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Abstract

A recent approach for studying the features of an arbitrary noncommuta-

tive stochastic differential equation in a number of locally convex operator

topologies, comprising the strong/λ?-topologies and the weak topologies, is

extended to the more general context of a noncommutative stochastic dif-

ferential inclusion (NSDI). Reformulations, corresponding to the two sets of

topologies and providing equivalent forms, of the NSDI are furnished and

the existence of solutions of the inclusion in the diverse topologies is estab-

lished. The reformulations are amply suited for analytically and numerically

characterizing the key topological features of the solutions of NDSIs.
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1 Introduction

A major preoccupation of classical stochastic analysis is the study of stochas-
tic differential equations [15,21–23,25–29], with a view to understanding, an-
alytically and numerically, the qualitative features of their weak or strong so-
lutions. This, in turn, provides an insight into the fluctuations and stochas-
tic dynamics of the systems described by the equations. By contrast, when
investigating the solutions of operator-valued stochastic differential equa-
tions, we encounter a multiplicity of operator topologies, beyond the weak
and strong operator topologies, which appear in analysis or applications and
should also be considered.
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In Ref. [6], we initiated the study of the existence and uniqueness of
the solutions of a noncommutative stochastic differential equation (NSDE),
driven by an operator-valued semimartingale, in a number of interesting
locally convex operator tolopogies that are listed in Subsection 3.1 below. A
major objective of the study was to provide a representation-free approach
that has the potential of unifying previous publications by a number of
authors [12–14, 16, 20, 24] on the subject, while also furnishing a formalism
for discussing diverse interesting features of the solutions of an NSDE.

In this paper, we extend the considerations and results of Ref. [6] to the
more general context of a noncommutative stochstic differential inclusion
(NSDI) which is introduced in Subsection 3.5. This is achieved by formulat-
ing a procedure for the systematic study of the properties of the solutions
of NSDIs in the locally convex operator topologies of Subsection 3.1. As in
Ref. [6], we assume only that we are furnished with a notion of noncom-
mutative stochastic integration in which the stochastic integral satisfies a
semimartingale inequality in each of the locally convex operator topologies.

In the classical context, differential inclusions have been studied over the
years by several authors [2–4, 7–11], while in the noncommutative setting,
a study of a class of quantum stochastic differential inclusions was initiated
by this author [17–19].

The rest of the paper is organized as follows. In Section 2, we sketch the
partial ?-algebraic setting [1] in which we work, especially the structure of a
partial O?-algebra [1]. This enables us to consider noncommutative stochas-
tic processes whose values are, in general, densely defined unbounded linear
maps on an arbitrary Hilbert space. Section 3 contains a diversity of notions
and structures that are employed in the sequel. The Section is arranged as
follows. The locally convex operator topologies employed in the subsequent
discussion are introduced in Subsection 3.1. These are defined on an ar-
bitrary partial O?-algebra M and used to introduce Hausdorff topologies
on collections of closed subsets of M in Subsection 3.2, since much of the
subsequent discussion will revolve around multivalued maps. After intro-
ducing the notion of a single-valued noncommutative stochastic process in
Subsection 3.3, we define noncommutative multivalued stochastic processes
in Subsection 3.4. These are central to the considerations in this paper
and lead to the formulation of the notion of a noncommutative stochastic
differential inclusion (NSDI) in Subsection 3.5. Section 4 furnishes the no-
tion of a Lipschitzian multifunction, as well as several examples of such a
multifunction. In Section 5, we prove the existence of a solution of a Lips-
chitzian NSDI in the λ?-topology τ?λ and the strong locally convex topologies
{τs, τs? , τσs, τσs?} described in Subsection 3.1. This is done under the hy-

2



potheses listed in Subsection 5.3. Similarly, in Section 6, under the hypothe-
ses indicated in Subsection 6.3, the existence of a solution of a Lipschitzian
NSDI in the weak locally convex operator topologies {τw, τσw} is established.
As a strategem for obtaining the proofs, we first furnish two reformulations,
corresponding to the two sets of topologies (strong/λ? and weak) and pro-
viding equivalent forms, of the NSDI. The reformulations are themselves of
independent interest and are amply suited for analytically or numerically
characterizing the key topological features of the solutions of an NDSI. The
results of this paper extend those of Refs. [12–14,16,20,24], which use only
the strong operator topology τs and weak operator topology τw.

2 Preliminaries

Throughout the paper, H is a Hilbert space, with inner product 〈·, ·〉 and
norm ‖·‖, and D is a dense subspace of H. To the pair (D,H) we associate
the linear space L(D,H) of all H-valued linear maps x whose common do-
main is D and whose adjoints x∗ have domains containing D. It follows that
every operator in L(D,H) is closable. We denote the closure of x ∈ L(D,H)
by x. Equipped with the relation Γ given by

Γ = {(x, y) ∈ L(D,H)× L(D,H) : yD ⊆ dom(x+?) and x+D ⊆ dom(y?)},

where dom(a) denotes the domain of a and the involution + is the map
x 7→ x+ = x∗dD, the space L(D,H) acquires the structure of a partial ∗-
algebra [1] with partial multiplication · defined by: x · y = x+∗y on D.
The triplet (L(D,H),+,Γ), or equivalently (L(D,H),+, ·), will be denoted
simply by L+

w(D,H). We will say that a subspace M of L+
w(D,H) is closed

under the partial multiplication · if (x, y) ∈ Γ, with x, y ∈M, implies x ·y is
in M. A +-invariant subspace of L+

w(D,H) which is closed under the partial
multiplication · will be called a partial O?-algebra on D.

3 Fundamental notions and structures

In this Section, we introduce the main notions and structures which feature
in the subsequent discussion.

3.1 Some locally convex operator tolopogies on M

Let M be a partial O∗-algebra on D. As in Ref. [6], we employ the following
locally convex operator topologies.
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(i) strong topology τs: whose family of seminorms is {‖·‖ξ : ξ ∈ D}, where
‖x‖ξ = ‖xξ‖, x ∈M, ξ ∈ D;

(ii) strong? topology τs? : whose family of seminorms is {‖·‖?ξ : ξ ∈ D},

where ‖x‖?ξ =
√
‖x+ξ‖2 + ‖xξ‖2, x ∈M, ξ ∈ D;

(iii) σ-strong topology τσs: which is defined as follows: let D∞ denote
the set of all sequences ξ = {ξn}∞n=1 of members of D such that
∞∑
n=1

‖xξn‖2 <∞, ∀ x ∈M; then, the family of seminorms which gen-

erate τσs is given by {‖·‖ξ : ξ ∈ D∞}, where ‖x‖ξ =

√√√√ ∞∑
n=1

‖xξn‖2, x ∈

M, ξ ∈ D∞;

(iv) σ-strong? topology τσs? : whose family of seminorms is {‖·‖?ξ : ξ ∈

D∞}, where ‖x‖?ξ =

√√√√ ∞∑
n=1

(
‖x+ξn‖2 + ‖xξn‖2

)
, x ∈M, ξ ∈ D∞;

(v) weak topology τw : whose family of seminorms is {‖·‖ηξ : η, ξ ∈ D},
where ‖x‖ηξ = |〈η, xξ〉| , x ∈M, η, ξ ∈ D;

(vi) σ-weak topology τσw : whose family of seminorms is {‖·‖ηξ : η, ξ ∈

D∞}, where ‖x‖ηξ =

∞∑
n=1

|〈ηn, xξn〉|, x ∈M,η, ξ ∈ D∞;

(vii) λ? topology τλ? : this topology is defined as follows. Let M+ be the
positive portion of M (i.e. M+ is the set of members x ∈M such that
〈ξ, xξ〉 > 0, ∀ ξ ∈ D), and Me = M+ ∪ {e}, where e is the identity
operator in L+

w(D,H). For a ∈Me, let

‖x‖a = sup
ξ∈D


√
‖x+ξ‖2 + ‖xξ‖2

‖aξ‖

 , x ∈M,

where α/0 =∞, for α > 0. Set

Ma = {x ∈M : ‖x‖a <∞}.

