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1 Introduction

A Cayley graph over a finite group H defined by a connection set S ⊆ H has
H as a set of nodes and arc set Cay(H,S) := {(x, y) : xy−1 ∈ S}. A circulant
graph is a Cayley graph over a cyclic group. Two Cayley graphs Cay(H,S)
and Cay(K,T ) are Cayley isomorphic if there exists a group isomorphism f :
H → K which is a graph isomorphism too, that is Cay(H,S)f = Cay(K,T )⇔
Sf = T .

For a group H, let HR be the right regular group of H consisting of the
right translations hR : x 7→ xh for all h ∈ H. The group H(H) = NSH

(HR)
is called the holomorph of H, and H(H) = (AutH)HR. Let AutΓ be the
automorphism group of Γ, i.e the group of all permutations f ∈ Sym(H) such
that (x, y) ∈ E(Γ) ⇔ (xf , yf ) ∈ E(Γ). The automorphism group of a Cayley
graph Cay(H,S) contains a regular subgroup HR ≤ Sym(H), and any graph
Γ = (Ω, E) is isomorphic to a Cayley graph over a group H if and only if
Aut(Γ) contains a regular subgroup isomorphic to H.

There are two main approaches to the isomorphism problem of Cayley
graphs: group-theoretical and algebraic-combinatorial. The first one was de-
veloped by [?, ?, ?, ?, ?, ?]. It may be used not only for Cayley graphs but also
for arbitrary Cayley combinatorial structures. The second approach, based on
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the ideas of algebraic combinatorics (more precisely, on the theory of Schur
rings), was proposed by [?, ?, ?, ?]. This approach was recently developed and
extended by [?].

In 1936, ([?]) asked the following question: When a given abstract group
can be interpreted as the group of a graph and if this is the case, how the
corresponding graph can be constructed. The answer to this question did not
prove in a general case.

[?] studied the automorphism groups of circulant graphs of order p and p.q
where p 6= q are prime numbers. and They first solved the case p2, and later the
solution was presented by [?] in the case p3 . Although they have announced
several times the complete solution covering all pm , p an odd prime. (see.[?])
I. Kovacs in 2008 determined the automorphism groups of Cayley graphs on
2m vertices see [?]. In 2012 Klin and I. Kovacs determined the automorphism
groups of rational Cayley graphs of order n for n ∈ N ( see [?]). and the only
method to do that was by using Schur ring theory. In this paper we study
this problem for Cayley graphs on cyclic groups of order p.q2 where p 6= q are
prime numbers.
From now on Zn will denote a cyclic group of order n. and Sn will denote the
Symmetric group of degree n.

2 Schur- Rings:

Let H be a finite group with identity element e. We denote by QH the group
algebra of H over the field Q of rational numbers. For a subset T ⊂ H, let T
denote the group algebra element

∑
x∈H axx with: ax = 1 if x ∈ T , and ax = 0

otherwise. such elements called simple quantities. A subalgebra A of QH is
called a Schur ring (or S-ring) over H if the following axioms are satisfied:

1. There exists a basis of A consisting of simple quantities T0, T1, ... , Tr ;

2. T0 = {0}, H = ∪ri=0Ti.

3. For every i ∈ {1, 2, ..., r} there exists j ∈ {1, 2, ..., r} such that T−1i = Tj

The sets Ti are called the basic sets, and the simple quantities Ti the basic
quantities of A. We set Bs(A) = {T0, T1, ... , Tr}. A subset A ⊆ H is called an
A-set, and a subgroup K ≤ H is called an A-subgroup if S ∈ A and K ∈ A
respectively. An S-ring A′ ⊆ QH is called S-subring of A. if every element
z ∈ A′ equal to sum of elements from A. If K is a A-subgroup of H then the
subalgebra AK = A ∩ QH is an S-ring over K and Bs(AK) = {T ∈ Bs(A) :
T ⊆ K}. If KEH, then we can define a quotient S-ring A/K over the factor-
group H/E: Bs(AH/K) = {T/K : T ∈ Bs(A)}. Let G be an arbitrary group
such that HR < G < SH and let T0 = {e}, T1, ...Td be the set of all Ge-orbits.
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The vector space spanned by the simple quantities T0 = {e}, T1, ...Td is called
the transitivity module of G and is denoted by V(H,Ge). and by (Wielandt
[20,Theorem 24.1]), The transitivity module V(H,Ge) is an S-ring over H.

