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Abstract

Let G = (V,E) be a graph and k be a positive integer. A subset S
of V is a vertex k-path cover of G if every path of order k in G contains
a vertex from S. The minimum cardinality of a vertex k-path cover of
G is called the vertex k-path cover number of G, denoted by ψk(G).

A set S of vertices of G is called a dissociation set of G if it induces
a subgraph with maximum degree at most 1. The maximum cardinality
of a dissociation set in G is called the dissociation number of G, denoted
by diss(G).

In this study, we gave the dissociation number and the vertex 3-path
cover number of the join of graphs.
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1 Introduction
A vertex cover of a graph is a set of vertices such that each edge is incident
to at least one vertex of the set. Bres̆ar et al. [4] introduced a new graph
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invariant that somehow generalized this concept. The new concept is called the
vertex k-path cover. The concept was motivated by a problem that sought to
secure communications in wireless sensor networks. The concept vertex k-path
cover will allow us to find the minimum number of protected sensors (for cost
effectiveness), and how they should be placed in the network.

A couple of substantial results have been given for ψ3(G). Bres̆ar et al. [4]
gave some upperbounds for ψ3(G). Taranenko et al. [3] gave some lowerbounds
and upperbounds for ψ3(G), and gave the exact value of ψ3(G) for planar grids.
Jakovac et al. [7] gave the exact value of ψ3(G) for the lexicographic product
of graphs.

The vertex 3-path cover number of a graph may be determined using its
dissociation number. As defined in [10], a set of vertices of a graph is called a
dissociation set if it induces a subgraph with maximum degree at most 1. The
maximum cardinality of a dissociation set in a graph G is called the dissociation
number of G and is denoted by diss(G).

The dissociation number was also studied in [1], [2], [5], [6], [9] and [8].
The path Pn = (v1, v2, . . . , vn) is the graph with distinct vertices v1, v2, . . . ,

vn and edges v1v2, v2v3, . . . , vn−1vn. The cycle Cn = [v1, v2, . . . , vn], n ≥ 3, is
the graph with vertices v1, v2, . . . , vn and edges v1v2, v2v3, . . . , vn−1vn, vnv1.
A complete graph of order n, denoted by Kn, is the graph in which every pair
of distinct vertices are adjacent.

Let X and Y be sets. The disjoint union of X and Y , denoted by X ∪̇ Y ,
is found by combining the elements of X and Y , treating all elements to be
distinct. Thus, |X ∪̇ Y | = |X|+ |Y |. The join of two graphs G and H, denoted
by G+H, is the graph with vertex-set V (G+H) = V (G) ∪̇ V (H) and edge-set
E(G+H) = E(G) ∪̇ E(H) ∪̇ {uv : u ∈ V (G), v ∈ V (H)}.

2 Preliminary Results
This section validates the dissociation number of paths and cycles, and charac-
terized graphs with dissociation number equal to its order. Remark 2.1 follows
immediately from the definition of dissociation set.

Remark 2.1 Let G be a graph. Then S be a dissociation set in G if and only
if NS (u) ≤ 1 for all u ∈ S.

To see this, assume that S is a dissociation set of G, and there exists u ∈ S
such that NS (u) > 1. Let v, w ∈ NS (u). Then uv, uw ∈ E (〈S〉). Since
v, w ∈ S, deg〈S〉 (u) > 1. This is a contradiction since S is a dissociation set.

Conversely, assume that NS (u) ≤ 1 for all u ∈ S. Let v ∈ S. Then either
NS (v) = 0 or NS (v) = 1. If NS (v) = 0, then deg〈S〉 (v) = 0. On the other
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hand, if NS (v) = 1, then deg〈S〉 (v) = 1. Hence, deg〈S〉 (w) ≤ 1 for all w ∈ S.
This shows that S is a dissociation set.

The next remark validates the dissociation number of paths.

Remark 2.2 Let Pn be a path of order n ≥ 2. Then diss(Pn) = d2n/3e.

