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1 Introduction

A complex space form is an n-dimensional Kähler manifold of constant holomorphic sectional
curvature c. A complete and simply connected complex space form is analytically isometric
to a complex projective space CPn if c > 0, a complex Euclidean space Cn if c = 0, or a
complex hyperbolic space CHn if c < 0. Furthermore, the complex projective and complex
hyperbolic spaces are called non-flat complex space forms and the symbol Mn(c), n ≥ 2, is
used to denote them when it is not necessary to distinguish them.

Let M be a connected real hypersurface of Mn(c) without boundary. Let ∇ be the Levi-
Civita connection on M and J the complex structure of Mn(c) . Take a locally defined unit
normal vector field N on M and denote by ξ = −JN . This is a tangent vector field to
M called the structure vector field on M . If it is an eigenvector of the shape operator A
of M the real hypersurface is called Hopf hypersurface and the corresponding eigenvalue is
α = g(Aξ, ξ). Moreover, the complex structure J induces on M an almost contact metric
structure (φ, ξ, η, g), where φ is the tangential component of J and η is an one-form given
by η(X) = g(X, ξ) for any X tangent to M .

The classification of homogeneous real hypersurfaces in CPn, n ≥ 2 was obtained by
Takagi and they were divided into six type of real hypersurfaces (see [14], [15], [16]). Among
them the three dimensional real hypersurfaces in CP 2 are geodesic hyperspheres of radius

r , 0 < r <
π

2
, which are called real hypersurfaces of type (A) and tubes of radius r ,

0 < r <
π

4
, over the complex quadric, which are called real hypersurfaces of type (B ). All of

them are Hopf ones with constant principal curvatures (see [6]). In case of CHn , the study
of real hypersurfaces with constant principal curvatures, was initiated by Montiel in [8] and
completed by Berndt in [1]. In this case the three dimensional real hypersurfaces in CH2
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are either a horosphere in CH2 , or a geodesic hypersphere or a tube over a totally geodesic
complex hyperbolic hyperplane CH1 . These are known as real hypersurfaces of type (A).
Furthermore, there exist tubes of radius r > 0 over totally real hyperbolic space RH2 , known
as real hypersurfaces of type (B ). All of them are homogeneous and Hopf.

The Jacobi operator RX of a Riemannian manifold M̃ with respect to a unit vector field X
is given by RX = R(·, X)X , where R is the curvature tensor field on M̃ . It is a self-adjoint
endomorphism of the tangent space TM̃ and it is related to Jacobi vector fields, which are
solutions of the second-order differential equation ∇γ̇(∇γ̇Y ) +R(Y, γ̇)γ̇ = 0 along a geodesic
γ in M̃ (known as the Jacobi equation). In case of real hypersurfaces in Mn(c) the Jacobi
operator with respect to the structure vector field ξ , Rξ , which is called the structure Jacobi
operator on M and it plays an important role int he study of them.

Apart from the Levi-Civita connection on a non-degenerate, pseudo-Hermitian CR-manifold
a canonical affine connection is defined and is called Tanaka-Webster connection (see [17],
[19]). As a generalization of this connection, in [18] Tanno defined the generalized Tanaka-
Webster connection for contact metric manifolds by

∇̂XY = ∇XY + (∇Xη)(Y )ξ − η(Y )∇Xξ − η(X)φY.

Using the naturally extended affine connection of Tanno’s generalized Tanaka-Webster con-
nection, Cho defined the k-th generalized Tanaka-Webster connection ∇̂(k) on a real hyper-
surface M in Mn(c) given by

∇̂(k)
X Y = ∇XY + g(φAX, Y )ξ − η(Y )φAX − kη(X)φY (1.1)

for any vector fields X , Y tangent to M where k is a nonnull real number (see [2], [3]).
Then the following relations hold

∇̂(k)η = 0, ∇̂(k)ξ = 0, ∇̂(k)g = 0, ∇̂(k)φ = 0.

In particular, if the shape operator of a real hypersurface satisfies φA + Aφ = 2kφ , the
generalized Tanaka-Webster connection coincides with the Tanaka-Webster connection.

