm)f(x̃),

−−→
xmx̃⟩+ tm⟨

−−−→
f(x̃)x̃,

−−→
xmx̃⟩+ (1− tm)d2(xm, x̃)

≤ tmαd
2(xm, x̃) + tm⟨

−−−→
f(x̃)x̃,

−−→
xmx̃⟩+ (1− tm)d2(xm, x̃),

thus

d2(xm, x̃) ≤
1

1− α
⟨
−−−→
f(x̃)x̃,

−−→
xmx̃⟩. (3.4)

Since {xm} △-converges to a point x̃ ∈ F (T ), by Lemma 2.4, we have

lim sup
m→∞

⟨
−−−→
f(x̃)x̃,

−−→
xmx̃⟩ ≤ 0. (3.5)
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From (3,4),(3.5),we get that limm→∞ xm = x̃.

Now we show that x̃ ∈ F (T ) solves the variational inequality (3.3).

By Lemma 1.1, for any q ∈ F (T ), we have

d2(xt, q) ≤ td2(f(xt), q) + (1− t)d2(u(xt), q)− t(1− t)d2(f(xt), u(xt))

≤ td2(f(xt), q) + (1− t)H2(Txt, q)− t(1− t)d2(f(xt), u(xt))

≤ td2(f(xt), q) + (1− t)d2(xt, q)− t(1− t)d2(f(xt), u(xt))

= td2(f(xt), q) + (1− t)d2(xt, q)− t(1− t)d2(f(xt), u(xt)),

it implies that

d2(xt, q) ≤ d2(f(xt), q)− (1− t)d2(f(xt), u(xt)).

so we get that

d2(xm, q) ≤ d2(f(xm), q)− (1− tm)d2(f(xm), u(xm)).

Taking the limit through m→ ∞ and noting d(xt, u(xt)) → 0, by Proposition 3.1, we can get that

d2(x̃, q) ≤ d2(f(x̃), q)− d2(f(x̃), x̃).

hence

⟨
−−−→
x̃f(x̃),

−→
qx̃⟩ = 1

2
(d2(f(x̃), q) + d2(x̃, x̃)− d2(f(x̃), x̃)− d2(x̃, q)) ≥ 0,

where q ∈ F (T ), it implies that x̃ solves the variational inequality (3.3).

Finally, we show the entire net {xt} converges to x̃.

Assume xsm → x∗ ∈ F (T ), where sm → 0 asm→ ∞. By same argument, we get x∗ solves the variational

inequality (3.3),i.e.,

⟨
−−−→
x̃f(x̃),

−−→
x̃x∗⟩ ≤ 0, ⟨

−−−−−→
x∗f(x∗),

−−→
x∗x̃⟩ ≤ 0. (3.6)
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By (3.6), we get that

0 ≥ ⟨
−−−→
x̃f(x̃),

−−→
x̃x∗⟩ − ⟨

−−−−−→
x∗f(x∗),

−−→
x̃x∗⟩

= ⟨
−−−−→
x̃f(x∗),

−−→
x̃x∗⟩+ ⟨

−−−−−−−→
f(x∗)f(x̃),

−−→
x̃x∗⟩ − ⟨

−−→
x∗x̃,

−−→
x̃x∗⟩ − ⟨

−−−−→
x̃f(x∗),

−−→
x̃x∗⟩

= ⟨
−−→
x̃x∗,

−−→
x̃x∗⟩ − ⟨

−−−−−−−→
f(x∗)f(x̃),

−−→
x∗x̃⟩

≥ d2(x̃, x∗)− d(f(x∗), f(x̃))d(x∗, x̃)

≥ d2(x̃, x∗)− αd2(x̃, x∗) = (1− α)d2(x̃, x∗),

it implies d2(x̃, x∗) = 0, so is x̃ = x∗.Hence the net {xt} converges strongly to x̃ which is the unique solution

to the variational inequality (3.3). This completes the proof of Theorem 3.1.

Theorem 3.2 Let C be a nonempty bounded closed convex subset of a complete CAT (0) space X. Let f

be be a contraction on C with coefficient α ∈ (0, 1), and let T : C → CB(C) be nonexpansive multi-valued

mapping. For the arbitrary initial point x1 ∈ C, Let {xn} be a sequence generated by

xn+1 = tnf(xn)⊕ (1− tn)u(xn), u(xn) ∈ Txn, n ≥ 1, (3.7)

where sequence {tn} satisfies the following conditions:

(i) {tn} ⊂ (0, 1) and limn→∞ tn = 0;

(ii)
∑+∞

n=1 tn = +∞;

(iii)
∑+∞

n=0 |tn+1 − tn| < +∞.

