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Abstract. This paper is concerned with application of Kalman recursive estimates in the the capital asset pricing 

(CAPM) model with time varying beta parameters. Following Kyriazis (2011), Kalman estimates are derived 

using a Bayesian probability theory. Rate of convergence and sensitivity analysis of estimates are derived. 

Through five examples, applications of presented estimates are shown. Extension to the non-normal cases and 

suggestion of Bayes filter is also considered. Comparisons with method of moment estimates are given.  
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1 Introduction. There are many asset pricing models such as equilibrium model (CAPM), an econometric 

model (Fama and French three factors model) or an arbitrage pricing model (APT). In this paper the first model 

is considered. The CAPM, introduced by Sharpe (1963), implies that the systematic risk is only risk which 

noticed by investors because diversification cannot eliminate this risk. It states that the expected return of a risky 

security is decomposed to the sum of riskless rate      and a risk premium of market (  
    ) which is 

multiplied by the asset's systematic risk measure beta (  . There are many extensions to CAPM, for example, 

the ICAPM (Intertemporal CAPM) or the consumption-based CAPM (CCAPM). For a comprehensive review 

about the CAPM model see Alexander (2001) and references therein.  

   

In this paper, a CAPM model with time varying betas is considered as follows 

 

{

        (  
    )    

            

           

 

and a Kalman filter is used to produces estimates mean and variance of   . In the above model,     is the return 

of a risky asset at time t. Variables     and    are supposed normally distributed with zero means and variances 

  
  and   

 . The Kalman filter is a mathematical power tool that is playing an increasingly important role in 

finance. It gives optimal recursive estimator of unknown parameters. Since it is in recursive form, new 

measurements can be processed once newcomer observations arrived. Kalman filter is increasingly used in 

financial applications. A comprehensive review about the application of Kalman filtering in financial models 

may be found in Harvey (1989). Nelson and Foster (1994) studied the estimation of ARCH time series using 

adaptive filtering. Racicot and Theoret (2007) studied the application of Kalman filter in hedge fund problems. 

Kyriazis (2011) proposed a simplified derivation of scalar Kalman filter using Bayesian setting. Habibi (2013) 

applied this method to derive adaptive filter in a regression model in known and unknown variance of residual 

cases.  

 

The paper is organized as follows. In the rest of Introduction, the Kalman filter equations are derived and the 

rate of convergence is studied. Sensitivity analysis are studied in Section 2. Some examples and applications are 
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presented in Section 3. Comparisons with method of moment estimates are given in Section 4. Concluding 

remarks are given in Section 5.  

1.1 Derivation. Following Kyriazis (2011), let the posterior distribution of      be a normal distribution with 

     and variance     
 . Thus, the prior density function of    at time   is proportional to  

 

     
  

   
        

   

 

where 

          and   
    

     
    

   
 

Also, the likelihood function of    given    ,   
  is the probability density function of a normal distribution with 

mean    and variance   
 . The Kalman gain is    where  
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Therefore, the posterior distribution of beta at state t is normal with mean    and variance   
  as follows 
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The following Kalman equations are derived  

  

{

                        

  
          

  
 

 

Remark 1. Estimates     and   
   are the conditional mean and variance of   given   

   The marginal mean, 

variance and density function of    are given as follows 

 

{

       (    |  
  )        

                |  
          

   
       

 (   |  
    )  

 

Using a Monte Carlo simulation the marginal density of    is computed. 

 

Remark 2. Here, we investigate the condition for the CAPM holds. It can be seen that 

 

                     (    
    )       

 

Then, 

                   (    
    )   

Also,                  (    
    ) .  Thus, the condition is  

 

      (    
    )          (    

    )   

 

Moreover, it is seen that the conditional distribution of      given   
  is normal with mean and variance  
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Remark 3. Cheng et al. (2003) considered a discrete time process which is a semi-martingale given as follows 

 

      √      
 

They defined the adaptive filter as 

                      
 

The coefficient   is derived by minimizing a MSE. Here, we want to apply this method. That is,  

 

                            

 

Define     
     

 (    
    )

 
  By minimizing the variance  ̂  with respect to     it is seen that  

 

   
    

 

     
  

 

It is known that    is close to the    and       may be approximated by     , then 

 

                               
 

This is the adaptive filter version of above problem. However, this filter is dropped and hereafter properties of 

Kalman filter is studied.  

 

1.2 Rate of Convergence. A natural question may arise is that when the value of    is close to its previous 

value     . To see this, let    
 

    
     notice that  

 

|       | |    ||          |  |    |  |    |  
 

Since        thus 

 |       |  
  |    |

  

   

The following proposition summaries the above result and proposes  the rate of convergence of   .  

 

Proposition 1. Suppose that 
  |    |

  

                          

|       |       . 