Then {(Ma, ‖·‖a) : a ∈ Me} is directed and covers M. For a ∈ Me,
let ja be the injection of Ma in M. Then τλ? is the inductive topology
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on M determined by the collection {(Ma, ja) : a ∈ Me}. We remark
that the topology τλ? reduces to the uniform topology on B(H), the
Banach space of bounded endomorphisms of H.

The locally convex operator topologies introduced above are not metrizable,
and hence are not paracompact.

Remark 3.1. We shall call the members of the set {τs, τs? , τσs, τσs?} the
strong locally convex operator topologies and {τw, τσw} the weak locally con-
vex operator topologies.

Notation: The symbol τ2 denotes any member of the set {τs, τs? , τσs, τσs? , τw,
τσw, τλ?} and we write {‖·‖α : α ∈ Θ(τ2)} for the family of seminorms
that generates τ2. From above, it is seen that Θ(τs) = Θ(τs?) = D;
Θ(τσs) = Θ(τσs?) = D∞; Θ(τw) = D × D; Θ(τσw) = D∞ × D∞; and
Θ(τλ?) = Me. We denote the locally convex space (M, τ2) by M(τ2) and
write Mτ2 for the τ2-completion of M.

For x ∈M, with closure x, write x = v(x) |x| for the polar decomposition
of x, having v(x) as its partial isometry and |x| as its positive part. Let
Cb(R+) denote the linear space of all bounded real-valued Borel functions
on R+. To the partial O?-algebra M, we associate the W ?-algebra W ?(M)
of bounded linear operators on H defined by

W ?(M) = {v(x), ϕ(|x|) : x ∈M and ϕ ∈ Cb(R+)}′′,

where C′′ denotes the bicommutant of C ⊂ B(H).

3.2 Hausdorff topologies

In the sequel, we employ a number of Hausdorff topologies, associated with
the locally convex topologies introduced above.

The symbol clos(Mτ2) denotes the collection of all nonvoid closed subsets
of Mτ2 . We introduce a Hausdorff topology on clos(Mτ2) as follows.

For x ∈Mτ2 ,M,N ∈ clos(Mτ2) and α ∈ Θ(τ2), make the definitions:

dα(x,N ) = inf
y∈N
‖x− y‖α

δα(M,N ) = sup
x∈M

dα(x,N )

ρα(M,N ) = max (δα(M,N ), δα(N ,M)).

The Hausdorff topology determined on clos(Mτ2) by the pseudometrics
{ρα(·, ·) : α ∈ Θ(τ2)} will be denoted by τH2 .
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If M∈ clos(Mτ2), then ‖M‖α is defined by

‖M‖α = ρα(M, {0}), α ∈ Θ(τ2).

It follows that

‖M‖α = sup{‖m‖α : m ∈M}, α ∈ Θ(τ2).

In analogy to the foregoing, for A,B ∈ clos(C) and x ∈ C, the complex
numbers, define

d(x,A) = inf
y∈A
|x− y|,

δ(A,B) = sup
x∈A

d(x,B),

ρ(A,B) = max {δ(A,B), δ(B,A)} .

Then ρ induces a Hausdorff topology on clos(C).

Remark 3.2. The following notions are needed in the subsequent discus-
sion.

3.3 Noncommutative stochastic processes

Our approach to stochastic integration will be as outlined in Ref. [6], to
which the reader should turn for both notation and relevant concepts, es-
pecially the definition of the +-invariant linear spaces of simple processes
sim(I,M(τ2)) on I (resp. sim(M(τ2)) on R) and adapted processes Ad(I,M(τ2))
on I (resp. Ad(M(τ2)) on R); the +-invariant space Sem(M, τ2) of semi-
martingales, each memberM of which determines two subspaces L2

loc(I,M
τ2 , dM)L

and L2
loc(I,M

τ2 , dM)R of Ad(I,M(τ2)), called the subspace of left locally
square integrable integrands and the subspace of right locally square inte-
grable integrands, respectively, with respect to M ; as well as the left stochas-
tic integral of f (resp. right stochastic integral of g) represented as:

(M ◦ f)(t) =

∫ t

t0

dM(s) · f(s), for f ∈ L2
loc(I,M

τ2 , dM)L

(resp. (g ◦M)(t) =

∫ t

t0

g(s) · dM(s)), for g ∈ L2
loc(I,M

τ2 , dM)R.

These stochastic integrals are assumed to enjoy the fundamental properties
listed in Ref. [6, page 968]. As we shall be employing mixed stochastic
integrals, which are linear combinations of left and right stochastic integrals,
we denote L2

loc(I,M
τ2 , dM)L ∩ L2

loc(I,M
τ2 , dM)R by L2

loc(I,M
τ2 , dM).
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As the main results in this paper may readily be reformulated for right,
as well as mixed, stochastic integrals, throughout the paper, we consider
only left stochastic integrals.

As in Ref. [6], the symbol L2
loc(I,M

τ2 , ds) denotes the completion of
the +-invariant linear space sim(I,M(τ2)) in the locally convex topology τ02
whose family of seminorms is given by {‖·‖α,t : α ∈ Θ(τ2), t ∈ I}, where

‖f‖2α,t =

∫ t

t0

ds ‖f(s)‖2α , f ∈ sim(I,M(τ2)), α ∈ Θ(τ2).

For M ∈ Sem(M, τ2) and (f, g, h) ∈ L2
loc(I × Mτ2 , dM) × L2

loc(I ×
Mτ2 , dM+)×L2

loc(I ×Mτ2 , ds), we introduce the mixed stochastic integral:

x(t) = x0 +

∫ t

t0

(
dM(s) · f(s, x) + dM+(s) · g(s, x) + h(s, x) ds

)
, t ∈ I.

This is central to the notion of stochastic integration of multivalued stochas-
tic processes in this paper.

3.4 Noncommutative multivalued stochastic processes

Definition 1. (1) A member of clos(Mτ2) will be called a random set.

(2) By a multivalued stochastic process indexed by I ⊆ R+, we mean a mea-
surable multifunction on I whose values are random sets, i.e. a clos(Mτ2)-
valued map on I such that t 7→ ρα({x},Φ(t)) is measurable for arbitrary
x ∈Mτ2 , α ∈ Θ(τ2).

(3) If Φ is a multivalued stochastic process indexed by I ⊆ R+, then a se-
lection of Φ is a stochastic process x : I −→ Mτ2 with the property that
x(t) ∈ Φ(t) for almost all t ∈ I.

(4) A multivalued stochastic process Φ will be called

(i) adapted if every selection of Φ is adapted;

(ii) a member of

(a) L2
loc(I,M

τ2 , dM)mvs if every selection of t 7→ Φ(t), t ∈ I, lies in
L2
loc(I,M

τ2 , dM);

(b) L2
loc(I,M

τ2 , ds)mvs if every selection of t 7→ Φ(t), t ∈ I, lies in
L2
loc(I,M

τ2 , ds),

for arbitrary α ∈ Θ(τ2), and M ∈ Sem(Mτ2).
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Remark 3.3. Based on Definition 1, we will also employ the following
notation.

Notation 3.1. Let M ∈ Sem(Mτ2) and I ⊆ R+.

1. The set L2
loc(I ×Mτ2 , dM)mvs (resp. L2

loc(I ×Mτ2 , ds)mvs) is the set of
all maps Φ : I × L2

loc(I,M
τ2 , ds) −→ clos(Mτ2) such that t 7→ Φ(t, x), t ∈

I, lies in L2
loc(I,M

τ2 , dM)mvs (resp. L2
loc(I,M

τ2 , ds)mvs) for every x ∈
L2
loc(I,M

τ2 , ds).

2. If Φ ∈ L2
loc(I ×Mτ2 , dM)mvs (resp. Φ ∈ L2

loc(I ×Mτ2 , ds)mvs), we use
the notation

Lτ2(I,Φ, dM) =
{
ϕ ∈ L2

loc(I,M
τ2 , dM) : ϕ is a selection of Φ

}
(resp. Lτ2(I,Φ, ds) =

{
ϕ ∈ L2

loc(I,M
τ2 , ds) : ϕ is a selection of Φ

}
).

