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JEL classification numbers: C13, C46, C55

Key words and phrases. Truncated Rayleigh distribution (TRD), maximum likelihood,

Fisher information.

Send Correspondence to:

Jiexiang Li

College of Charleston

Math Dept.

Robert Scott Small Room 339

Charleston, SC 29424

1



1 Introduction

Truncated data arise frequently in different situations. An example of truncated data that

is relevant to almost everyone is given by Wikipedia: “If policyholders are subject to a

policy limit T , then any loss amounts that are actually above T are reported to the insur-

ance company as being exactly T because T is the amount the insurance company pays.

The insurer knows that the actual loss is greater than T but they don’t know what it is.

On the other hand, left truncation occurs when policyholders are subject to a deductible.

If policyholders are subject to a deductible D, any loss amount that is less than D will not

even be reported to the insurance company. If there is a claim on a policy limit of T and

a deductible of D, any loss amount that is greater than T will be reported to the insur-

ance company as a loss of T −D because that is the amount the insurance company has

to pay.” In statistical literature, Zhang and Xie (2011) investigated on upper truncated

Weibull distribution. Wingo (1988) studied on fitting right-truncated Weibull distribution

to life-test and survival data. Rayleigh distribution introduced by Lord Rayleigh in 1880

plays a crucial role in modeling and analyzing life time data such as project effort loadings

modelling, life testing experiments, reliability analysis, communication theory, physical

sciences, engineering, medical imaging science, applied statistics and clinical studies. Due

to the importance of Raleigh distribution in a variety of fields, a wide range of investi-

gations of Raleigh Distribution has been established. Siddiqui (1962) worked on some

problems connected with Rayleigh distributions. Lalitha and Khan (1996) studied modi-

fied maximum likelihood estimation for Rayleigh distribution and Provost (2009) studied

predictive densities from the Rayleigh life model in the presence of different censoring

sampling schemes. In this paper, we will estimate the scale parameter in Rayleigh distri-

bution. We will start with right truncated Rayleigh distribution, left truncated Rayleigh

distribution then doubly truncated Rayleigh distribution. In the end, we will fit right

truncated Rayleigh distribution to the data studied in Siddiqui (1962) example 3, and use

the results derived in the paper to carry out statistical inference on the scale parameter.
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2 Right Truncated Rayleigh Distribution

f(x) =
2x

θ
exp (−x2

θ
) (1)

Here θ is a scale parameter. The characteristics of this function is well known. However,

the characteristics of this function are different if some of the values of the r.v. Y are right

truncated, which happens when the increasing hazard saturate at a time point. Consider

the probability density function (pdf) of RTRD at T ,

f(x) =
2x
θ
exp (−x2

θ
)

1− exp (−T 2

θ
)

(2)

for 0 < x < T and θ > 0. We will consider the statistical inference of scale parameter θ

when truncation point T is known. Let X1, X2,...,Xn be a random sample from RTRD

specified in (2), we will study the maximum likelihood estimator for θ. For notation

purpose, let exp (−T 2

θ
) = b, it follows from (2),

E(X2) =
1

1− b

∫ T

0

2x3

θ
exp (−x2

θ
)dx

=
θ

1− b

∫ T 2/θ

0

y exp (−y)dy

=
θ

1− b
[−b

T 2

θ
+ 1− b]

= θ − bT 2

1− b
.

Note

F (x) =
1

1− b

∫ x

0

2t

θ
exp (−t2

θ
)dt

=
1

1− b
(1− exp (−x2

θ
)).

u =
1− exp (−x2

θ
)

1− exp (−T 2

θ
)

(1− exp (
−T 2

θ
))u = 1− exp (−x2

θ
)

1− (1− exp (
−T 2

θ
))u = exp (−x2

θ
)

x =

√
−θ ln(1− (1− exp (

−T 2

θ
))u). (3)
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Expression (3) will be used to generate observations from RTRD. The log-likelihood func-

tion of a random sample X1, X2,...,Xn from RTRD specified in (2) is given by

L(θ) =
n∑

i=1

ln(2xi)− n ln θ −
n∑

i=1

x2
i

θ
− n ln(1− exp (−T 2

θ
)). (4)

Differentiation of (4) with respect to θ leads to

Lθ = −n

θ
+

∑n
i=1 x

2
i

θ2
+

nT 2 exp (−T 2

θ
)

θ2[1− exp (−T 2

θ
)]
.