 

Here, we continue as follows. Write                                    . So 

 

                 (   
  

   
     

       )     
  

   
     

     

 

The variance of error term      is             
    

    
     Now, Suppose that  

 

√  
    

    
                      

 

Then,    behaves like the          The following proposition summaries the above result and proposes  the rate 

of convergence of   .  
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Proposition 2. Suppose that  

√  
    

    
                      

 

Then,    behaves like the           
 

Also, it is seen that 

  
      

  (        
   )    

          
   

 

Let      
 

  
 . Therefore, if 

  
 

  
            then   

      
      The following proposition summaries the 

above result. 

 

Proposition 3. Suppose that      
 

  
 ,  and  

  
 

  
            then 

 

  
      

   (
  

 

  
 )  

 

Sometimes   
  behaves like   

     
 . The following proposition states this fact.  

 

Proposition 4. Assume that      
 

  
  and    

       Then,   
  behaves like   

     
 . 

 

2 Sensitivity analysis. Here, the sensitivity of Kalman estimates with respect to their parameters is considered.  

 

2.1 Effect of heteroskedasticity. When volatility sequence   
  follows a GARCH series, it has too fluctuations. 

Thus, it may be too large or too small. First, suppose that for some time point  , variance term   
  gets large, 

then   
  goes to infinity (if   

    is small with respect to   
  , and    goes to zero. Therefore  

 

           
 

Here,   
  behaves like the   

 . Also, suppose that variance   
  goes to zero, then    closes to unity, therefore 

     , where it is the       approximately. In this case, it is seen that   
  goes to zero. Therefore, considering a 

GARCH series for   
 , then  

 

{
           

    

       
   

 

 

This phenomena usually happens and is referred as volatility clustering, when the arch or GARCH coefficients 

of heteroskedaticity model is too large or too small.  

 

2.2 Sensitivity to     The partial derivative of    with respect to   is given by 

 
   

   

             

 

As    goes to one, the effect of    on    is small. To study the effect of    on   
  let      

 . Then,  

 

   
 

   

 
   

 

   
  

   
 

   

 
  

     
 

   
    

   
 

 

As  the    goes to zero, then    has no effect on   
    However, as    goes to infinity, then  
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Remark 4. This method may be applied in hedging a portfolio. Suppose that a portfolio contains a stock where 

its dynamic of return follows the model of Introduction. Then, the mean of    may change as 

 

  
     

 

   
    

   
 

 

because of variation in    . Therefore, to hedge this risk, it is possible to modify the     to  

 

     

  
     

 

   
    

   
  

The other sensitivity may be applied in the same way.  

 

2.3 Effect of Kalman gain. Again, it is seen that 

 
   

   
            and  

   
 

   
    

   

 

As    is large (small), then the sensitivity of   
  to    is small (large), conversely. 

 

 

2.4 Effect of normality. The proposed results lies heavily on the normality of      Here, it is assumed that    has 

a    percent pollution normal distribution given by 

       
               

    
Therefore,  
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One can see that  

   

  
 

   

   
 

 
   

 

  
 

              
 

   
     

   
  

 

As   goes to one, then   
  is replaced by   

    more. In the following Remark, the Bayes filtration is suggested 

for general non-normal cases.  

 

Remark 5. Kalman filtering uses the normality assumption for   . However, it is not a realistic assumption, in 

practice. Historical data analysis shows that fat tail distributions are usually suitable for     Thus, in the case of 

heavy tail distribution, Kalman filter fails and some extensions like the particle filters or generally the Bayes 

filter are needed (Arulampalam et al.). Using the Chapman-Kolmogorov equation, the Bayes prediction step is 

given by 

    |           ∫     |           |               , 

 

and the Bayes update equation is 

 

    |             |       |            
 

In order to initialize the recurrence algorithm, it is assumed that the initial return    has known probability 

distribution        Using the Bayes filter, the probability distribution     |         and     |           are 

not computed. Only, the expectations     |         and     |           are calculated.  

 

Remark 6: Distribution of     . Suppose that the mean of market risk of a special stock at time   is     Using 

the Kalman estimate     , it is possible to forecast the future market risk distribution       Notice that  

      |       ∫      |           |              

where       |      comes from normal distribution with mean      and     
  and        |       is a normal  
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with mean  

 
        

              
 

 

and variance     
         

     
   Term     

  is obtained by updating the variance term of Kalman equation 

 

Remark 7: Application in VaR. One of the main factors which exists in each financial activity is risk. The risk 

induces the uncertainty to the financial problems and therefore decision making is too difficult in such 

conditions. Indeed, after famous financial disasters, it is advised to estimate the market risk (see, Alexander 

(2001)). One of these risk measures is VaR. VaR calculations attempt to provide a risk assessment of the form: 

we are (1 − α)% certain that we will not lose more than Y dollars in the next N days. The variable Y is function 

of two parameters. The first is N, the time horizon, and the second is (1 − α), the confidence level.  