3.5 Noncommutative stochastic differential inclusions

In the sequel, let dW denote any of the stochastic differentials dM , dM+

and ds, employed as integrators above. Then we introduce multivalued
stochastic expressions as follows.

If Φ ∈ L2
loc(I ×Mτ2 , dW )mvs and (t, x) ∈ I × L2

loc(I,M
τ2 , ds), then we

make the definition:∫ t

t0

dW (s)Φ(s, x) =

{∫ t

t0

dW (s)ϕ(s, x) : ϕ ∈ Lτ2(I,Φ, dW )

}
.

This leads to the following notion.

Definition 2. Let F ∈ L2
loc(I ×Mτ2 , dM)mvs, G ∈ L2

loc(I ×Mτ2 , dM+)mvs,
and H ∈ L2

loc(I ×Mτ2 , ds)mvs. Let (t0, x0) be a fixed point of I ×M(τ2).
Then a relation of the form

x(t) ∈ x0 +

∫ t

t0

(
dM(s)F (s, x) + dM+(s)G(s, x) +H(s, x)ds

)
, t ∈ I, (3.1)

will be called a noncommutative stochastic integral inclusion (NSII) with
coefficients F , G, H, and initial data (t0, x0).

We shall often abbreviate equation (3.1) as follows:

dx(t) ∈ dM(t)F (t, x) + dM+(t)G(t, x) +H(t, x)dt, almost all t ∈ I,
x(t0) = x0,

(3.2)

and refer to this as a noncommutative stochastic differential inclusion (NSDI)
with coefficients F , G, H, and initial data (t0, x0).
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Definition 3. A map x : I −→ M(τ2) is τ2-absolutely continuous if for
arbitrary ε > 0 and each α ∈ Θ(τ2), there exists δ(ε, α) > 0 such that
n∑
k=1

‖x(tk)− x(sk)‖α < ε, for every pairwise disjoint family {(sk, tk)}nk+1 of

open subintervals of I satisfying |tk − sk| < δ(ε, α), k = 1, 2, . . . .

Notation 3.2. The set of all τ2-absolutely continuous members of L2
loc(I,M

τ2 , ds)
will be denoted by L2

loc(I,M
τ2 , ds)ac.

Definition 4. By a τ2-solution of problem (3.2), we mean a τ2-absolutely
continuous adapted stochastic process ϕ ∈ L2

loc(I,M
τ2 , ds) such that

dϕ(t) ∈ dM(t)F (t, ϕ) + dM+(t)G(t, ϕ) +H(t, ϕ)dt, almost all t ∈ I,
ϕ(t0) = x0 ∈M(τ2).

(3.3)

Remark 3.4. We shall prove the existence of solutions of problem (3.2) in
the multiple operator topologies introduced earlier. To this end, in Sections 5
and 6, we first establish equivalent forms of problem (3.2).

4 Lipschitzian multifunctions

We shall require the following notion in the sequel.

Definition 5. Let I ⊆ R+ and N ⊆ L2
loc(I,M

τ2 , ds). A map Φ : I×N −→
clos(Mτ2) will be called τ2-Lipschitzian if for each σ ∈ Θ(τ2), there are a
continuous function kσ : I −→ R+ and α(σ) ∈ Θ(τ2) such that

ρσ(Φ(t, x),Φ(t, y)) ≤ kσ(t) ‖x(t)− y(t)‖α(σ)

for all x, y ∈ N and almost all t ∈ I.

Remark. It is instructive to provide some examples of Lipschitzian mul-
tifunctions.

4.1 Examples of Lipschitzian maps

Let L(Mτ2) be the linear space of all linear maps from Mτ2 into itself and
L(Mτ2)con the subspace of L(Mτ2) consisting of all its continuous members.
If T ∈ L(Mτ2)con, then for each α ∈ Θ(τ2), there are cα > 0 and β(α) ∈
Θ(τ2) such that

‖Tz‖α ≤ cα ‖z‖β(α) , for all z ∈Mτ2 . (∗)
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In the sequel,
|||T |||α = inf{cα : (∗) holds},

and τcon denotes the locally convex topology determined by the family {|||·|||α :
α ∈ Θ(τ2)} of semi-norms.

Proposition 4.1. Let A be a map from I to the set of all τcon-closed sub-
sets of L(Mτ2)con equipped with the Hausdorff pseudometrics {ρconα : α ∈
Θ(τ2)} determined by τcon; ω a clos(Mτ2)-valued map on I and Φ : I ×
L2
loc(I,M

τ2 , ds) −→ 2M
τ2

the multifunction defined by Φ(t, x) = A(t)x(t) +
ω(t), x ∈ L2

loc(I,M
τ2 , ds), t ∈ I. Then, Φ is τ2-Lipschitzian.

Proof. First of all, it is clear that Φ has closed values. Next, for each σ ∈
Θ(τ2), a straightforward calculation gives

ρσ(Φ(t, x),Φ(t, y)) ≤ |||A(t)|||conσ ‖x(t)− y(t)‖α(σ) ,

for some α(σ) ∈ Θ(τ) and almost all t ∈ I, where |||A(t)|||conσ = ρconσ (A(t), 0).
2

Proposition 4.2. There exist clos(I)-valued Lipschitzian maps on the set
I × L2

loc(I,M
τ2 , ds).

Proof. Let b : I × R −→ clos(I) be Lipschitzian, i.e. ρ(b(t, λ1), b(t, λ2)) ≤
cb(t) |λ1 − λ2|, for all t ∈ I, λ1, λ2 ∈ R and some continuous cb : I −→ R+.
Then the map ϕ : I × L2

loc(I,M
τ2 , ds) −→ clos(I) defined by ϕ(t, x) =

b(t, ‖x‖α0
), for some α0 ∈ Θ(τ2), is Lipschitzian, since

ρ(ϕ(t, x), ϕ(t, x)) = ρ(b(t, ‖x(t)‖α0
), b(t, ‖y(t)‖α0

))

≤ cb(t)
∣∣‖x(t)‖α0

− ‖y(t)‖α0

∣∣
≤ cb(t) ‖x(t)− y(t)‖α0

, t ∈ I, x, y ∈ L2
loc(I,M

τ2 , ds).

2

Proposition 4.3. Let {aj}∞j=0 ⊂ Mτ2 and {ϕj}∞j=0 be a sequence of Lips-

chitzian maps from I×L2
loc(I,M

τ2 , ds) to clos(I) such that ρ(ϕj(t, x), ϕj(t, y))
≤ cj(t) ‖x(t)− y(t)‖α0

, for some α0 ∈ Θ(τ2), continuous maps cj : I −→
R+, and each j. Suppose that the map Φ : I ×L2(I,Mτ2 , ds) −→ clos(Mτ2)
defined by

Φ(t, x) =
∞∑
j=0

ajϕj(t, x)
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is pointwise τH2 -convergent and
∞∑
j=0

‖aj‖α cj(t) < ∞, for each α ∈ Θ(τ2)

and t ∈ I. Then Φ is τ2-Lipschitzian.

Proof. Let the hypotheses hold. Then

ρα(Φ(t, x),Φ(t, y)) = ρα(
∑∞

j=0 ajϕj(t, x),
∑∞

j=0 ajϕj(t, y))

≤
∞∑
j=0

‖aj‖α ρ(ϕj(t, x), ϕj(t, y))

≤

 ∞∑
j=0

‖aj‖α cj(t)

 ‖x(t)− y(t)‖α0
,

for each α ∈ Θ(τ2), t ∈ I, and x, y ∈ L2(I,Mτ2 , ds). 2

Remark 4.1. In [6, Proposition 3.1.3], we showed that there exist I-valued
Lipschitzian maps on I×L2

loc(I,M
τ2 , ds). We use this fact in the next result.