Set Lθ = 0, which is equivalent to m2 +
T 2

exp (T
2

θ
)−1

= θ with
∑n

i=1 x
2
i

n
= m2. The maximum

likelihood estimator can be solved using uniroot function in software R:

f < −function(x)(m2 + T 2/(exp(T 2/x)− 1)− x),

θ̂ < −try(uniroot(f, c(0.001, 10000)))$root.

The Fisher information I(θ) is derived in the following

I(θ) = −E(
∂Lθ

∂θ
)

= − n

θ2
+ 2

nE(X2
1 )

θ3

−
nT 4 exp (−T 2

θ
)[1− exp (−T 2

θ
)]− nT 2 exp (−T 2

θ
)(2θ[1− exp (−T 2

θ
)]− exp (−T 2

θ
)T 2)

θ4[1− exp (−T 2

θ
)]2

= − n

θ2
+ 2

nE(X2
1 )

θ3
+

2θnT 2b− nT 4b− 2θnT 2b2

θ4(1− b)2
.

3 Left Truncated Rayleigh Distribution

Consider the Rayleigh density function (pdf) left truncated at D,

f(x) =
2x
θ
exp (−x2

θ
)

exp (−D2

θ
)

(5)

for 0 < D < x < ∞ and θ > 0. We will consider the statistical inference of scale

parameter θ when truncation point D is known. Let X1, X2,...,Xn be a random sample
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from LTRD specified in (5), we will study the maximum likelihood estimator for θ. For

notation purpose, let exp (−D2

θ
) = c. Note

E(X2) =
1

c

∫ ∞

D

2x3

θ
exp (−x2

θ
)dx

=
θ

c

∫ ∞

D2/θ

y exp (−y)dy

=
θ

c
(
D2

θ
exp (−D2

θ
) + exp (−D2

θ
))

= D2 + θ

F (x) =
1

c

∫ x

D

2t

θ
exp (−t2

θ
)dt

=
1

c
(c− exp (−x2

θ
)).

u =
c− exp (−x2

θ
)

c

cu = c− exp (−x2

θ
)

c− cu = exp (−x2

θ
)

x =
√

−θ ln(c− cu) (6)

Expression (6) will be used to generate observations from LTRD. The log-likelihood func-

tion of a random sample X1, X2,...,Xn from LTRD specified in (5) is given by

L(θ) =
n∑

i=1

ln(2xi)− n ln(θ)−
∑n

i=1 x
2
i

θ
+

nD2

θ
. (7)

Differentiation of (7) with respect to θ leads to

Lθ = −n

θ
+

∑n
i=1 x

2
i

θ2
− nD2

θ2
.

Set Lθ = 0 and the maximum likelihood estimator is derived as

θ̂ =

∑n
i=1 x

2
i − nD2

n
= m2 −D2.

Therefore the Fisher information I(θ) is given by

I(θ) = −E(
∂Lθ

∂θ
)

= − n

θ2
+ 2

nE(X2
1 )

θ3
− 2nD2

θ3
.
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4 Doubly Truncated Rayleigh Distribution

Consider the Rayleigh density function (pdf) left truncated at D, and right truncated at

T .

f(x) =
2x
θ
exp (−x2

θ
)

c− b
(8)

for 0 < D < x < T and θ > 0. We will consider the statistical inference of scale parameter

θ when truncation point D and T are known. Let X1, X2,...,Xn be a random sample from

DTRD specified in (8), we will study the maximum likelihood estimator for θ. Note

E(X2) =
1

c− b

∫ T

D

2x3

θ
exp (−x2

θ
)dx

=
θ

c− b

∫ T 2/θ

D2/θ

y exp (−y)dy

=
θ

c− b
(
D2

θ
exp (−D2

θ
) + exp (−D2

θ
)− T 2

θ
exp (−T 2

θ
)− exp (−T 2

θ
))

= θ +
D2c− T 2b

c− b

F (x) =
1

c− b

∫ x

D

2t

θ
exp (−t2

θ
)dt

=
1

c− b
(c− exp (−x2

θ
)).

u =
c− exp (−x2

θ
)

c− b

(c− b)u = c− exp (−x2

θ
)

c− (c− b)u = exp (−x2

θ
)

x =
√

−θ ln(c− (c− b)u) (9)

Expression (9) will be used to generate observations from DTRD. The log-likelihood

function of a random sample X1, X2,...,Xn from DTRD specified in (8) is given by

L(θ) =
n∑

i=1

ln(2xi)− n ln(θ)−
∑n

i=1 x
2
i

θ
− n ln(c− b). (10)
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Differentiation of (10) with respect to θ leads to

Lθ = −n

θ
+

∑n
i=1 x

2
i

θ2
− n(cD2 − bT 2)

θ2(c− b)
.