2.1 Wreath and direct product:

let A be S-ring over a group H, and E,F ≤ H be tow subgroups of H such
that

1. H = E.F and E ∩ F = {1}

2. If T ∈ Bs(A) then T = RS where R ∈ Bs(AE) , S ∈ Bs(AF ).

then A is a direct product of AE and AF and write A = AE ×AF .

Definition 2.1. Let A be an S-ring over a group H and N be an A-subgroup
such that N E H. Then A is a wreath product, notation: A = AN o AH/N if
for every T ∈ A, if T * N , then T is a union of N-cosets.

Definition 2.2. Let A be an S-ring over a group H and E,F be A -
subgroups such that H = EF and E ∩ F = {e}. Then A is a tensor product,
notation: A = AE ⊗AF if for every T ∈ Bs(A), if T * E ∪ F then T = RS
where R ∈ Bs(A) ∩ E and S ∈ Bs(A) ∩ F

Consequently, if A is an S-ring of the direct product H = E × F such
that both E and F are A-subgroups and AE = QE or AF = QF , then
A = AE ⊗AF .

Let A be an S-ring over a group H, A is called wreath-decomposable (or
shortly decomposable), if there is a nontrivial, proper subgroup N < H such
that for every basic set T, T ⊂ N or T = ∪x∈TxN . Otherwise, A is called
indecomposable. If an S-ring is decomposable, then it can be obtained as the
wreath product of two smaller S-rings.

2.2 Automorphisms of S-rings:

Let A = 〈T0, T1, ... , Tr〉 be an S-ring over a group H. By an automorphism
of A we mean a permutation of H is an automorphism of A if it is automor-
phism of all Cayley graphs Γi = Cay(H,Ti), T ∈ Bs(A) and The group of all
automorphisms of A will be denoted by Aut(A), and it is

Aut(A) =
r⋂

i=1

Aut(Γi)

so we can see that a permutation g of H is g ∈ Aut(A) if u−v ∈ T ⇔ ug−vg ∈
T, T ∈ Bs(A).

Now, let Q ⊆ H, and let 〈〈Q〉〉 be the intersection of all S-ring A such that
Q ∈ A then 〈〈Q〉〉 be an S-ring over H and the smallest S-ring contain Q.
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Theorem 2.3. AutCay(H,Q) = Aut〈〈Q〉〉.

Proof. let G = Aut(Cay(H,S)) and A = V(H,Ge). Q ⊆ H then Q = ∪ki=1Ti
for Ti ∈ Bs(〈〈Q〉〉) so Aut〈〈Q〉〉 ≤

⋂k
i=1AutCay(H,Ti) ≤ G. On the other,

since G = Aut(A) and Q ∈ A then G = Aut(A) ≤ Aut〈〈Q〉〉.

3 S-rings over Zn
Let H = Zn be cyclic group of order n and P(n) be the group of all a ∈ Zn

relatively prime to n. then P(n) can be considered as permutation group acting
on the set Zn by right multiplication: Zn → Zn : x → ax, a ∈ P(n), x ∈ Zn

thus P(n) = Aut(Zn).

Definition 3.1. Let n ∈ N, n ≥ 2 and let A be an S-ring over Zn, and
Dn = {d0, d1, ... , dk−1} the set of all divisors (not equal to n) of n, with dO = 1,
and for K ⊆ Zn and d ∈ Dn define K/d = {x ∈ K : g.c.d(x, n) = d} and the
binary relation Θ(A) on Dn, defined by (d, d′) ∈ Θ(A) ⇔ T(d)/d

′ 6= φ is an
equivalence relation called the basic equivalence af A.

4 Main results

Let Ad be S-ring over the cyclic group Zr and put Gr = Aut(Ar) then we have:

Theorem 4.1. Let A be a S-ring over An where n = p.q2 and p 6= q are
prime numbers then G = Aut(A) has one of the following forms:

1. Sn

2. Gr oGn
r

: n ∈ {p, q, q2, pq}

3. Gp ×Gq2 or Gq ×Gpq

4. WZn where W ≤ P(n) and W does not split into a direct product of
subgroup in P(p) with subgroup in P(q2).

Proof. Let G = Zn which is genarated by ρ and consider the normal subgroup
of G as following: H =< ρq

