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ABSTRACT 
We have derived a new theory of error correction coding. For a given rate, R, we can 

construct a codeword with greater error correction than that predicted by the traditional 

theoretical limit. The maximum improvement is 33%. The new theory incorporates the 

concept of an analytic message or a message with a non-zero level of predictability. We 

show that error correction is based on both redundancy and predictability and we focus 

on a special case in which the message is a digital root 9 number. 
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1. INTRODUCTION 
Error correction coding [1] is the means whereby errors that may be introduced into 

digital data as a result of transmission through a communication channel [2] can be 

corrected based upon received data. Alternatively, error correction may be used to correct 

data that has deteriorated in storage.  

 

The idea behind error correcting codes is conceptually simple: add redundancy [3] to the 

information so that even if the resulting data gets corrupted, e.g. packets get corrupted 

during routing or the DVD gets some scratches, the original information can still be 

recovered. Error-correcting codes are one of the glories of the information age: They are 

what guarantees the accurate transmission of digital information over the airwaves or 

through copper wire, even in the presence of corrupting influences that represent noise.  

 

Error correction coding is referred to as coding theory [4]. Coding theory, sometimes 

called algebraic coding theory, deals with the design of error correcting codes. It makes 

use of classical and modern algebraic techniques involving finite fields, group theory, and 

polynomial algebra [5]. It has connections with other areas of discrete mathematics, 

especially number theory [6] and the theory of experimental designs [7]. 

 

Error correction coding is essentially based on a repetition scheme. The disadvantage of 

the repetition scheme is that it multiplies the number of bits transmitted by a factor that 

may prove unacceptably high. In 1948, Claude Shannon, working at Bell Laboratories in 

the USA, inaugurated the whole subject of coding theory by showing that it was possible 

to encode messages in such a way that the number of extra bits transmitted was as small 

as possible [7]. Unfortunately, his proof did not give any explicit recipes for these 

optimal codes. It was two years later that Richard Hamming, also at Bell Labs, began 

studying explicit error correcting codes with information transmission rates more 

efficient than simple repetition [8]. His first attempt produced a code in which four data 

bits were followed by three check bits that allowed not only the detection, but the 

correction of a single error. The repetition code would require nine check bits to achieve 

this. 
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The value of error correction codes for information transmission, both on Earth and from 

space, was immediately apparent, and a wide variety of codes were constructed that 

achieved both economy of transmission and error correction capacity. 

 

A code C  is given by an encoding map of the form: 

C : k∑ → n∑ ( for int egers k < n)       

which encodes a sequence of k  symbols (the message) from ∑ into a larger sequence 

of n  symbols (the codeword) [9]. 

The rate of C  is the ratio R = k / n  [10]. Note that R  exactly captures the amount of 

information contained per bit of a codeword.  

 

The question of interest is as follows: given a code C of rate R, what is the maximum 

fraction of errors, ρ  [11], that can be tolerated by C?  Now as every codeword has k 

symbols of information, it is intuitive that in the worst case at least k symbols of a 

codeword should be uncorrupted to have any hope of recovering the original information. 

In other words, we can only have ρ ≤ (n − k) / k = 1− R , irrespective of the 

computational power of the decoder. Therefore, ρ = 1− R  is accepted as the theoretical 

limit of error correction [12]. 

 

Current error correction theory treats messages as purely random [13], but in this paper 

we demonstrate that the more general theory must also incorporate messages with some 

level of predictability that we refer to as analytic messages. By including both 

redundancy and predictability into error correction, we can show that the theoretical limit 

for error correction is, in fact, incorrect and that the true limit is actually greater.  

 

In this paper, we derive the new theoretical error correction limit and focus on a special 

case that involves messages that consist of digital root 9 numbers [14]. 
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2. THEORY 

 
2.1 THE ESSENTIAL ELEMENTS OF THE THEORY 

A code C is defined as the mapping: 

 
C : k∑ → n∑ ,k ≤ n, k,n ∈+ .                         (1) 

∑ is the alphabet. 

 

The length of the message is k and the length of the codeword is n. In the traditional 

theory, k < n , but in the new theory, k ≤ n . 

 

We define an analytic message as a message that contains predictable symbols. 

We define α  as the number of predictable symbols in the message. We define β  as the 

rule for predicting symbols in the message. We define µ  as the mass of the message. 