Proposition 4.4. Let ω be a clos(M(τ2))-valued map on I, such that cα =
ess supt∈I ‖ω(t)‖α is finite for each α ∈ Θ(τ2). Suppose σ : I −→ I and
β : I × L2

loc(I,M
τ2 , ds) −→ I is of the form β(t, x) = λ(t, ‖x(t)‖α0

), for
some α0 ∈ Θ(τ2), where λ : I × R −→ I is Lipschitzian. Define Φ : I ×
L2
loc(I,M

τ2 , ds) −→M(τ2) as the τ2-convergent Aumann-Lebesgue-Bochner
integral [5]

Φ(t, x) =

∫ β(t,x)

σ(t)
ω(s) ds, (t, x) ∈ I × L2

loc(I,M
τ2 , ds).

Then Φ is τ2-Lipschitzian.
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Proof. Let α ∈ Θ(τ2) be arbitrary. Then a straightforward calculation gives

ρα(Φ(t, x),Φ(t, y)) = ρα(

∫ β(t,x)

σ(t)
ω(s) ds,

∫ β(t,y)

σ(t)
ω(s) ds)

≤
∫ β(t,x)∨β(t,y)

β(t,x)∧β(t,y)
‖ω(s)‖α ds, since ρα is a

seminorm-induced pseudometric on Mτ2

≤ cα

∫ β(t,x)∨β(t,y)

β(t,x)∧β(t,y)
ds,

= cα |β(t, x)− β(t, y)|

= cα
∣∣λ(t, ‖x(t)‖α0

)− λ(t, ‖y(t)‖α0
)
∣∣

≤ cαkα(t)
∣∣‖x(t)‖α0

− ‖y(t)‖α0

∣∣ , for some kα : I → R+,

≤ cαkα(t) ‖x(t)− y(t)‖α0
.

This concludes the proof. 2

Remark 4.2. 1. Theorem 5.2 below shows how to generate τ sλ2 -Lipschitzian
multifunctions P from some given τ sλ2 -Lipschitzian multifunctions F , G, H,
where the topology τ sλ2 is as defined in Section 5.

2. Theorem 6.2 below shows how to generate τw2 -Lipschitzian multifunc-
tions P from some given τw2 -Lipschitzian multifunctions F , G, H, where the
topology τw2 is as defined in Section 5.

5 Solutions in the λ?-topology and strong operator
topologies

In this section, we discuss the existence of solutions of (3.2) in the λ?-
topology τ?λ and the strong locally convex topologies {τs, τs? , τσs, τσs?}; let
τ s2 denote any member of this set of topologies. Similarly, we write τ sλ2 for
any member of the set {τs, τs? , τσs, τσs? , τ?λ}.

We will first reformulate equation (3.2).

Notation 5.1. For a differentiable multifunction Ω : I −→ H, the symbol
d
dtΩ denotes the set

d

dt
Ω =

{
dω

dt
: ω is a selection of Ω

}
,
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where
dω

dt
is the strong derivative of ω.

5.1 The multifunction P

Define
P : I × L2

loc(I,M
τs , ds)ac −→ 2L

+
w(D,H)

(t, x) 7−→ P (t, x)

by

P (t, x)ξ =
d

dt

[(∫ t

t0

dM(s)F (s, x) + dM+(s)G(s, x) +H(s, x)ds

)
ξ

]
,

(5.1)

ξ ∈ D.
Since x ∈ L2

loc(I,M
τs , ds)ac, the map P is well defined. We shall utilize

a number of properties of the map P .

5.2 Assumptions

Throughout the rest of this Section, we work under the same set of assump-
tions listed as Assumptions 4.1, together with their notation, in Ref. [6,
Assumptions 4.1, page 973].

Theorem 5.1. Assume that F ∈ L2
loc(I × Mτ2 , dM)mvs, G ∈ L2

loc(I ×
Mτ2 , dM+)mvs, H ∈ L2

loc(I ×Mτ2 , ds)mvs and that P is as defined in (5.1).
Let ‖·‖σ,M , denote either ‖·‖β(σ,M), for σ ∈ Θ(τ s2), or ‖·‖σ,DMβ

, for σ ∈Me.

Suppose that for any σ ∈ Θ(τ sλ2 ), there exist some α(σ,M) ∈ Θ(τ sλ2 ) and a
continuous function kσ : I −→ R+, depending on F , G, H, such that

‖F (t, x)‖2σ,M + ‖G(t, x)‖2σ,M + ‖H(t, x)‖2σ ≤ kσ(t)
(

1 + ‖x(t)‖2α(σ,M)

)
,

(5.2)

for all x ∈ L2
loc(I,M

τsλ2 , ds)ac and almost all t ∈ I. Then there exists a
function λσ,M : I −→ R+, depending on F , G, H, such that

‖P (t, x)‖2σ ≤ λσ,M (t)
(

1 + ‖x(t)‖2α(σ,M)

)
for all x ∈ L2

loc(I,M
τsλ2 , ds)ac and almost all t ∈ I.

13



Proof. Every selection p of the multifunction P is given by an expression of
the form

p(t, x)ξ =
d

dt

[(∫ t

t0

dM(s) f(s, x) + dM+(s) g(s, x) + h(s, x)ds

)
ξ

]
, ξ ∈ D,

where f, g, h are selections of the multifunctions F,G,H, respectively, x ∈
L2
loc(I,M

τsλ2 , ds)ac, and almost all t ∈ I.
By [6, Theorem 4.2], we have

‖p(t, x)‖2σ ≤ λ̃σ,M (t)
(
‖f(t, x)‖2σ,M + ‖g(t, x)‖2σ,M + ‖h(t, x)‖2σ

)
,

for each σ ∈ Θ(τ sλ2 ), x ∈ L2
loc(I,M

τsλ2 , ds)ac and almost all t ∈ I, where

‖·‖σ,M =

‖·‖β(σ,M) , for σ ∈ Θ(τ s2)

‖·‖σ,DMβ
, for σ ∈Me

using the same notation as in Ref. [6, Assumptions 4.1]. Hence

sup{‖p(t, x)‖2σ : p is a selection of P}

≤ λ̃σ,M (t)
(

sup{‖f(t, x)‖2σ,M : f is a selection of F}

+ sup{‖g(t, x)‖2σ,M : g is a selection of G}

+ sup{‖h(t, x)‖2σ : h is a selection of H}
)
,

whence

‖P (t, x)‖2σ ≤ λ̃σ,M (t)
(
‖F (t, x)‖2σ,M + ‖G(t, x)‖2σ,M + ‖H(t, x)‖2σ

)
,

for each σ ∈ Θ(τ sλ2 ), x ∈ L2
loc(I,M

τsλ2 , ds)ac and almost all t ∈ I. The
inequality

‖P (t, x)‖2σ ≤ λσ,M (t)
(

1 + ‖x(t)‖2α(σ,M)

)
,

x ∈ L2
loc(I,M

τsλ2 , ds)ac, σ ∈ Θ(τ sλ2 ) and almost all t ∈ I, now follows from
the hypotheses. This concludes the proof. 2

Theorem 5.2. Assume that F ∈ L2
loc(I × Mτ2 , dM)mvs, G ∈ L2

loc(I ×
Mτ2 , dM+)mvs, H ∈ L2

loc(I ×Mτ2 , ds)mvs and that P is as defined in (5.1).
Then, P is τ sλ2 -Lipschitzian whenever F , G, H are τ sλ2 -Lipschitzian.
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Proof. With p, f, g, h as in Theorem 5.1, we have from [6, Theorem 4.3] that

‖p(t, x)− p(t, y)‖α ≤ λα,M (‖f(t, x)− f(t, y)‖β(α,M) + ‖g(t, x)− g(t, y)‖β(α,M)

+ ‖h(t, x)− h(t, y)‖α),

whence

‖P (t, x)− P (t, y)‖α ≤ λα,M (‖F (t, x)− F (t, y)‖β(α,M) + ‖G(t, x)−G(t, y)‖β(α,M)

+ ‖H(t, x)−H(t, y)‖α),

for all x, y ∈ L2
loc(I,M

τsλ2 , ds)ac, where β(α,M) ∈ Θ(τ sλ2 ), λα,M is some
R-valued function on I, α ∈ Θ(τ sλ2 ), and almost all t ∈ I. This concludes
the proof. 2

Theorem 5.3. Let F ∈ L2
loc(I×Mτ2 , dM)mvs, G ∈ L2

loc(I×Mτ2 , dM+)mvs,
H ∈ L2

loc(I×Mτ2 , ds)mvs and P be defined as in (5.1). Then, finding a τ sλ2 -
solution of the initial value stochastic differential inclusion (3.2) is equivalent

to finding x ∈ L2
loc(I,M

τsλ2 , ds)ac such that

d

dt
(x(t)ξ) ∈ P (t, x)ξ

x(t0) = x0
(5.3)

for arbitrary ξ ∈ D, x0 ∈M(τ sλ2 ) and almost all t ∈ I.