2
>, K =< ρp >, L =< ρp.q >, M =< ρq >. Now

let A be S-ring over G with Θ(A) = Θ then we can see that Θ has one of the
following forms:

• Θ1 = {1, p, q, q2, p.q} then there is one class that contain all elements of
G\{0} and the g.c.d of all these elements is 1. so Bset(A) = {0, G\{0}}.
thus Aut(A) = Sn
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• Θ2 = {{1}, {p}, {q}, {q2}, {p.q}} then there is one rational S-ring A with
Θ(A) = Θ2 then: Bset(A) = {{0}, {H\{0}}, {L\{0}}, {K\L}, {M\H ∪
L}, {G\K ∪M}} so every S-ring A with Θ(A) = Θ2 has the form A =
Ap × (Aq o Aq). and generated by the following basic quantities:

T(q2z) = W ′′q2z : W ′′ ≤ P(p)

T(qz) = W ′′q2z + pqW ′z : W ′ ≤ P(q)

T(pqz) = W ′pqz : W ≤ P(q)

T(pz) = W ′pz + pqZq : W ′ ≤ P(q)

T(pz) = W ′′q2z +W ′pz + pqZq : W ′′ ≤ P(p),W ′ ≤ P(q)

consequenrly, Aut(A) = Aut(Ap)× (Aut(Aq) o Aut(Aq))

• Θ3 = {{q2}, {1, p, q, pq}} then there is one rational S-ringA with Θ(A) =
Θ3 then: Bset(A) = {{0}, {H\{0}}, {G\H}} so every S-ring A with
Θ(A) = Θ3 has the form A = Aq2 o Ap. where Aq2 is indecomposable
S-ring. and A generated by the following basic quantities:

T(q2z) = W ′′q2z : W ′′ ≤ P(p)

T(z) = Zq2\{0}+ q2Zp or T(z) = Wz + q2Zp : W ≤ P(q2), 1 + q /∈ W

consequenrly, Aut(A) = Aut(Aq2) o Aut(Ap)

• Θ4 = {{p.q}, {1, p, q, q2}} then there is one rational S-ringA with Θ(A) =
Θ4 then: Bset(A) = {{0}, {L\{0}}, {G\L}} so every S-ring A with
Θ(A) = Θ4 has the form A = Ap.q o Aq. where Ap.q is indecomposable
S-ring. and A is generated by the following basic quantities:

T(p.qz) = W ′q2z : W ′ ≤ P(q)

T(z) = Zp.q\{0}+ p.qZq or T(z) = Wz + pqZp : W ≤ P(pq)

AndW does not split into a direct productsW ′ep+W
′′eq withW ′ ∈ P(q),

and W ′′ ∈ P(p). Consequently, Aut(A) = Aut(Apq) o Aut(Aq)

• Θ5 = {{p}, {p.q}, {1, q, q2}} then there is one rational S-ring A with
Θ(A) = Θ5 then: Bset(A) = {{0}, {L\{0}}, {K\L}, {G\K}} so every
S-ring A with Θ(A) = Θ5 has the form A = Ap o Aq o Aq. and A is
generated by the following basic quantities:

T(p.qz) = W ′p.qz : W ′ ≤ P(q)

T(pz) = W ′pz + p.qZq : W ′ ≤ P(q)

T(z) = W ′′z + pZq2 : W ′′ ≤ P(p)

Consequently, Aut(A) = Aut(Ap) o Aut(Aq) o Aut(Aq)
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• Θ6 = {{1}, {p}, {p.q}, {q, q2}} then there is one rational S-ring A with
Θ(A) = Θ6 then: Bset(A) = {{0}, {L\{0}}, {K\L}, {M\L}, {G\M ∪
K}} so every S-ring A with Θ(A) = Θ6 has the form A = (Ap×Aq) oAq.
and A is generated by the following basic quantities:

T(p.qz) = W ′p.qz : W ′ ≤ P(q)

T(pz) = W ′pz + p.qZq : W ′ ≤ P(q)

T(qz) = W ′′.qz + p.qZq : W ′′ ≤ P(p)

T(z) = W ′′.qz +W ′pz + p.qZq : W ′′ ≤ P(p),W ′ ≤ P(q)

Consequently, Aut(A) = (Aut(Ap)× Aut(Aq)) o Aut(Aq)