To see this, let Pn = (1, 2, . . . , n) be a path of order n and let

S =


{1, 2, 4, 5, 7, 8, . . . , n− 2, n− 1}, if n ≡ 0(mod 3)

{1, 2, 4, 5, 7, 8, . . . , n− 3, n− 2, n}, if n ≡ 1(mod 3)
{1, 2, 4, 5, 7, 8, . . . , n− 1, n}, if n ≡ 2(mod 3).

Then by Remark 2.1, S is a dissociation set. Note that |S| = d2n/3e. Hence,
diss(Pn) ≥ d2n/3e. Suppose that diss(Pn) > d2n/3e. Let S be a dissociation
set with |S| = diss(Pn). Then by the Pigeonhole Principle, S contains 3 vetices
with consecutive names, say wlog 1, 2, 3. This is a contradiction since S be a
dissociation set and deg〈S〉(2) = 2.

This shows the Remark.
The next remark validates the dissociation number of cycles.

Remark 2.3 Let Cn be a cycle of order n ≥ 3. Then diss(Cn) = b2n/3c.

Proof : Let Cn = (1, 2, . . . , n) be a cycle of order n and let

S =


{1, 2, 4, 5, 7, 8, . . . , n− 2, n− 1}, if n ≡ 0(mod 3)
{1, 2, 4, 5, 7, 8, . . . , n− 3, n− 2}, if n ≡ 1(mod 3)

{1, 2, 4, 5, 7, 8, . . . , n− 4, n− 3, n− 1}, if n ≡ 2(mod 3).

Then by Remark 2.1, S is a dissociation set. Note that |S| = b2n/3c. Hence,
diss(Cn) ≥ b2n/3c. Suppose that diss(Cn) ≥ b2n/3c. Let S be a dissociation
set with |S| = diss(Cn). Then by the Pigeonhole Principle, S contains 3 vetices
with consecutive names, say wlog 1, 2, 3. This is a contradiction since S be a
dissociation set and deg〈S〉(2) = 2.

This shows the Remark.
Theorem 2.4 characterizes graphs with dissociation number is equal to its

order.

Theorem 2.4 Let G = (V,E) be a graph of order n. Then diss(G) = n if and
only if G = Kn or G = G1 ∪ G2 ∪ · · · ∪ Gm where Gi is a component with
|V (Gi)| ≤ 2 for all i = 1, 2, . . . ,m.

Proof : If G = Kn, then V is a dissociation set in G and perhaps the largest.
Hence diss (G) = n. So we assume that G = G. If |V (Gi)| ≤ 2 for all
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i = 1, 2, . . . ,m, then by Lemma 1,
m⋃
i=1
V (Gi) = V (G) is a dissociation. Hence

diss (G) = n.
Conversely, assume that G 6= Kn and G 6= G1∪G2∪ · · · ∪Gm where Gi is a

component with |V (Gi)| ≤ 2 for all i = 1, 2, . . . ,m. Then G has a component
Gj with |V (Gj)| > 2. Let u ∈ V (Gj) with degGj (u) > 1 and let v, w ∈ N (u).
If S is a dissociating set in G, {u, v, w} /∈ S, otherwise deg〈S〉 (u) > 1. Hence,
diss (G) < n. �

3 Dissociation Number of the Join of Graphs
This section gives the dissociation number of the join of graphs. Theorem 3.1
characterizes dissociation sets in the join of graphs.

Let G be a graph and S ⊆ V (G). We denote by 〈S〉G the induced subgraph
of S in G.

Theorem 3.1 Let G and H be graphs. A subset S of V (G+H) is a dissoci-
ation set of G+H if and only if S satisfies either

1. S ⊆ V (G) and S is a dissociation set in G, or

2. S ⊆ V (H) and S is a dissociation set in H, or,

3. S = S1 ∪ S2, where S1 ⊆ V (G), S2 ⊆ V (H) and |S1| = |S2| = 1.

Proof : Assume that S is a dissociation set of G+H and S is neither of type (1),
(2), nor (3). If S is neither of type (1), (2), nor (3), then S1 = S ∩ V (G) 6= ∅,
S2 = S ∩ V (H) 6= ∅ and, |S1| > 1 or |S2| > 1. Without loss of generality,
suppose |S1| > 1. Since |S1| > 1 and S2 6= ∅, let u, v ∈ S1 and w ∈ S2. Then
〈{u,w, v}〉 is a subgraph of S. Thus, deg〈S〉(w) > 1. This is a contradiction.