(For a completely random message, α = 0  and β =∅ .) The code rate is 

R =
k
n

.                                        (2) 

The mass is 

µ =
k

α +1
.                            (3) 

The mass is a measure of the complexity of the message. The mass increases with the 

length of the message. A completely analytic message can still have mass. However, in 

general, the more predictable a message, the less is its mass. 

 

The theoretical limit for the fractional error tolerance, 
 
ρ , is 

 

ρ = 1− R +
α
n

.                           (4) 

Observe that for purely random messages, 
 
ρ→ ρ , consistent with the traditional theory. 

It is clear that error correction improves as predictability increases, but also note that as 

predictability increases, mass (i.e. complexity) decreases. 
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Let us consider a simple case that demonstrates the relative error correction performance 

limits of a random message and an analytic message. Without loss of generality, let the 

alphabet, ∑ consist of base 10 digits. Suppose that a random message is 22 and the 

codeword is 2222, so that k=2 and n=4. In this case α = 0  and β =∅ . The error 

correction limit is 1− R = 1− 2 / 4 = 1 / 2 . Now consider a case for which β = ”the digits 

of the message are sequential”. In this case the message is predictable such that 

α = k −1 . Let the message be 12 and the codeword be 1212. Once again, k=2 and n=4. 

The error correction limit is 1− R +1 / 4 = 1− 2 / 4 +1 / 4 = 3 / 4 . The logic of this 

increase in error correction is simple. In the random message case, we need at least two 

digits to recover the message. In the analytic case, if we only had one digit and β , we 

could recover the entire message. However, observe that the mass of the random message 

is µ = 2 , while the mass of the analytic message is µ = 1. Therefore, the random 

message has twice the complexity of the analytic message. 

 

2.2 FOUR MAJOR MESSAGE TYPES 

There are four major message types. 

The completely analytic message (i.e. completely predictable): 

α = k .                  (5) 

The message that has k-1 predictable digits: 

α = k −1 .                 (6) 

The message that has one predictable digit: 

α = 1.                  (7) 

The random message: 

α = 0 .                  (8) 

It is clear to see that for the completely analytic message (5), there is complete error 

correction: 
 
ρ = 1− R + k / n = 1 . For (6), we have 

 
ρ = 1− R + (k −1) / n = (n −1) / n . For 

(7), we have 
 
ρ = 1− R +1 / n = (n − k +1) / n . For (8), we have 

 
ρ→ ρ = 1− R = (n − k) / n . 

The mass of a completely analytic message is 
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µ =
k

k +1
.                 (9) 

We see that µ ∈[1 / 2,1) . 

The mass of a message with k-1 predictable digits is 

µ = 1 .                (10)  

The mass of a message with one predictable digit is 

µ =
k
2

.                (11)  

The mass of a random message is 

µ = k .                (12)  

It is interesting to compare the random message with the message that has one predictable 

digit. If the message that has one predictable digit is twice as long as the random 

message, then they have the same mass. This normalizes the complexity so that we can 

compare the error correction. As stated earlier, we can write the error correction of the 

random message as 

 

ρα =0 =
(n − k)
n

.              (13) 

For the message that has one predictable digit, the error correction becomes 

 

ρα =1 =
(2n − 2k +1)

2n
=
(n − k +1 / 2)

n
=
(n − k)
n

+
1
2n

 

or 

 

ρα =1 = ρα =0 +
1
2n

.              (14) 

Note that in this case, the rates are identical. If k=1 and n=2,  

 

ρα =1 =
1
2
+
1
4
=
3
4

.              (15) 

The error correction improvement is 
 
100%(1− ρα =0 / ρα =1) = 100%(1− 0.5 / 0.75) = 33% . 
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3. THE CASE OF DIGITAL ROOT NINE MESSAGES 

 
3.1 THE DIGITAL ROOT 9 THEOREM 

Based on a mathematical theorem, all numbers 
9m
2n

 or 
9m
5n

, where m  and n  are positive 

integers have a digital root of 9. A digital root is the single digit result of successive digit 

sums [14]. For example, the digital root of 225 is 9 or the digital root of 3.14 is 8. A 

digital root 9 number is an analytic message with α = 1. The rule is: β = ”the digital root 

of the message is 9”. The theorem is as follows. 

Theorem I. dr
9m
2n

⎛
⎝⎜

⎞
⎠⎟
= dr

9m
5n

⎛
⎝⎜

⎞
⎠⎟
= 9 , 

 
m ∈+ , n ∈+ ∪ 0{ } . 

proof.  