Geometric conditions with respect to the k-th generalized Tanaka-Webster connection
on real hypersurfaces has been studied. In [13] real hypersurfaces in CPn, n ≥ 3, whose

structure Jacobi operator satisfies relation L
(k)
ξ Rξ = LξRξ are classified. Furthermore, the

non-existence of real hypersurfaces in CPn, n ≥ 3, whose structure Jacobi operator satisfies

relation L
(k)
X Rξ = LXRξ , for any X orthogonal ξ is proved.

The aim of he present paper is to extend the previous results in case of three dimensional
real hypersurfaces in M2(c). First, we study real hypersurfaces in M2(c) satisfies relation

L
(k)
ξ Rξ = LξRξ (1.2)

and the following Theorem is obtained

Theorem 1.1 Every real hypersurface in M2(c), whose structure Jacobi operator satisfies
relation (1.2) is a Hopf hypersurface. Moreover, M is locally congruent
either to a real hypersurface of type (A),
or to a Hopf hypersurface with Aξ = 0.

2

george
Sticky Note
Many

george
Sticky Note
στην προηγούμενη σειρά?



Next we study three dimensional real hypesurfaces in M2(c), whose structure Jacobi
operator satisfies relation

L
(k)
X Rξ = LXRξ, (1.3)

for any X orthogonal to ξ and the following Theorem is proved

Theorem 1.2 There do not exist real hypersurface in M2(c), whose structure Jacobi oper-
ator satisfies relation (1.3).

As an immediate consequence of the above Theorems we conclude that

Corollary 1.1 There do not exist real hypersurfaces in M2(c) such that LXRξ = L
(k)
X Rξ ,

for any X ∈ TM .

Finally, we remind that a tensor field T of type (1,1) is called invariant when the Lie
derivative of it with respect to any vector fields X on M vanishes, i.e. LXT = 0. Moreover,
it is called ξ -invariant, when the Lie derivative of it with respect to ξ is equal to zero, i.e.
LξT = 0. Thus, as a consequence of Theorems 1.1 is concluded that

Corollary 1.2 Every real hypersurface in M2(c) whose structure Jacobi operator is ξ -
invariant with respect to the generalized Tanaka-Webster connection is a Hopf hypersurface.
Moreover, M is locally congruent
either to a real hypersurface of type (A),
or to a Hopf hypersurface with Aξ = 0.

2 Preliminaries

Throughout this paper all manifolds, vector fields etc are assumed to be of class C∞ and all
manifolds are assumed to be connected. Furthermore, the real hypersurfaces M are supposed
to be without boundary. Thus, let M be a real hypersurface immersed in a non-flat complex
space form (Mn(c), G) with complex structure J of constant holomorphic sectional curvature
c and N be a locally defined unit normal vector field on M and ξ = −JN be the structure
vector field of M . For a vector field X tangent to M relation

JX = φX + η(X)N

holds, where φX and η(X)N are respectively the tangential and the normal component of
JX . The Riemannian connections ∇ in Mn(c) and ∇ in M are related for any vector fields
X , Y on M by

∇XY = ∇XY + g(AX,Y )N,

where g is the Riemannian metric induced from the metric G .
The shape operator A of the real hypersurface M in Mn(c) with respect to N is given by

∇XN = −AX.
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The real hypersurface M has an almost contact metric structure (φ, ξ, η, g) induced from J
of Mn(c), where φ is the structure tensor, which is a tensor field of type (1,1) and η is an
1-form such that

g(φX, Y ) = G(JX, Y ), η(X) = g(X, ξ) = G(JX,N).

Moreover, the following relations hold

φ2X = −X + η(X)ξ, η ◦ φ = 0, φξ = 0, η(ξ) = 1,

g(φX, φY ) = g(X,Y )− η(X)η(Y ), g(X,φY ) = −g(φX, Y ).

The fact that J is parallel implies ∇J = 0 and this leads to

∇Xξ = φAX, (∇Xφ)Y = η(Y )AX − g(AX,Y )ξ. (2.1)

The ambient space Mn(c) is of constant holomorphic sectional curvature c and this results
in the Gauss and Codazzi equations are respectively given by

R(X,Y )Z =
c

4
[g(Y, Z)X − g(X,Z)Y + g(φY,Z)φX (2.2)

−g(φX,Z)φY − 2g(φX, Y )φZ] + g(AY,Z)AX − g(AX,Z)AY,

(∇XA)Y − (∇YA)X =
c

4
[η(X)φY − η(Y )φX − 2g(φX, Y )ξ],

where R denotes the Riemannian curvature tensor on M and X , Y , Z are any vector fields
on M .