Conversely, let S ⊆ V (G+H) and assume that S is either of type (1),
type (2), or type (3). If S is of type (1), then 〈S〉G = 〈S〉G+H . Similarly, if
S is of type (2), then 〈S〉H = 〈S〉G+H . So for these cases, S is a dissociation
set in G + H. If S is of type (3), then 〈S〉 ∼= P2. Hence, for this case S is a
dissociation set also. �

With Theorem 3.1 the next statement is clear.

Corollary 3.2 Let G and H be graphs. Then

diss(G+H) = max{2, diss(G), diss(H)}.
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4 Dissociation Number of Complete Graphs
This section validates the dissociation number of complete graphs. Remark
4.1 characterizes graphs with dissociation number equal to 1 and Theorem 4.2
characterizes graphs with dissociation number equal to 2.

Remark 4.1 Let G be a graph. Then diss(G) = 1 if and only if G = K1.

Proof : Assume that diss(G) = 1 and G 6= K1. If G 6= K1, the |V (G)| > 1. Let
u, v ∈ V (G) and S = {u, v}. Then either 〈S〉 = K2 or 〈S〉 = K2. This implies
that deg〈S〉(u) ≤ 1 and deg〈S〉(v) ≤ 1. Hence, S is a dissociation set in G, that
is, diss(G) ≥ 2. This is a contradiction.

The converse is clear. �

Theorem 4.2 characterizes graphs with dissociation number equal to 2.

Theorem 4.2 Let G be a graph of order n ≥ 2. Then diss(G) = 2 if and only
if

1. G ∼= K2, or

2. G ∼= I + J with diss(I) ≤ 2 and diss(J) ≤ 2.

Proof : Assume that diss(G) = 2. If G = K2, then we are done. So we assume
that G � K2. Suppose it is not true that G ∼= I + J with diss(I) ≤ 2 and
diss(J) ≤ 2. Consider the following cases: (Case 1. G ∼= I+J with diss(I) > 2
or diss(J) > 2) If G ∼= I+J and without loss of generality diss(I) > 2, then by
Corollary 3.2, diss(G) = max {diss(I), diss(J)} > 2. This is a contradiction.
(Case 2. G � I + J with diss(I) ≤ 2 and diss(J) ≤ 2) If G � I + J with
diss(I) ≤ 2 and diss(J) ≤ 2, then consider the following subcases: (Subcase 1.
diss(I) = diss(J) = 1) If diss(I) = 1, then by Remark 4.1 I = K1. Similarly,
if diss(J) = 1, then by Remark 4.1 J = K1. Hence, G = K2. This is a
contradiction. (Subcase 2. diss(I) = 1 and diss(J) = 2) If diss(I) = 1, then by
Remark 4.1 I = K1. Since G � I + J , either V (I) is an isolated vertex. Let S
be a dissociation set of J with |S| = 2. Then S ∪V (I) is a dissociation set of G.
This implies that diss(G) > 2. This is a contradiction. (Subcase 3. diss(I) = 2
and diss(J) = 2) Let S1 = {u1, u2} be a dissociation set of I, and S2 = {v1, v2}
be a dissociation set of J . Consider the following cases for this subcase: (Case 1.
u1v1, u1v2, u2v1, u2v2 ∈ E(G)) If u1v1, u1v2, u2v1, u2v2 ∈ E(G) and G � I + J ,
then there exists v3 ∈ V (J) distinct from v1 and v2. Hence, S1 ∪ {v3} is a
dissociation set. This implies that diss(G) > 2. This is a contradiction. (Case
2. At least one of u1v1, u1v2, u2v1, u2v2 is not an edge.) If At least one of
u1v1, u1v2, u2v1, u2v2 is not an edge, then we consider the following subcases:
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(Subcase 1. There exists v3 ∈ V (J) distinct from v1 and v2.) If there exists
v3 ∈ V (J) distinct from v1 and v2, then S1 ∪ {v3} is a dissociation set. This
implies that diss(G) > 2. This is a contradiction. (Subcase 2. V (I) = S1 and
V (J) = S2) If V (I) = S1 and V (J) = S2, then G ∼= K2 +P2. This implies that
diss(G) > 2. This is a contradiction.