Proof. This follows from the definition of P . 2

Remark 5.1. 1. In view of Theorem 5.3, we may study the diverse features
of the τ sλ2 -solutions of problem 3.2, whether analytically or numerically, by
equivalently studying the features of the τ sλ2 -solutions of problem (5.3).

2. Notice that (5.3) is a differential inclusion of nonclassical type, since
P (t, x)ξ is, in general, not of the form P̃ (t, x(t)ξ), t ∈ I, ξ ∈ D, x ∈
L2
loc(I,M

τsλ2 , ds)ac.

Notation 5.2. If z is an Mτ2-valued map on I such that
d

dt
(z(t)ξ) is in H

for each ξ ∈ D and almost all t ∈ I, then z̆(t) will denote the linear map

ξ 7−→ d

dt
(z(t)ξ), ξ ∈ D. Thus z̆(t) ∈ L+

w(D,H) and z̆(t)ξ =
d

dt
(z(t)ξ), for

all ξ ∈ D and almost all t ∈ I.
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5.3 Fundamental hypotheses

In the subsequent discussion, we employ the following hypotheses and nota-
tion.

(H1) The map y is a member of L2
loc(I,M

τ2 , ds)ac possessing the property
that for each α ∈ Θ(τ2) and almost all t ∈ I, there is a positive number
pα such that

dα (y̆(t), P (t, y)) ≤ pα(t).

(H2) γ > 0 is an arbitrary but fixed number and Qy,γ is the set

Qy,γ ≡ {(t, x) ∈ I×L2
loc(I,M

τ2 , ds) : ‖x(t)− y(t)‖α ≤ γ, ∀ α ∈ Θ(τ2)}.

(H3) Each of the maps F ∈ L2
loc(I×Mτ2 , dM)mvs, G ∈ L2

loc(I×Mτ2 , dM+)mvs,
andH ∈ L2

loc(I×Mτ2 , ds)mvs is Lipschitzian fromQy,γ to (clos(Mτ2), τH2 ).

(H4) (a) For each α ∈ Θ(τ2), δα ≡ ‖x0 − y(t0)‖α.

(b) We assume that δα ≤ γ, ∀ α ∈ Θ(τ2).

(H5) Define

(a) for arbitrary α ∈ Θ(τ2), the map Ξα by

Ξα(t) ≡ δα exp

[∫ t

t0

ds kα(s)

]
+

∫ t

t0

ds pα(s) exp

[∫ t

s
dr kα(r)

]
, t ∈ I,

with kα as in Theorem 5.1, and

(b) the subset J of I by

J ≡ {t ∈ I : Ξα(t) ≤ γ, ∀ α ∈ Θ(τ2)}.

Remark 5.2. We shall need the following result in the sequel.

Proposition 5.4. Let {ϕj}∞j=1 be a sequence of members of L2
loc(I,M

τ2 , ds)ac
which satisfy

(i) (t, ϕj(t)) ∈ Qy,γ, j ≥ 1, for almost all t ∈ J ;

(ii) there exists a sequence {vj}∞j=1 ⊂ L1
loc(I,M

τ2 , ds) such that

(a) ϕj(t) = x0 +

∫ t

t0

ds vj−1(s), j ≥ 1;
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(b) ‖ϕ̆j(t)− ϕ̆j−1(t)‖α
≤ kα(t)

{
δα(mα(t))j−2

(j − 2)!
+

∫ t

t0

ds
[mα(t)−mα(s)]j−2

(j − 2)!
pα(s)

}
≡ bα,j−2(t) for almost all t ∈ J , where mα(t) =

∫ t

t0

ds kα(s),

α ∈ Θ(τ2).

Then

‖ϕj(t)− ϕj−1(t)‖α ≤ bα,j−1(t), j ≥ 2, all α ∈ Θ(τ2), and almost all t ∈ J.

Proof. Assume (i) and (ii), and let α ∈ Θ(τ2). Then

‖ϕj(t)− ϕj−1(t)‖α =

∥∥∥∥∫ t

t0

ds (vj−1(s)− vj−2(s))
∥∥∥∥
α

=

∥∥∥∥∫ t

t0

ds (ϕ̆j(s)− ϕ̆j−1(s))
∥∥∥∥
α

, by (ii)(a)

≤
∫ t

t0

ds ‖ϕ̆j(s)− ϕ̆j−1(s)‖α,

≤
∫ t

t0

ds bα,j−2(s), by (ii)(b)

= bα,j−1(t), j ≥ 2, all α ∈ Θ(τ2), and almost all t ∈ J.

This concludes the proof. 2

Remark 5.3. In the sequel, we discuss the existence of the solutions of prob-
lem (5.3) in the strong/λ? locally convex operator topologies {τs, τs? , τσs, τσs? , λ?}.
Our main result is the following.

Theorem 5.5. Suppose that the hypotheses (H1)-(H5) hold and F , G, and
H are continuous from I × L2

loc(I,M
τ2 , ds) to (clos(Mτ2), τH2 ). Then there

exists a solution ϕ of problem (5.3) such that

‖ϕ(t)− y(t)‖α ≤ Ξα(t), t ∈ J

and
‖ϕ̆(t)− y̆(t)‖α ≤ kα(t)Ξα(t) + pα(t),

for all α ∈ Θ(τ2) and almost all t ∈ J .
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Proof. We first give the proof in the strong topology τs. In this case, F ∈
L2
loc(I × Mτs , dM)mvs, G ∈ L2

loc(I × Mτs , dM+)mvs and H ∈ L2
loc(I ×

Mτs , ds)mvs.

Let y be as in (H1) and ξ ∈ D. Since
d

dt
(y(t)ξ) may not be in P (t, y)ξ,

almost all t ∈ I, y is not necessarily a τs-solution of problem (5.3).
Define ϕ0 as y. Then ϕ0 is adapted. By [4, Corollary 8.2.13], there is a

measurable selection t 7→ v0(t)(ξ) in t 7→ P (t, ϕ0)ξ, t ∈ I, ξ ∈ D such that

‖v0(t)− ϕ̆0(t)‖ξ = dξ(ϕ̆0(t), P (t, ϕ0)), (5.4)

almost all t ∈ I. By (H1), the right-hand side is majorized by pξ(t). As
the map ξ 7→ v0(t)(ξ) is linear for almost all t ∈ J , there is a v0(t) ∈ Mτs

such that v0(t)(ξ) = v0(t)ξ, for arbitrary ξ ∈ D and almost all t ∈ J . As
t 7→ v0(t)ξ is locally Lebesgue-Bochner integrable, it determines a map ϕ1

through the definition

ϕ1(t)ξ = x0ξ +

∫ t

t0

ds v0(t)ξ, almost all t ∈ J, ξ ∈ D,

and since v0(t) is in Mτs for almost all t ∈ J , it follows that ϕ1(t) is affiliated
to Mt, i.e. ϕ1 is adapted. Moreover, for t ∈ J ,

‖ϕ1(t)− ϕ0(t)‖ξ ≤ ‖x0 − ϕ(t0)‖ξ +

∫ t

t0

ds ‖v0(s)− ϕ̆0(s)‖ξ,

since ϕ̆0 is the zero map,

= δξ +

∫ t

t0

ds dξ(ϕ̆0(t), P (t, ϕ0)), by (H)1 and equation (5.4)