• Θ7 = {{1, p}, {p.q}, {q}, {q2}} then there is one rational S-ring A with
Θ(A) = Θ7 then: Bset(A) = {{0}, {H\{0}}, {L\{0}}, {M\H∪L}, {G\M}}
so every S-ring A with Θ(A) = Θ7 has the form A = Aq o (Aq × Aq).
and A is generated by the following basic quantities:

T(q2z) = W ′′q2z : W ′′ ≤ P(p)

T(p.qz) = W ′p.qz : W ′ ≤ P(q)

T(qz) = W ′′.q2z +W ′p.qz : W ′′ ≤ P(p),W ′ ≤ P(q)

T(z) = W ′′z + qZpq :

Consequently, Aut(A) = Aut(Aq) o (Aut(Aq)× Aut(Aq))

• Θ8 = {{q2}, {1, q}, {p, p.q}} then there is one rational S-ring A with
Θ(A) = Θ8 then: Bset(A) = {{0}, {H\{0}}, {K\{0}}, {G\H ∪K}} so
every S-ring A with Θ(A) = Θ8 has the form A = Ap × Aq2 . where
Aq2 is indecomposable S-ring, and A is generated by the following basic
quantities:

T(q2z) = W ′′q2z : W ′′ ≤ P(p)

T(pz) = T(p.qz) = p(Zq2\{0})
or T(pz) = T(p.qz) = Wpzq : W ≤ P(q2), 1 + q /∈ W

T(z) = W ′′q2z +Wpz : W ≤ P(q2), 1 + q /∈ W
or T(z) = W ′′q2z + p(Zq2\{0}) : W ≤ P(q2), 1 + q /∈ W

Consequently, Aut(A) = Aut(Ap) o Aut(Aq2)

• Θ9 = {{p.q}, {1, p}, {q, q2}} then there is one rational S-ring A with
Θ(A) = Θ9 then: Bset(A) = {{0}, {L\{0}}, {M\L}, {G\M}} so every
S-ring A with Θ(A) = Θ9 has the form A = Aq o Aq o Aq. and A is
generated by the following basic quantities:

T(p.qz) = W ′pqz : W ′ ≤ P(q)

T(qz) = T(q2z) = W ′′qz + pqZq :: W ′ ≤ P(q)

T(z) = W ′z + qZp.q : W ′ ≤ P(q)
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Consequently, Aut(A) = Aut(Aq) o Aut(Ap) o Aut(Aq)

• Θ10 = {{1, p}, {q, q2, p.q}} then there are one rational S-ring A with
Θ(A) = Θ10 then: Bset(A) = {{0}, {M\{0}}, {G\M}} so every S-ring
A with Θ(A) = Θ10 has the form A = Aq o Ap.q. where Ap.q is indecom-
posable S-ring, and A is generated by the following basic quantities:

T(z) = W ′z + pZp.q : W ′ ≤ P(q)

T(qz) = q(Zp.q\{0})
or = Wqz : W ≤ P(p.q)

And W does not split into a direct product W ′ep+W ′′eq with W ′ ∈ P(q),
and W ′′ ∈ P(p). Consequently, Aut(A) = Aut(Aq) o Aut(Ap.q)

• Θ11 = {{p, p.q}, {1, q, q2}} then there is one rational S-ring A with
Θ(A) = Θ11 then: Bset(A) = {{0}, {K\{0}}, {G\K}} so every S-ring
A with Θ(A) = Θ11 has the form A = Ap o Aq2 . where Aq2 is indecom-
posable S-ring, and A is generated by the following basic quantities:

T(z) = W ′′z + pZq2 : W ′′ ≤ P(p)

T(pz) = T(p.qz) = p(Zq2\{0})
or = Wpz : W ≤ P(q2), 1 + q /∈ W

consequenrly, Aut(A) = Aut(Ap) o Aut(Aq2)

• Θ12 = {{q, p.q}, {1, p}, {q2}} then there is one rational S-ring A with
Θ(A) = Θ12 then: Bset(A) = {{0}, {H\{0}}, {M\H}, {G\M}} so ev-
ery S-ring A with Θ(A) = Θ12 has the form A = Aq o Aq o Ap. and A is
generated by the following basic quantities:

T(q2z) = W ′′q2z : W ′′ ≤ P(p)

T(qz) = T(p.qz) = W ′qz + q2Zp : W ′ ≤ P(q)

T(z) = W ′z + qZp.q : W ′ ≤ P(q)