For a portfolio with initial value   , the (1 − α) % VaR is          where       is the  α-th quantile of return 

process. Here, suppose that         is the value of VaR at time point      Thus, 

 

 (     
      

   

|     )   

 

∫ (     
      

   

|          )                    

 

     |     ( (
   

             

    

))    

 

where density       |       proposed in Example 4 and   is the CDF of standard normal distribution.  

 

3 Comparisons. Here, we compare the Kalman filter estimate with the method of moment estimate. One can 

see that  

            (  
    )  (  

    )       . 

 

Thus, the method of moment (mm) estimate of  ̂  is given 

  

 ̂      |  
         |       

             (  
    )  

 

It is seen that  

 

      ̂   (       )                   
       

 

Suppose that    is close to one and     
   is close to unity. Then,  

 

      ̂   (     )            

 

When    is close to   then    is close to    ̂  . The following proposition summaries the above discussion. 

 

 Proposition 5. Suppose that    is close to one and     
   is close to unity and    is close to     Then, the 

Kalman estimate    is close to the expectation of mm estimate of  ̂ .  

 

Next, the proportion of variance of    to is given by  

 

 ̂ 

  
  

  
 

  
 
     

      
    

        
   

  
 

  
   

 

Suppose that 
  
 

  
    then 

 ̂ 

  
  

  
 

  
 . That is as soon as   

    
 , then the Kalma filter method works better that the 

method of moment estimate.  
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Proposition 6. If 
  
 

  
     then  

 ̂ 

  
  

  
 

  
 .  

 

4 Some examples. In this section, some examples are proposed.  

 

Example 1: Simulation. For first Example, let   
    

    and the monthly risk free rate if           It is 

assumed that   
  is normally distributed with mean 0.6 and standard deviation 0.1. Coefficients    are sampled 

from a first order autoregressive model with mean 1,        and   's are computed. The actual beta is given 

by 0.083. The following plot again proposes the accuracy of presented method.  

 

Table 1: Descriptive statistics of    and     

Kalman est. Min 1st Qu Median Mean 3rd Qu Max 

   0.011 0.057 0.0846 0.0826 0.106 0.13 

   0 0.529 0.739 0.716 0.933 1.01 

 

Figure 1: Plot of Kalman filter estimate mu(t)

t

m
u

0 200 400 600 800 1000

-6
-4

-2
0

2
4

6
8

 
Example 2: Real data set. Here, a real data set is studied. The S&P 500 stock market index comprises 505 

common stocks where one of them is Affiliated Managers Group (AMG) stock. It is a global asset management 

company. The monthly and daily risk free rates are 0.13, 0.00433, respectively. To test the truth of CAPM, the 

model 

         (  
    )     

is fitted and it is tested to check if        isn't rejected or not. The data set is chosen such that the null 

hypothesis is retained. The following Table gives the values of     the p-value for        and the estimated 

beta for various choice of sample size     
 

Table 2: Sample size selection 

  100 150 200 

p-value 0.346 0.764 0.006 

   0.52 0.50 0.17 

  1.12 1.12 0.58 

 

Using this strategy, the data set (taken from Google-finance) contains 150 daily returns for time period January 

2, 2015 to August 7, 2015. During this period, the best fit of CAPM model is observed (see Table 2). The 

sequential least square estimates are computed as the time varying betas. Using the Modelrisk Vose software 

(Adds-in Excel) an first order Autoregressive AR(1) model with mean 0.182 is fitted to betas and it is seen that 

          and            Also, a GARCH(1,1) is fitted for   
   It is seen that 
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The following Table gives the descriptive characteristics Kalman estimates    and   
  of Example 1.  

 

Table 3: Descriptive statistics of    and     

Kalman est. Min 1st Qu Median Mean 3rd Qu Max 

   0 1.33 1.35 1.34 1.38 1.39 

   0 0.0239 0.0239 0.0237 0.0239 0.0239 

 

The mean of    corresponds to the actual beta which is 1.37. The standard deviation of    also shows the 

accuracy of results. The following plot shows the convergence of Kalman estimates of     on actual estimate of 

beta. In the above example, Kalman filter works well because in spite of existence of a GARCH series, it does 

not generate too large or too small variance values. 

 

The stability of    can be checked by drawing the CUSUM plot. It is presented as follows 

       ∑ 

 

   

                  

If there is no change in betas then this plot fluctuates around zero. The below figure shows that the stability of 

betas in mean is failed and a time varying beta CAPM model is a suitable selection.  

 

 

Figure 2: Plot of Kalman filter estimate mu(t)
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Figure 3: CUSUM of betas
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5 Concluding remarks. In this paper, the Bayesian approach is applied to provide recursive Kalman estimation 

of the time varying beta of the CAPM model.  Applications of method are presented and rate of convergence are 

derived. Comparisons with method of moment estimates are given.  
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