≤ δξ +

∫ t

t0

ds pξ(s), by (H)4

by (H1) and (H4).
We claim that there exists, indeed, a sequence {ϕj}j≥0 of τs-absolutely

continuous maps from I to Mτs satisfying (i) and (ii) of Proposition 5.4,
and hence its conclusion. To prove this, assume that {ϕj}0≤j≤n has already
been defined and satisfies (i) and (ii) of Proposition 5.4. By [4, Corollary
8.2.13], there exists vn(·)(ξ) ∈ P (·, ϕn)ξ such that

‖vn(t)− ϕ̆n(t)‖ξ = dξ(ϕ̆n(t), P (t, ϕn)), a.e on J,
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where vn(t) is the linear map ξ 7→ vn(t)(ξ), ξ ∈ D, almost all t ∈ J . Now
define ϕn+1 by

ϕn+1(t)ξ = xoξ +

∫ t

t0

ds vn(t)ξ, almost all t ∈ J. (5.5)

Then

‖ϕ̆n+1(t)− ϕ̆n(t)‖ξ = ‖vn(t)− vn−1(t)‖ξ
≤ ρξ(P (t, ϕn), P (t, ϕn−1))
≤ kξ(t) ‖ϕn(t)− ϕn−1(t)‖α(ξ) , for some α(ξ) ∈ D,

since P is Lipschitzian,
≤ kξ(t)bα(ξ),n−1, ξ ∈ D, and almost all t ∈ J.

Moreover,

‖ϕn+1(t)− ϕ0(t)‖ξ ≤ ‖ϕ1(t)− ϕ0(t)‖ξ + · · ·+ ‖ϕn+1(t)− ϕn(t)‖ξ

≤
n∑
k=0

bξ,k(t) ≤ Ξξ(t) ≤ γ.

It follows from Proposition 5.4 that {ϕn}n≥0 is τs-Cauchy and converges
uniformly to ϕ(t) in Mτs . Also from Proposition 5.4, {vn}n≥0 is τs-Cauchy,
whence {vn}n≥0 converges pointwise, for almost all t ∈ J , to a map v ∈
L1
loc(I,M

τs , ds). From (5.5), we get

ϕ(t)ξ = xoξ +

∫ t

t0

ds v(t)ξ, ∀ ξ ∈ D, and almost all t ∈ J.

As P is continuous on I ×L2
loc(I,M

τs , ds)ac and has closed values, its graph
is closed. Hence, since vi(t) ∈ P (t, ϕi), for almost all t in J , it follows that
v(t) ∈ P (t, ϕ), for almost all t ∈ J , whence

d

dt
(ϕ(t)ξ) ∈ P (t, ϕ)ξ, ∀ ξ ∈ D, and almost all t ∈ J,

showing that ϕ is a τs-solution of problem (5.3). This concludes the proof
in the case of the strong topology τs.

Strong∗ topology τ?s

In this case, F ∈ L2
loc(I ×Mτ?s , dM)mvs, G ∈ L2

loc(I ×Mτ?s , dM+)mvs

and H ∈ L2
loc(I×Mτ?s , ds)mvs. Let ξ be an arbitrary member of Θ(τ?s) = D.
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Then, arguing as above, there exists a sequence {ϕn}n≥0 of τs-absolutely
continuous maps from I to Mτs satisfying the inequalities

‖ϕ1(t)− ϕ0(t)‖?ξ ≤ δ?ξ +

∫ t

t0

ds pξ(s), with δ?ξ = ‖x0 − ϕ(t0)‖?ξ

and pξ as in (H)1,

‖ϕn+1(t)− ϕ0(t)‖?ξ ≤
n∑
k=0

bξ,k(t) ≤ Ξξ(t) ≤ γ

‖ϕ̆n+1(t)− ϕ̆n(t)‖?ξ ≤ kξ(t)bα(ξ),n−1,

for some α(ξ) depending on ξ ∈ Θ(τ?s) = D, and almost all t ∈ J , where
we have invoked the Lipschitzian character of P . That the τ?s-limit ϕ(t) of
{ϕn(t)}n≥0 is a τ?s-solution of problem (5.3), i.e. that ϕ satisfies

d

dt
(ϕ(t)ξ) ∈ P (t, ϕ)ξ, ∀ ξ ∈ D, and almost all t ∈ J,

is shown in the same way as in the case of the strong topology above.

σ-Strong topology τσs In this case, F ∈ L2
loc(I ×Mτσs , dM)mvs, G ∈ L2

loc(I ×

Mτσs , dM+)mvs and H ∈ L2
loc(I×Mτσs , ds)mvs. Let ξ = {ξn}∞n=1 be an arbi-

trary member of Θ(τσs) = D∞. As above, there exists a sequence {ϕn}n≥0 of
τσs-absolutely continuous maps from I to Mτσs which satisfy the inequalities

‖ϕ1(t)− ϕ0(t)‖ξ ≤ δξ +

∫ t

t0

ds pξ(s), with δξ = ‖x0 − ϕ(t0)‖ξ

and pξ as in (H)1,

‖ϕn+1(t)− ϕ0(t)‖ξ ≤
n∑
k=0

bξ,k(t) ≤ Ξξ(t) ≤ γ

‖ϕ̆n+1(t)− ϕ̆n(t)‖ξ ≤ kξ(t)bα(ξ),n−1,

for some α(ξ) depending on ξ ∈ Θ(τσs) = D∞, and almost all t ∈ J , where
we have used the Lipschitzian character of P . We are then able to conclude,
in the same way as in the case of the strong topology above, that the τσs-limit
ϕ(t) of {ϕn(t)}n≥0 is a τσs-solution of problem (5.3), i.e. that ϕ satisfies

d

dt
(ϕ(t)ξ) ∈ P (t, ϕ)ξ, ∀ ξ ∈ D, and almost all t ∈ J.
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σ-Strong* topology τσs?

In this case, F ∈ L2
loc(I ×Mτσs? , dM)mvs, G ∈ L2

loc(I ×Mτσs? , dM+)mvs

and H ∈ L2
loc(I ×Mτσs? , ds)mvs. Let ξ = {ξn}∞n=1 be an arbitrary member

of Θ(τσs?) = D∞. Then there is a sequence {ϕn}n≥0 of τσs?-absolutely
continuous maps from I to Mτσs? which satisfy the inequalities

‖ϕ1(t)− ϕ0(t)‖?ξ ≤ δ?ξ +

∫ t

t0

ds pξ(s), with δ?ξ = ‖x0 − ϕ(t0)‖?ξ

and pξ as in (H)1,

‖ϕn+1(t)− ϕ0(t)‖?ξ ≤
n∑
k=0

bξ,k(t) ≤ Ξξ(t) ≤ γ

‖ϕ̆n+1(t)− ϕ̆n(t)‖?ξ ≤ kξ(t)bα(ξ),n−1,

for some α(ξ) depending on ξ ∈ D∞, and almost all t ∈ J , where we have
utilized the Lipschitzian character of P . Hence as in the case of the strong
topology above, the τσs?-limit ϕ(t) of {ϕn(t)}n≥0 is a τσs?-solution of problem
(5.3), i.e. ϕ satisfies

d

dt
(ϕ(t)ξ) ∈ P (t, ϕ)ξ, ∀ ξ ∈ D, and almost all t ∈ J.

λ?-topology τλ?

In this case, F ∈ L2
loc(I ×Mτλ? , dM)mvs, G ∈ L2

loc(I ×Mτλ? , dM)mvs and
H ∈ L2

loc(I ×Mτλ? , ds)mvs. Let a be an arbitrary member of Me. Then
there is a sequence {ϕn}n≥0 of τλ?-absolutely continuous maps from I to
Mτλ? which satisfy the inequalities

‖ϕ1(t)− ϕ0(t)‖a ≤ δa +

∫ t

t0

ds pa(s), with δa = ‖x0 − ϕ(t0)‖a

and pa as in (H)1,

‖ϕn+1(t)− ϕ0(t)‖a ≤
n∑
k=0

ba,k(t) ≤ Ξa(t) ≤ γ

‖ϕ̆n+1(t)− ϕ̆n(t)‖a ≤ ka(t)bα(a),n−1,

for some α(a) depending on a ∈ Θ(τλ?) = Me, and almost all t ∈ J , since
P is Lipschizian. Hence as in the case of the strong topology above, the τλ?-
limit ϕ(t) of {ϕn(t)}n≥0 is a τλ?-solution of problem (5.3), i.e. ϕ satisfies

d

dt
(ϕ(t)ξ) ∈ P (t, ϕ)ξ, ∀ ξ ∈ D, and almost all t ∈ J.