If F (T ) ̸= ∅, then the sequence {xn} converges strongly to some point x̃ ∈ F (T ) which is equivalent to

the variational inequality (3.3).

Proof.

(I)We first show that the sequence {xn} is bounded.

12



Indeed, For p ∈ F (T ), we have

d(xn+1, p) = d(tnf(xn)⊕ (1− tn)u(xn), p)

≤ tnd(f(xn), p) + (1− tn)d(u(xn), p)

≤ tnd(f(xn), p) + (1− tn)H(Txn, p)

≤ tnd(f(xn), p) + (1− tn)d(xn, p)

≤ tn(d(f(xn), f(p)) + d(f(p), p)) + (1− tn)d(xn, p)

≤ tn(αd(xn, p) + d(f(p), p)) + (1− tn)d(xn, p)

= (tnα+ (1− tn))d(xn, p) + tnd(f(p), p).

Let Mn = max{d(xn, p), 1
1−αd(f(p), p)}, we have

d(xn+1, p) ≤Mn = max{d(xn, p),
1

1− α
d(f(p), p)}

By induction, we get that

d(xn+1, p) ≤ max{d(x1, p),
1

1− α
d(f(p), p)},

hence {xn} is bounded, so are {u(xn)} and {f(xn)}.

(II) We claim that limn→∞ d(xn+1, xn) = 0.

Since

d(xn+1, xn) = d(tnf(xn)⊕ (1− tn)u(xn), tn−1f(xn−1)⊕ (1− tn−1)u(xn−1))

≤ d(tnf(xn)⊕ (1− tn)u(xn), tnf(xn)⊕ (1− tn)u(xn−1)

+ d(tnf(xn)⊕ (1− tn)u(xn−1), tnf(xn−1)⊕ (1− tn)u(xn−1))

+ d(tnf(xn−1)⊕ (1− tn)u(xn−1), tn−1f(xn−1)⊕ (1− tn−1)u(xn−1))

≤ (1− tn)d(u(xn), u(xn−1)) + tnd(f(xn), f(xn−1)) + |tn − tn−1|d(f(xn−1), u(xn−1))

≤ (1− tn)H(Txn, Txn−1) + tnd(f(xn), f(xn−1)) + |tn − tn−1|d(f(xn−1), u(xn−1))

≤ ((1− tn) + tnα)d(xn, xn−1) + |tn − tn−1|d(u(xn−1), f(xn−1))

≤ (1− tn(1− α))d(xn, xn−1) + |tn − tn−1|d(u(xn−1), f(xn−1)).

By condition (ii),(iii) and Lemma 2.7, we have

lim
n→∞

d(xn+1, xn) = 0. (3.8)
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Let the net {xt} ⊂ C and

xt = tf(xt)⊕ (1− t)u(xt), u(xt) ∈ Txt, n ≥ 1.

By theorem 3.1, we have that {xt} converges strongly to x̃ ∈ F (T ) (as t → 0), and which solves the

variational inequality (3.3).

(III) We show that

lim sup
n→∞

⟨
−−−→
f(x̃)x̃,

−−→
xnx̃⟩ ≤ 0.

Indeed, it follows from Lemma 2.6 that

d2(xt, xn) = ⟨−−→xtxn,
−−→xtxn⟩

≤ t⟨
−−−−−→
f(xt)xn,

−−→xtxn⟩+ (1− t)⟨
−−−−−→
u(xt)xn,

−−→xtxn⟩

≤ t⟨
−−−−−−→
f(xt)f(x̃),

−−→xtxn⟩+ t⟨
−−−→
f(x̃)x̃,−−→xtxn⟩+ t⟨−→x̃xt,−−→xtxn⟩+ t⟨−−→xtxn,

−−→xtxn⟩

+ (1− t)⟨
−−−−−−−→
u(xt)u(xn),

−−→xtxn⟩+ (1− t)⟨
−−−−−→
u(xn)xn,

−−→xtxn⟩

≤ tαd(xt, x̃)d(xt, xn) + t⟨
−−−→
f(x̃)x̃,−−→xtxn⟩+ td(xt, x̃)d(xt, xn) + td2(xt, xn)

+ (1− t)d2(xt, xn) + (1− t)d(u(xn), xn)d(xt, xn).