Consequently, Aut(A) = Aut(Aq) o Aut(Aq) o Aut(Aq)

• Θ13 = {{1}, {p}, {p.q}, {q, q2}} then there isn’t any rational S-ring A
with Θ(A) = Θ13 and every S-ring A with Θ(A) = Θ13 has the form
A = (Ap oAq)×Ap, and A is generated by the following basic quantities:

T(pz) = W ′pz : W ′ ≤ P(q)

T(p.qz) = W ′pqz : W ′ ≤ P(q)

T(q.z) = W ′′qz + p.qZq : W ′′ ≤ P(p)

Tq2z = W ′pqz +W ′pz : W ′ ≤ P(q)

T(z) = W ′pz +W ′′qz + p.qZq : W ′′ ≤ P(p),W ′ ≤ P(q)

consequenrly, Aut(A) = Aut(Ap) o Aut(Aq)× Aut(Aq)
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• Let A = 〈0,W , l1W, ... lsW 〉, where W ≤ P(n). If W split into a direct
product of subgroup in P(p) with subgroup in P(q2), then we return to
one of previous cases. Let now W does not split into a direct product of
subgroup in P(p) with subgroup in P(q2). We define A′ ≡ W ( mod q2),
A′′ ≡ W ( mod p), then B′ = A′Zq2 ≤ Sq2 and B′′ = A′′Zp ≤ Sp. so
WZpq2 is a subgroup in direct product B′×B′′. thus A is a s-subring in
direct product of Aq2 with Ap, and so G = Aut(A) ≤ Gq2 × Gp is a set
of pairs g = (g′, g′′) acting on Zpq2 with g′ ∈ Gq2 and g′′ ∈ Gp. Thus we
have two cases:

If G ≤ H(Zpq2) then G = W Zpq2 : W ≤ P(p.q2) . Thus:

W = T
V(Zpq2 ,W )

(1) = T
V(Zpq2 ,W )

(1) = W

and then G = WZpq2 .

Assume now G � H(Zpq2) then there is at least g0 = (g′0, g
′′
0) ∈ G such

that g0 = (g′0, g
′′
0) /∈ H(Zpq2). Thus, at least one of the components, for

instance, g′′0 /∈ H(Zp). But H(Zp) = NSp(Zp), so there exists an element

h1 ∈ Zp such that g′′1 = g′′0h1g
′′
0
−1 /∈ H(Zp).

Define G′ = {g′ ∈ Sq2 : (g′, idp) ∈ G}, G′ = {g′ ∈ Sp : (idq2 , g
′′) ∈ G},

(where idr=identity on the group Zr : r = p, q2). Clearly, Zq2 ≤ G′

, Zp ≤ G′′. But h = (idq2 , h1) = h1eq2 ∈ Zn ≤ G and g0 ∈ G, so
(idq2 , g

′′
1) = g0hg

−1
0 ∈ G Thus, g′′1 ∈ G′′ but g′′1 � H(Zp) so G′′ = Sp, and

G splits into direct product G′ ×G′′. Thus:

W =(WZpq2)0 ∩ P(pq2) = T
V(Zpq2 ,(WZpq2 )0)

(1)

=T
V(Zpq2 ,(G)0)

(1) = (G)0 ∩ P(pq2)

=(G′0 ×G′′0) ∩ (P(q2)× P(p))

=(G′0 ∩ P(q2))× (G′′0 ∩ ×P(p))

Thus, W splits into direct product of G′0∩P(q2) ≤ P(q2) and G′′0∩P(p) ≤
P(p). this contradicts to our assumption that W does not split into direct
product. and so our assumption G � H(Zpq2) is false. Thus G = WZpq2

4.1 Example

Let n = 12 = 22× 3, From theorem we get the following list of all S-rings over
Zn and the corresponding automorphism groups:
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number S-ring type Aut(A)
1 〈0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 〉 〈0, Z12\0〉 S12

2 〈0, 1, 5, 7, 11, 2, 4, 8, 10, 3, 9, 6〉 Ap × (AqoAq) S3 × (Z2oZ2)
3 〈0, 1, 7, 2, 8, 4, 10, 5, 11, 3, 6, 9〉 Ap × (AqoAq) Z3 × (Z2oZ2)
4 〈0, 1, 2, 3, 5, 6, 7, 9, 10, 11, 4, 8〉 Aq2oAp S4oS3