Conversely, if G ∼= K2, then clearly diss(G) = 2. On the other hand,
if G ∼= I + J with diss(I) ≤ 2 and diss(J) ≤ 2, then by Corollary 3.2
diss(G) = max{2, diss(I), diss(J)} = 2. �

The ideas from Corollary 3.2 and Remark 4.1 may be used to validate the
next remark.

Remark 4.3 Let n ∈ N with n ≥ 2 and Kn be a complete graph of order n.
Then diss(Kn) = 2.

To see this we use induction. For n = 2, we have by Corollary 3.2 and
Remark 4.1

diss(K2) = dis(K1 +K1) = max{2, diss(K1)} = 2.

Hence the assertion holds for n = 2. Let m ≥ 2 and assume that the assertion
holds for m, that is, diss(Km) = 2. If diss(Km) = 2, then by Corollary 3.2
and Remark 4.1 we have,

diss(Km+1) = dis(K1 +Km) = max{2, diss(K1), diss(Km)} = 2.

Hence, the assertion holds for m + 1 also. Therefore, by the Principle of
Mathematical Induction the assertion follows.

5 Vertex 3-Path Cover Number of the Join of
Graphs

This section gives the vertex 3-path cover number of the join of graphs. Corollary
5.2 gives the vertex 3-path cover number of the join of two arbitrary graphs.

The next remark is found in [3] and [7]. We use Remark 5.1 to find the
vertex 3-path cover number of the join of graphs.

Remark 5.1 Let G = (V,E) be a graph. Then ψ3(G) = |V | − diss(G).

Corollary 5.2 Let G and H be graphs of order n and m, respectively, with
n > 1 or m > 1. Then ψ3(G+H) = m+ n−max{2, diss(G), diss(H)}.
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Proof : We have by Corollary 3.2 diss(G + H) = max{2, diss(G), diss(H)}.
Therefore by Remark 5.1

ψ3(Kn) = n+m− diss(G+H) = max{2, diss(G), diss(H)}.

�

The next statement, Corollary 5.3, gives the vertex 3-path cover number of
the join of two paths, the join of two cycles, and the join of a path and a cycle.

Corollary 5.3 Let Pn and Pm be paths of order n and m, respectively, and Cp
and Cq be cycles of order p and q, respectively. Then

1. ψ3(Pn + Pm) = m+ n−max{2, d2n/3e} (n ≥ m)

2. ψ3(Pn + Cq) = n+ q −max{2, d2n/3e , b2q/3c}

3. ψ3(Cp + Cq) = p+ q −max{2, b2p/3c} (p ≥ q).

The next statement, Corollary 5.4, gives the vertex 3-path cover number of
fans and wheels. We note that a fan Fn is isomorphic to K1 + Pn and a wheel
Wn is isomorphic to K1 + Cn.

Corollary 5.4 Let Fn be a fan of order n + 1 and Wm be a wheel of order
m+ 1. Then

1. ψ3(Fn) = 1 + n−max{2, d2n/3e}

2. ψ3(Wm) = 1 +m−max{2, b2m/3c}.

The next statement, Corollary 5.5, gives the vertex 3-path cover number of
generalized fans and generalized wheels. We also note that a generalized fan
Fm,n is isomorphic to Km + Pn and a generalized wheel Wm,n is isomorphic to
Km + Cn.

Corollary 5.5 Let Fm,n be a generalized fan of order m + n and Wp,q be a
generalized wheel of order p+ q. Then

1. ψ3(Fm,n) = m+ n−max{2,m, d2n/3e}

2. ψ3(Wp,q) = p+ q −max{2, p, b2q/3c}.
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