Let M := sup d({xt, xn}), we get that

⟨
−−−→
f(x̃)x̃,−−→xnxt⟩ ≤ (1 + α)Md(xt, x̃) +M

d(u(xn), xn)

t
.

We have

lim sup
t→0

lim sup
n→∞

⟨
−−−→
f(x̃)x̃,−−→xnxt⟩

≤ lim sup
t→0

lim sup
n→∞

((1 + α)Md(xt, x̃) +M
H(Txn, xn)

t
) = 0

Since limt→0 xt = x̃ and by the continuity of d(., .). For any fixed n, we have that

lim
t→0

⟨
−−−→
f(x̃)x̃,−−→xnxt⟩

=
1

2
lim
t→0

(d2(f(x̃), xt) + d2(x̃, xn)− d2(f(x̃), xn)− d2(x̃, xt))

=
1

2
(d2(f(x̃), x̃) + d2(x̃, xn)− d2(f(x̃), xn)− d2(x̃, x̃))

= ⟨
−−−→
f(x̃)x̃,

−−→
xnx̃⟩
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which implies that, for any ε > 0, there exists a δ > 0 such that

⟨
−−−→
f(x̃)x̃,

−−→
xnx̃⟩ < ⟨

−−−→
f(x̃)x̃,−−→xnxt⟩+ ε, t ∈ (0, δ). (3.9)

Hence, by the upper limit as n→ ∞ first and then t→ 0, we get that

lim sup
n→∞

⟨
−−−→
f(x̃)x̃,

−−→
xnx̃⟩ ≤ ε,

which implies that

lim sup
n→∞

⟨
−−−→
f(x̃)x̃,

−−→
xnx̃⟩ ≤ 0.

(VI) Finally,we prove that xn converges strongly to x̃.

Let yn = tnx̃⊕ (1− tn)u(xn) ,by Lemma 2.5,2.6, we have that

d2(xn+1, x̃) ≤ d2(yn, x̃) + 2⟨−−−−→xn+1yn,
−−−−→
xn+1x̃⟩

≤ (1− tn)
2d2(xn, x̃) + 2(t2n⟨

−−−−→
f(xn)x̃,

−−−−→
xn+1x̃⟩

+ tn(1− tn)⟨
−−−−−−−−→
f(xn)u(xn),

−−−−→
xn+1x̃⟩+ tn(1− tn)⟨

−−−−→
u(xn)x̃,

−−−−→
xn+1x̃⟩)

= (1− tn)
2d2(xn, x̃) + 2(t2n⟨

−−−−→
f(xn)x̃,

−−−−→
xn+1x̃⟩+ tn(1− tn)⟨

−−−−→
f(xn)x̃,

−−−−→
xn+1x̃⟩)

= (1− tn)
2d2(xn, x̃) + 2tn⟨

−−−−→
f(xn)x̃,

−−−−→
xn+1x̃⟩

= (1− tn)
2d2(xn, x̃) + 2tn(⟨

−−−−−−−→
f(xn)f(x̃),

−−−−→
xn+1x̃⟩+ ⟨

−−−→
f(x̃x̃),

−−−−→
xn+1x̃⟩)

≤ (1− tn)
2d2(xn, x̃) + 2tn(αd(xn, x̃)d(xn+1, x̃) + ⟨

−−−→
f(x̃)x̃,

−−−−→
xn+1x̃⟩)

≤ (1− tn)
2d2(xn, x̃) + 2tn⟨

−−−→
f(x̃)x̃,

−−−−→
xn+1x̃⟩) + αtn(d

2(xn, x̃) + d2(xn+1, x̃)),

which implies that

d2(xn+1, x̃) ≤ 1− (2− α)tn
1− tnα

d2(xn, x̃) +
2tn

1− tnα
⟨
−−−→
f(x̃)x̃,

−−−−→
xn+1x̃⟩+ α2

nL,

where L = supn≥1{d2(xn, x̃)}.

Letting δn = 2(1−α)tn
1−tnα

and γn = 1
1−α ⟨

−−−→
f(x̃)x̃,

−−−−→
xn+1x̃⟩+ (1−αtn)tn

2(1−α) L.

we have that

d2(xn+1, x̃) ≤ (1− δn)d
2(xn, x̃) + δnγn.

By Lemma 2.7,we get that limn→∞ xn = x̃ and which solves the variational inequality (3.3). This completes

the proof of Theorem 3.2.
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