The tangent space TPM at every point P ∈ M can be decomposed as

TPM = span{ξ} ⊕ D,

where D = ker η = {X ∈ TPM : η(X) = 0} and is called (maximal) holomorphic
distribution (if n ≥ 3). Due to the above decomposition the vector field Aξ can be written

Aξ = αξ + βU,

where β = |φ∇ξξ| and U = − 1

β
φ∇ξξ ∈ ker(η) is a unit vector field, provided that β 6= 0.

Next, the following results concern any non-Hopf real hypersurface M in M2(c) with local
orthonormal basis {U, φU, ξ} at a point P of M .

Lemma 2.1 Let M be a non-Hopf real hypersurface in M2(c). The following relations hold
on M

AU = γU + δφU + βξ, AφU = δU + µφU, Aξ = αξ + βU (2.3)

∇Uξ = −δU + γφU, ∇φUξ = −µU + δφU, ∇ξξ = βφU,

∇UU = κ1φU + δξ, ∇φUU = κ2φU + µξ, ∇ξU = κ3φU,

∇UφU = −κ1U − γξ, ∇φUφU = −κ2U − δξ, ∇ξφU = −κ3U − βξ,

where α, β, γ, δ, µ, κ1, κ2, κ3 are smooth functions on M and β 6= 0.
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Remark 2.1 The proof of Lemma 2.1 is included in [12].

The Codazzi equation for X ∈ {U, φU} and Y = ξ because of Lemma 2.1 implies the
following relations

ξδ = αγ + βκ1 + δ2 + µκ3 +
c

4
− γµ− γκ3 − β2 (2.4)

ξµ = αδ + βκ2 − 2δκ3 (2.5)

(φU)α = αβ + βκ3 − 3βµ (2.6)

(φU)β = αγ + βκ1 + 2δ2 +
c

2
− 2γµ+ αµ (2.7)

and for X = U and Y = φU

Uδ − (φU)γ = µκ1 − κ1γ − βγ − 2δκ2 − 2βµ (2.8)

Furthermore, combination of the Gauss equation (2.2) with the formula of Riemannian
curvature R(X,Y )Z = ∇X∇Y Z − ∇Y∇XZ − ∇[X,Y ]Z , taking into account relations of
Lemma 2.1, implies

Uκ2 − (φU)κ1 = 2δ2 − 2γµ− κ21 − γκ3 − κ22 − µκ3 − c, (2.9)

Relation (2.2) implies that the structure Jacobi operator Rξ is given by

Rξ(X) =
c

4
[X − η(X)ξ] + αAX − η(AX)Aξ, (2.10)

for any vector field X tangent to M , where α = η(Aξ) = g(Aξ, ξ).

Moreover, the structure Jacobi operator for X = U , X = φU and X = ξ due to (2.3) is
given by

Rξ(U) = (
c

4
+ αγ − β2)U + αδφU, Rξ(φU) = αδU + (

c

4
+ αµ)φU and Rξ(ξ) = 0. (2.11)

The following Theorem which in case of CPn is owed to Maeda [7] and in case of CHn is
owed to Montiel [8] (also Corollary 2.3 in [10]).

Theorem 2.1 Let M be a Hopf hypersurface in Mn(c), n ≥ 2. Then
i) α is constant.
ii) If W is a vector field which belongs to D such that AW = λW , then

(λ− α

2
)AφW = (

λα

2
+
c

4
)φW.

iii) If the vector field W satisfies AW = λW and AφW = νφW then

λν =
α

2
(λ+ ν) +

c

4
. (2.12)
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Remark 2.2 In case of three dimensional Hopf hypersurfaces we can always consider a local
orthonormal basis {W,φW, ξ} at some point P ∈ M such that AW = λW and AφW =
νφW . Thus, relation (2.12) is satisfied. Furthermore, the structure Jacobi operator of Hopf
hypersurfaces, whose shape operator is given by the previous relations for X = W and X =
φW is given by

Rξ(W ) = (
c

4
+ αλ)W and Rξ(φW ) = (

c

4
+ αν)φW. (2.13)

We also mention the following Theorem, which plays an important role in the study of real
hypersurfaces in Mn(c), which is due to Okumura in case of CPn (see [11]) and to Montiel
and Romero in case of CHn (see [9]). It provides the classification of real hypersurfaces in
Mn(c), n ≥ 2, whose shape operator A commutes with the structure tensor field φ .