Set Lθ = 0 and the maximum likelihood estimator is derived using

f < −function(x)(m2−x−(D2exp(−D2/x)−T 2exp(−T 2/x))/(exp(−D2/x)−exp(−T 2/x))),

θ̂ < −try(uniroot(f, c(0.001, 10000)))$root

in R.

Therefore the Fisher information I(θ) is given by

I(θ) = −E(
∂Lθ

∂θ
)

= − n

θ2
+ 2

nE(X2
1 )

θ3

+
n((cD4 − bT 4)(c− b)− (2θ(c− b) + (cD2 − bT 2))(cD2 − bT 2))

θ4(c− b)2
(11)

5 Applications

In Siddiqui (1962) example 3, a systematic sample of 80 observations of received field

intensity in (microvolts)2 were investigated and the data were shown to be consistent

with the hypothesis of exponential distribution. The observed values of received power in

(µv)2 are given below:

0.20, 0.71, 0.06, 0.05, 0.76, 0.32, 0.96, 0.63, 0.09,

0.18, 0.25, 0.45, 0.26, 0.10, 0.95, 0.01, 0.50, 1.26,

1.99, 0.32, 0.51, 0.01, 0.16, 0.56, 3.16, 1.27, 2.24,

1.00, 0.81, 1.29, 0.28, 0.21, 0.35, 0.20, 0.39, 0.89,

1.24, 0.08, 0.98, 1.01, 0.49, 0.90, 1.90, 1.42, 1.56,

1.32, 1.20, 1.59, 2.40, 2.24, 0.80, 0.56, 1.45, 0.18,

0.02, 0.28, 0.81, 0.18, 1.31, 0.64, 1.95, 0.48, 0.55,

0.44, 0.28, 0.07, 0.71, 0.48, 0.40, 0.06, 0.79, 1.01,
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0.51, 0.70, 0.14, 0.16, 0.01, 0.06, 0.03, 0.01

Note that the square root of the observations will be consistent with Rayleigh distribution

and we will examine our MLE derived in this paper on the square root of the observations

from Siddiqui (1962). Impose right truncation at T =
√
2 and we derive θ̂ = 0.99 and

95% confidence interval is given by (0.58,1.40). To see how well RTRD with θ̂ = 0.99 fit

the truncated data, we provide a plot of empirical distribution function paired with fitted

RTRD. From the figure with heading “ECDF with RTRD Fit” we can see that the fit is

quite reasonable.
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# application original observation from exp  
#JOURNAL OF RESEARCH of the National Bureau of Standards-D. Radio Propagation 
#Vol. 66D,    No.2,    March-April 1962 
#sqrt(original observation) from Rayleigh  
#Make right truncation at T=sqrt(2) 
#Some Problems Connected With Rayleigh Distributions 
#Code for calculation of the MLE and 95% CI  for scale parameter in RTRD 
original<-c( 
0.20,   0.71,   0.06,   0.05,   0.76,   0.32,   0.96,   0.63,   0.09,    
0.18,   0.25,   0.45,   0.26,   0.10,   0.95,   0.01,   0.50,   1.26,    
1.99,   0.32,   0.51,   0.01,   0.16,   0.56,   3.16,   1.27,   2.24,    
1.00,   0.81,   1.29,   0.28,   0.21,   0.35,   0.20,   0.39,   0.89,    
1.24,   0.08,   0.98,   1.01,   0.49,   0.90,   1.90,   1.42,   1.56,    
1.32,   1.20,   1.59,   2.40,   2.24,   0.80,   0.56,   1.45,   0.18,    
0.02,   0.28,   0.81,   0.18,   1.31,   0.64,   1.95,   0.48,   0.55,    
0.44,   0.28,   0.07,   0.71,   0.48,   0.40,   0.06,   0.79,   1.01,    
0.51,   0.70,   0.14,   0.16,   0.01,   0.06,   0.03,   0.01) 
obs_truncated<-c( 
0.20,   0.71,   0.06,   0.05,   0.76,   0.32,   0.96,   0.63,   0.09,    
0.18,   0.25,   0.45,   0.26,   0.10,   0.95,   0.01,   0.50,   1.26,    
1.99,   0.32,   0.51,   0.01,   0.16,   0.56,   2.00,   1.27,   2.00,    
1.00,   0.81,   1.29,   0.28,   0.21,   0.35,   0.20,   0.39,   0.89,    
1.24,   0.08,   0.98,   1.01,   0.49,   0.90,   1.90,   1.42,   1.56,    
1.32,   1.20,   1.59,   2.00,   2.00,   0.80,   0.56,   1.45,   0.18,    
0.02,   0.28,   0.81,   0.18,   1.31,   0.64,   1.95,   0.48,   0.55,    
0.44,   0.28,   0.07,   0.71,   0.48,   0.40,   0.06,   0.79,   1.01,    
0.51,   0.70,   0.14,   0.16,   0.01,   0.06,   0.03,   0.01) 
obs<-sqrt(obs_truncated) 
T<-sqrt(2) 
n<-length(obs) 
M2<-mean(obs^2) 
f<- function(x) (M2-x + T^2/(exp(T^2/x)-1)) 
Theta_MLE<-try(uniroot(f,    c(0.001,   10000)))$root 
b<-exp(-T^2/Theta_MLE)  
Third_num<- -n*T^4*b+2* Theta_MLE*n*T^2*b-2* Theta_MLE*n*b^2*T^2 
Third_den<- Theta_MLE^4*(1-b)^2 
I_theta<- -n/ Theta_MLE^2+2*n*M2/ Theta_MLE^3+Third_num/Third_den 
Var_MLE<-1/I_theta 
Lower<- Theta_MLE -1.96*sqrt(Var_MLE ) 
Upper<- Theta_MLE +1.96*sqrt(Var_MLE ) 
plot(ecdf(obs), xlim=c(0, T),    ylab="F(x)",     
col="red", main="ECDF with RTRD Fit", lty=1) 
curve((1-exp(-x^2/ Theta_MLE))/(1-exp(-T^2/ Theta_MLE)), add=TRUE, lty=2, col="green") 
legend(x = 1.0, y=0.3,             # Position 
       legend = c("ECDF",  "RTRD"),     # Legend texts 
       lty = c(1, 2),              # Line types 
       col = c("red", "green") , 
       cex=0.75 ) 
 