5 〈0, 1, 2, 3, 5, 6, 7, 9, 10, 11, 4, 8〉 Aq2oAp S4oZ3

6 〈0, 1, 5, 9, 2, 6, 10, 3, 7, 11, 4, 8〉 Aq2oAp Z4oS3

7 〈0, 1, 5, 9, 2, 6, 10, 3, 7, 11, 4, 8〉 Aq2oAp Z4oZ3

8 〈0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 6〉 Ap.qoAq S6oZ2

9 〈0, 1, 2, 4, 5, 7, 8, 10, 11, 3, 9, 6〉 ApoAqoAq S3oZ2oZ2

10 〈0, 1, 4, 7, 10, 2, 5, 8, 11 , 3, 9, 6〉 ApoAqoAq Z3oZ2oZ2

11 〈0, 1, 5, 7, 11, 2, 4, 8, 10 , 3, 9, 6〉 (Ap ×Ap)oAq (S3 × Z2)oZ2

12 〈0, 1, 7, 2, 8 , 3, 9, 4, 10, 5, 11, 6〉 (Ap ×Ap)oAq (Z3 × Z2)oZ2

13 〈0, 1, 3, 5, 7, 9, 10, 2, 10 , 4, 8, 6〉 Aqo(Ap ×Ap) Z2o(S3 × Z2)
14 〈0, 1, 3, 5, 7, 9, 10, 2 , 4, 6, 8, 10〉 Aqo(Ap ×Ap) Z2o(Z3 × Z2)
15 〈0, 1, 2, 5, 7, 10, 11, 4, 8 , 3, 6, 9〉 Ap ×Aq2 S3 × S4

16 〈0, 1, 7, 10, 2, 5, 11 , 3, 6, 9, 4 , 8〉 Ap ×Aq2 Z3 × S4

17 〈0, 1, 5, 7, 11, 2, 10, 4, 8 , 3, 6 , 9〉 Ap ×Aq2 S3 × Z4

18 〈0, 1, 2 , 3 , 4, 5, 6, 7, 8 , 9, 10, 11〉 Ap ×Aq2 Z3 × Z4

19 〈0, 1, 3, 5, 7, 9, 10, 2, 4, 8, 10 , 6〉 AqoApoAq Z2oS3oZ2

20 〈0, 1, 3, 5, 7, 9, 10, 2, 8 , 4, 10, 6〉 AqoApoAq Z2oZ3oZ2

21 〈0, 1, 3, 5, 7, 9, 10, 2, 4, 6, 8, 10〉 ApoAp.q Z2oS6

22 〈0, 1, 2, 4, 5, 7, 8, 10, 11, 3, 6, 9〉 ApoAq2 S3oS4

23 〈0, 1, 4, 7, 10, 2, 5, 8, 11, 3, 6, 9〉 ApoAq2 Z3oS4

24 〈0, 1, 2, 4, 5, 7, 8, 10, 11, 3, 6, 9〉 ApoAq2 Z4oS3

25 〈0, 1, 4, 7, 10, 2, 5, 8, 11, 3, 6, 9〉 ApoAq2 Z4oZ3

26 〈0, 1, 3, 5, 7, 9, 11 , 2, 6, 10, 4, 8〉 AqoAqoAp Z2oZ2oS3

27 〈0, 1, 3, 5, 7, 9, 11 , 2, 6, 10, 4, 8〉 AqoAqoAp Z2oZ2oZ3

28 〈0, 1, 5, 7, 11, 2, 4, 8, 10 , 3, 6, 9〉 (Ap ×Aq)oAq (S3oZ2)× Z2

29 〈0, 1, 7, 2, 8 , 4, 10, 5, 11, 3, 6, 9〉 (Ap ×Aq)oAq (Z3oZ2)× Z2

30 〈0, 1, 5, 2, 10 , 4, 8, 7, 11, 3, 6, 9〉 〈0,W , l1W , ..., lrW 〉 {1, 5}Z12

31 〈0, 1, 7, 5, 11 , 3, 9, 2, 4, 6, 8, 10〉 〈0,W , l1W , ..., lrW 〉 {1, 7}Z12

32 〈0, 1, 11, 2, 10 , 3, 9, 4, 8, 5, 7, 6〉 〈0,W , l1W , ..., lrW 〉 {1, 11}Z12
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