This concludes the proof of the theorem. 2
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6 Solutions in the weak topologies

In this section, we discuss the existence of the solutions of equation 3.2 in
the weak locally convex operator topologies {τw, τσw}; let τw2 denote any
member of this set of topologies.

We first reformulate equation 3.2 as follows.

6.1 The multifunction P

Define
P : I × L2

loc(I,M
τw , ds)ac −→ 2sesq(D)

(t, x) 7−→ P (t, x)

by

P (t, x)(η, ξ) =
d

dt

[
〈η,
(∫ t

t0

dM(s)F (s, x) + dM+(s)G(s, x) +H(s, x)ds

)
ξ〉
]
,

(6.1)

η, ξ ∈ D, where sesq(D) denotes the set of all sesquilinear forms on D ×D.
Since x ∈ L2

loc(I,M
τw , ds)ac, the map P is well defined. We shall utilize

a number of properties of the map P .

6.2 Assumptions

Throughout the rest of this Section, we work under the same set of assump-
tions listed as Assumptions 5.1, together with their notation, in Ref. [6,
Assumptions 5.1, page 985].

Theorem 6.1. Assume that F ∈ L2
loc(I × Mτw2 , dM)mvs, G ∈ L2

loc(I ×
Mτw2 , dM+)mvs, H ∈ L2

loc(I×Mτw2 , ds)mvs and that P is as defined in (6.1).
Suppose that for any σ ∈ Θ(τw2 ), there exist some α(σ,M) ∈ Θ(τw2 ) and a
continuous function kσ : I −→ R+, depending on F , G, H, such that

‖F (t, x)‖2σ,M + ‖G(t, x)‖2σ,M + ‖H(t, x)‖2σ ≤ kσ(t)
(

1 + ‖x(t)‖2α(σ,M)

)
,

(6.2)

for all x ∈ L2
loc(I,M

τw2 , ds)ac and almost all t ∈ I. Then there exists a
function λσ,M : I −→ R+, depending on F , G, H, such that

‖P (t, x)‖2σ ≤ λσ,M (t)
(

1 + ‖x(t)‖2α(σ,M)

)
for all x ∈ L2

loc(I,M
τw2 , ds)ac and almost all t ∈ I.
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Proof. Every selection p of the multifunction P is given by an expression of
the form

p(t, x)(η, ξ) =
d

dt

[
〈η,
(∫ t

t0

dM(s) f(s, x) + dM+(s) g(s, x) + h(s, x)ds

)
ξ〉
]
,

η, ξ ∈ D, where f, g, h are selections of the multifunctions F,G,H, respec-
tively, x ∈ L2

loc(I,M
τw2 , ds)ac, and almost all t ∈ I.

By [6, Theorem 4.2], we have

‖p(t, x)‖2σ ≤ λ̃σ,M (t)
(
‖f(t, x)‖2σ,M + ‖g(t, x)‖2σ,M + ‖h(t, x)‖2σ

)
,

for each σ ∈ Θ(τw2 ), x ∈ L2
loc(I,M

τw2 , ds)ac and almost all t ∈ I. Hence

sup{‖p(t, x)‖2σ : p is a selection of P}

≤ λ̃σ,M (t)
(

sup{‖f(t, x)‖2σ,M : f is a selection of F}

+ sup{‖g(t, x)‖2σ,M : g is a selection of G}

+ sup{‖h(t, x)‖2σ : h is a selection of H}
)
,

whence

‖P (t, x)‖2σ ≤ λ̃σ,M (t)
(
‖F (t, x)‖2σ,M + ‖G(t, x)‖2σ,M + ‖H(t, x)‖2σ

)
,

for each σ ∈ Θ(τw2 ), x ∈ L2
loc(I,M

τw2 , ds)ac and almost all t ∈ I. The
inequality

‖P (t, x)‖2σ ≤ λ̃σ,M (t)
(

1 + ‖x(t)‖2α(σ,M)

)
,

x ∈ L2
loc(I,M

τw2 , ds)ac, σ ∈ Θ(τw2 ) and almost all t ∈ I, now follows from
the hypotheses. This concludes the proof. 2

Theorem 6.2. Assume that F ∈ L2
loc(I × Mτw2 , dM)mvs, G ∈ L2

loc(I ×
Mτw2 , dM+)mvs, H ∈ L2

loc(I×Mτw2 , ds)mvs and that P is as defined in (6.1).
Then, P is τw2 -Lipschitzian whenever F , G, H are τw2 -Lipschitzian.

Proof. With p, f, g, h as in Theorem 5.1, we have from [6, Theorem 4.3] that

‖p(t, x)− p(t, y)‖α ≤ λ̃α,M (t)(‖f(t, x)− f(t, y)‖β(α,M) + ‖g(t, x)− g(t, y)‖β(α,M)

+ ‖h(t, x)− h(t, y)‖α),
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whence

‖P (t, x)− P (t, y)‖α ≤ λ̃α,M (t)(‖F (t, x)− F (t, y)‖β(α,M)

+ ‖G(t, x)−G(t, y)‖β(α,M) + ‖H(t, x)−H(t, y)‖α),

for all x, y ∈ L2
loc(I,M

τw2 , ds)ac, where β(α,M) ∈ Θ(τw2 ), λ̃α,M is some R-
valued function on I, α ∈ Θ(τw2 ), and almost all t ∈ I. This concludes the
proof. 2

Theorem 6.3. F ∈ L2
loc(I ×Mτw2 , dM)mvs, G ∈ L2

loc(I ×Mτw2 , dM+)mvs,
H ∈ L2

loc(I×Mτw2 , ds)mvs and P be defined as in (6.1). Then, finding a τw2 -
solution of the initial value stochastic differential inclusion 3.2 is equivalent
to finding x ∈ L2

loc(I,M
τw2 , ds)ac such that

d

dt
〈η, x(t)ξ〉 ∈ P (t, x)(η, ξ)

x(t0) = x0

(6.3)

for arbitrary η, ξ ∈ D, x0 ∈M(τw2 ) and almost all t ∈ I.

Proof. This follows from the definition of P . 2

Remark 6.1. 1. In view of Theorem 6.3, we may study the diverse features
of the τw2 -solutions of problem (3.2), whether analytically or numerically, by
equivalently studying the features of the τw2 -solutions of problem (6.3).

2. Notice that (6.3) is a differential inclusion of nonclassical type, since
P (t, x)(η, ξ) is, in general, not of the form P̃ (t, 〈η, x(t)ξ〉), t ∈ I, η, ξ ∈
D, x ∈ L2

loc(I,M
τw2 , ds)ac.

3. In Ref. [17, page 2009, equations 4.1a & 4.1b], we considered the quantum
stochastic differential inclusion:

dX(t) ∈ E(X(t), t)dΛ(t) + F (X(t), t)dA(t) +G(X(t), t)dA+(t)
+H(X(t), t)dt,

X(t0) = x0, for almost all t ∈ [0, T ],
(6.4)

where Λ, A, and A+ are the gauge, creation and annihilation operators of
quantum field theory, while E,F,G and H are stochastic processes such
that the maps t 7→ E(X(t), t), t 7→ F (X(t), t), t 7→ G(X(t), t), and t 7→
H(X(t), t), t ∈ [0, T ], are adapted processes whenever X is adapted. By
transforming problem (6.4) into the equivalent form of problem (6.3) (vide
[17, page 2014, Theorem 6.2]), we obtained results about the existence of
solutions of problem (6.4) in the weak operator topology τw.
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Notation 6.1. 1. If z is an Mτw2 -valued map on I such that (η, ξ) 7−→
d

dt
〈η, z(t)ξ〉 is in sesq(D) for η, ξ ∈ D×D and almost all t ∈ I, then z̆(t) will

denote the sesquilinear map (η, ξ) 7−→ d

dt
〈η, z(t)ξ〉, (η, ξ) ∈ D × D. Thus

z̆(t) ∈ sesq(D) and z̆(t)(η, ξ) =
d

dt
〈η, z(t)ξ〉, for (η, ξ) ∈ D × D and almost

all t ∈ I.