 

The digits aj{ }of an arbitrary positive number x are given by the equation: 

aj =
x

10 j−1
⎢
⎣⎢

⎥
⎦⎥
−10 x

10 j
⎢
⎣⎢

⎥
⎦⎥

. 

Therefore, we can perform the digit sum as follows: 

aj
j
∑ =

x
10 j−1
⎢
⎣⎢

⎥
⎦⎥
−10 x

10 j
⎢
⎣⎢

⎥
⎦⎥

⎛
⎝⎜

⎞
⎠⎟j

∑ . 

Let 
 
j = − to +  . 

 

aj
j
∑ =

x
10−−1
⎢
⎣⎢

⎥
⎦⎥
−10 x

10−
⎢
⎣⎢

⎥
⎦⎥
+

x
10−
⎢
⎣⎢

⎥
⎦⎥
−10 x

10−+1
⎢
⎣⎢

⎥
⎦⎥
+… 

 

aj
j
∑ = 10+1x⎢⎣ ⎥⎦ − 9 10

 x⎢⎣ ⎥⎦ − 9 10
−1x⎢⎣ ⎥⎦ − 9 10

−2 x⎢⎣ ⎥⎦ −…  

Let x = 9y . 

 

aj
j
∑ = 10+1(9y)⎢⎣ ⎥⎦ − 9 10

(9y)⎢⎣ ⎥⎦ − 9 10
−1(9y)⎢⎣ ⎥⎦ − 9 10

−2 (9y)⎢⎣ ⎥⎦ −…  

Let 
 
10+1(9y)∈+ . 

 

aj
j
∑ = 10+1(9y) − 9 10(9y)⎢⎣ ⎥⎦ − 9 10

−1(9y)⎢⎣ ⎥⎦ − 9 10
−2 (9y)⎢⎣ ⎥⎦ −…  
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aj
j
∑ = 9 10+1y − 10(9y)⎢⎣ ⎥⎦ − 10−1(9y)⎢⎣ ⎥⎦ − 10−2 (9y)⎢⎣ ⎥⎦ −…⎡⎣ ⎤⎦ . 

∴dr aj
j
∑

⎛

⎝⎜
⎞

⎠⎟
= 9 , since the digital root of 9b, where b is a positive integer, is 9. 

Let y =
m
2n

or
m
5n

. Since 2 and 5 are factors of 10, dr
9m
2n

⎛
⎝⎜

⎞
⎠⎟
= dr

9m
5n

⎛
⎝⎜

⎞
⎠⎟
= 9 .              

 

3.2 A DEMONSTRATION OF ERROR RECOVERY FOR A DIGITAL ROOT 9 

NUMBER 

A combination of digital root 9 numbers is also a digital root nine number. 

Given the number 
9m
2n

, 10n
9m
2n

⎛
⎝⎜

⎞
⎠⎟  is a digital root 9 integer.  

Suppose we want to generate a digital root 9 number that has 16 digits. We find a 

combination of  

105
9 563( )
25

⎛
⎝⎜

⎞
⎠⎟

 and 105
9 933( )
25

⎛
⎝⎜

⎞
⎠⎟

 

= 15834375 and 26240625. 

This 16 digit digital root 9 number becomes D = 1583437526240625 . 

 

After long storage, we retrieve the number and find 

 

D=158x4375 26240625,             (16) 

 

where x is a corrupted digit. Observe that D is a codeword for which k=n, so there is no 

redundancy. 

 

To recover x, we simply use the equation: 

dr(D) = D − 9 D −1
9

⎢
⎣⎢

⎥
⎦⎥

             (17) 

to calculate the digital root of D while varying x from 0 to 9 until  
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dr(D) = 9 .               (18) 

 

We find that x=3. 

 

[In the above equation, ⎢⎣ ⎥⎦  represents the greatest integer function.] In this case, for the 

error correction of D, we have demonstrated that 
 
ρα =1 = 1− R +1 / n = (n − k +1) / n  

which, in this case, is 
 
ρα =1 = 1 / n = 1 /16 . 

 

4. CONCLUSION 
The traditional error correction coding theory is based, essentially, on the redundancy of 

the message and has neglected the impact of message predictability on error correction. 

When predictability is included in the theory, in the form of analytic messages, the error 

correction can be significantly improved. That is, the theoretical limit for error correction 

is significantly increased for analytic messages in comparison to random messages. 

Current error correction methods have come near to the traditional theoretical limit, but 

with the new theory and analytic messages such as digital root 9 messages, error 

correction codes can reach a new level of performance that outstrips the old theoretical 

limit. 
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