 
 
 



#Code for calculation of the MLE and 95% CI  for scale parameter in RTRD 
T<- 
obs<-c() 
n<-length(obs) 
M2<-mean(obs^2) 
f1<- function(x) (M2-x + T^2/(exp(T^2/x)-1)) 
Theta_MLE<-try(uniroot(f1, c(0.001,10000)))$root 

b<-exp(-T^2/Theta_MLE)  
Third_num<- -n*T^4*b+2* Theta_MLE*n*T^2*b-2* Theta_MLE*n*b^2*T^2 
Third_den<- Theta_MLE^4*(1-b)^2 
I_theta<- -n/ Theta_MLE^2+2*n*M2/ Theta_MLE^3+Third_num/Third_den 
Var_MLE<-1/I_theta 
Lower<- Theta_MLE -1.96*sqrt(Var_MLE ) 
Upper<- Theta_MLE +1.96*sqrt(Var_MLE ) 
 
#Code for calculation of the MLE and 95% CI  for scale parameter in LTRD 
D<-  
obs<-c() 
n<-length(obs) 
M2<-mean(obs^2) 
Theta_MLE<- M2-D^2 
I_theta<- -n/Theta_MLE^2+2* n*M2/Theta_MLE^3-2*n*D^2/Theta_MLE^3 
Var_MLE<-1/ I_theta 
Lower<- Theta_MLE-1.96*sqrt(Var_MLE) 
Upper<- Theta_MLE+1.96*sqrt(Var_MLE) 
 
#Code for calculation of the MLE and 95% CI  for scale parameter in DTRD 
T<- 
D<- 
obs<-c() 
n<-length(obs) 
M2<-mean(obs^2) 
f1<- function(x) (M2-x - (D^2*exp(-D^2/x)-T^2*exp(-T^2/x))/( exp(-D^2/x)- exp(-T^2/x))) 
Theta_MLE <-try(uniroot(f1, c(0.1,10000)))$root  
ce<-exp(-D^2/ Theta_MLE) 
be<-exp(-T^2/ Theta_MLE) 

I_theta<- -n/ Theta_MLE^2+2* n*M2/ Theta_MLE^3+n*((ce*D^4-be*T^4)*(ce-be)-(2* 
Theta_MLE*(ce-be)+(D^2*ce-T^2*be))*(ce*D^2-be*T^2))/( Theta_MLE^4*(ce-be)^2) 
Var_MLE<-1/ I_theta 

Lower<- Theta_MLE-1.96*sqrt(Var_MLE) 
Upper<- Theta_MLE+1.96*sqrt(Var_MLE) 
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