2. If q ∈ sesq(D), we denote |q(η, ξ)| by ‖q‖ηξ.

6.3 Fundamental hypotheses

We employ the hypotheses and notation listed in (H1)-(H5), with the topol-
ogy τ2 interpreted as either τw or τσw and α ∈ Θ(τw) = D or α ∈ Θ(τσw) =
D∞ ×D∞.

Theorem 6.4. Suppose that the hypotheses (H1)-(H5) hold and F , G, and
H are continuous from I ×L2

loc(I,M
τw2 , ds) to (clos(Mτw2 ), τH2 ). Then there

exists a solution ϕ of problem (6.3) such that

‖ϕ(t)− y(t)‖α ≤ Ξα(t), t ∈ J

and
‖ϕ̆(t)− y̆(t)‖α ≤ kα(t)Ξα(t) + pα(t),

for almost all t ∈ J and all α ∈ Θ(τ2).

Proof. We first give the proof in the weak topology τs. In this case, F ∈
L2
loc(I × Mτw , dM)mvs, G ∈ L2

loc(I × Mτw , dM+)mvs and H ∈ L2
loc(I ×

Mτw , ds)mvs.

Let y be as in (H1) and η, ξ ∈ Θ(τw) = D. Since
d

dt
〈η, y(t)ξ〉 may not be

in P (t, y)(η, ξ), almost all t ∈ I, y is not necessarily a τw-solution of problem
(6.3).

Define ϕ0 as y. Then ϕ0 is adapted. By [3, Theorem 1.14.2], there is
a measurable selection t 7→ v0(t)(η, ξ) in t 7→ P (t, ϕ0)(η, ξ), t ∈ I, η, ξ ∈ D
such that

‖v0(t)− ϕ̆0(t)‖ηξ = dηξ(ϕ̆0(t), P (t, ϕ0)),

almost all t ∈ I. By (H1), the right-hand side is majorized by pηξ(t). As the
map (η, ξ) 7→ v0(t)(η, ξ) is linear for almost all t ∈ J , there is a v0(t) ∈Mτw

such that v0(t)(η, ξ) = 〈η, v0(t)ξ〉, for arbitrary η, ξ ∈ D and almost all t ∈ J .
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Since t 7→ v0(t)(η, ξ) is locally absolutely integrable, it determines a map ϕ1

through the definition

〈η, ϕ1(t)ξ〉 = 〈η, x0ξ〉+

∫ t

t0

ds 〈η, v0(t)ξ〉, almost all t ∈ J, η, ξ ∈ D.

Since v0(t) is in Mτw for almost all t ∈ J , it follows that ϕ1(t) is affiliated
to Mt, i.e. ϕ1 is adapted. Moreover, for t ∈ J ,

‖ϕ1(t)− ϕ0(t)‖ηξ ≤ ‖x0 − ϕ0(t0)‖ηξ +

∫ t

t0

ds ‖v0(s)− ϕ̆0(s)‖ηξ

≤ δηξ +

∫ t

t0

ds pηξ(s),

by (H1) and (H4).
We claim that there exists, indeed, a sequence {ϕj}j≥0 of τw-absolutely

continuous maps from I to Mτw satisfying (i) and (ii) of Proposition 5.4,
and hence its conclusion. To prove this, assume that {ϕj}0≤j≤n has already
been defined and satisfies (i) and (ii) of Proposition 5.4. By [3, Theorem
1.14.2], there exists vn(·)(η, ξ) ∈ P (·, ϕn)(η, ξ) such that

‖vn(t)− ϕ̆n(t)‖ηξ = dηξ(ϕ̆n(t), P (t, ϕn)), almost all t on J,

where vn(t) is the linear map given by vn(t)(η, ξ) = 〈η, vn(t)ξ〉, η, ξ ∈ D,
almost all t ∈ J . Now define ϕn+1 by

〈η, ϕn+1(t)ξ〉 = 〈η, xoξ〉+

∫ t

t0

ds 〈η, vn(t)ξ〉, almost all t ∈ J. (6.5)

Then

‖ϕ̆n+1(t)− ϕ̆n(t)‖ηξ = ‖vn(t)− vn−1(t)‖ηξ
≤ ρηξ(P (t, ϕn), P (t, ϕn−1))
≤ kηξ(t) ‖ϕn(t)− ϕn−1(t)‖α(η,ξ) , for some α(η, ξ) ∈ D ×D,

since P is Lipschitzian
≤ kηξ(t)bα(η,ξ),n−1, η, ξ ∈ D, and almost all t ∈ J, n ≥ 1.

Moreover,

‖ϕn+1(t)− ϕ0(t)‖ηξ ≤ ‖ϕ1(t)− ϕ0(t)‖ηξ + · · ·+ ‖ϕn+1(t)− ϕn(t)‖ηξ

≤
n∑
k=0

bηξ,k(t) ≤ Ξηξ(t) ≤ γ.
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It follows from Proposition 5.4 that {ϕn}n≥0 is τw-Cauchy and converges
uniformly to ϕ(t) in Mτw . Also from Proposition 5.4, {vn}n≥0 is τw-Cauchy,
whence {vn}n≥0 converges pointwise, for almost all t ∈ J , to a map v ∈
L1
loc(I,M

τw , ds). From (6.5), we get

〈η, ϕ(t)ξ〉 = 〈η, xoξ〉+

∫ t

t0

ds 〈η, v(t)ξ〉, ∀ η, ξ ∈ D, and almost all t ∈ J.

As P is continuous on I×L2
loc(I,M

τw , ds)ac and has closed values, its graph
is closed. Hence, as 〈η, vi(t)ξ〉 ∈ P (t, ϕi)(η, ξ) for arbitrary η, ξ ∈ D and
almost all t ∈ J , it follows that 〈η, v(t)ξ〉 ∈ P (t, ϕ)(η, ξ), for η, ξ ∈ D and
almost all t ∈ J , whence

d

dt
〈η, ϕ(t)ξ〉 ∈ P (t, ϕ)(η, ξ), ∀ η, ξ ∈ D, and almost all t ∈ J,

showing that ϕ is a τw-solution of problem (6.3).

σ-weak topology τσw

In this case, F ∈ L2
loc(I ×Mτσw , dM)mvs, G ∈ L2

loc(I ×Mτσw , dM+)mvs

and H ∈ L2
loc(I ×Mτσw , ds)mvs. Let η = {ηn}∞n=1, ξ = {ξn}∞n=1 be arbi-

trary members of D∞. As above, there exists a sequence {ϕn}n≥0 of τσw-
absolutely continuous maps from I to Mτσw which satisfy the inequalities

‖ϕ1(t)− ϕ0(t)‖ηξ ≤ δηξ +

∫ t

t0

ds pηξ(s), with δηξ = ‖x0 − ϕ(t0)‖ηξ

and pηξ as in (H)1,

‖ϕn+1(t)− ϕ0(t)‖ηξ ≤
n∑
k=0

bηξ,k(t) ≤ Ξηξ(t) ≤ γ

‖ϕ̆n+1(t)− ϕ̆n(t)‖ηξ ≤ kηξ(t)bα(η,ξ),n−1,

for some α(η, ξ) ∈ Θ(τσw) = D∞ × D∞ depending on (η, ξ) ∈ Θ(τσw) =
D∞ × D∞, and almost all t ∈ J , where we have invoked the Lipschitzian
character of P . We are then able to conclude, in the same way as in the
case of the weak topology above, that the τσw-limit ϕ(t) of {ϕn(t)}n≥0 is a
τσw-solution of problem (6.3), i.e. that ϕ satisfies

d

dt
〈η, ϕ(t)ξ〉 ∈ P (t, ϕ)(η, ξ), ∀ η, ξ ∈ D and almost all t ∈ J.

This concludes the proof. 2
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