Theorem 2.2 Let M be a real hypersurface of Mn(c), n ≥ 2. Then Aϕ = ϕA, if and only
if M is locally congruent to a homogeneous real hypersurface of type (A). More precisely:
In case of CPn

(A1) a geodesic hypersphere of radius r , where 0 < r <
π

2
,

(A2) a tube of radius r over a totally geodesic CP k ,(1 ≤ k ≤ n− 2), where 0 < r <
π

2
.

In case of CHn

(A0) a horosphere in CHn , i.e a Montiel tube,
(A1) a geodesic hypersphere or a tube over a totally geodesic complex hyperbolic hyperplane
CHn−1 ,
(A2) a tube over a totally geodesic CHk (1 ≤ k ≤ n− 2).

Remark 2.3 In case of three dimensional real hypersurfaces only real hypersurfaces of type
(A1 ) exist in CP 2 and real hypersurfaces of type (A0) and (A1) exist in CH2 .

Finally, we mention the following Proposition (see [?])

Proposition 2.1 There do not exist real hypersurfaces in M2(c), whose structure Jacobi
operator vanishes

3 Proof of Theorem 1.1

Let M be a real hypersurface whose structure Jacobi operator satisfies relation (1.2). More
analytically, the previous relation due to (1.1) for X = ξ implies

kφRξ(Y ) +Rξ(φAY )− g(φAξ,Rξ(Y ))ξ = φARξ(Y ) + η(Y )Rξ(φAξ) + kRξ(φY ) (3.1)

We consider N the open subset of M such that

N = {P ∈ M : β 6= 0, in a neighborhood of P .}

On N the inner product of relation (3.1) for Y = U with ξ due to the first of (2.11) yields

αδ 6= 0.
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Suppose that α 6= 0 then the above relation implies δ = 0 and relations (2.3) and (2.11)
become respectively

AU = γU + βξ, AφU = µφU and Aξ = αξ + βU, (3.2)

Rξ(U) = (
c

4
+ αγ − β2)U, Rξ(φU) = (

c

4
+ αµ)φU and Rξ(ξ) = 0. (3.3)

The inner product of (3.1) for Y = φU with ξ because of (3.2) and the second of (3.3)
implies

Rξ(φU) = 0⇒ µ = − c

4α
.

Moreover, relation (3.1) for Y = φU taking into account that Rξ(φU) = 0 and the first
of (3.3) results in

(µ− k)Rξ(U) = 0.

If µ 6= k then Rξ(U) = 0. So the structure Jacobi operator vanishes identically, which is
impossible because of Proposition 2.1 in Section 2.

Thus, µ = k . Furthermore, the inner product of (3.1) for Y = U with φU due to the first

of (3.3) and µ = − c

4α
implies

(γ − k)Rξ(U) = 0.

If γ 6= k then Rξ(U) = 0 and this results in the dact that the structure Jacobi operator
vanishes identically, which is impossible due to Proposition 2.1.

So γ = k . Differentiation of the last relation with respect to φU yields φU(γ) = 0.

Thus, relation (2.8) because of δ = 0, µ = γ = k and µ = − c

4α
implies c = 0, which is a

contradiction.

Therefore, on M we have α = 0 and relation (2.11) becomes

Rξ(U) = (
c

4
− β2)U, Rξ(φU) =

c

4
φU and Rξ(ξ) = 0. (3.4)

The inner product of relation (3.1) for Y = φU with ξ because of the second relation of
(3.4) gives c = 0, which is a contradiction.

Thus, N is empty and the following Proposition is proved

Proposition 3.1 Every real hypersurface in M2(c) whose structure Jacobi operator satisfies
relation (1.2) is a Hopf hypersurface.

Due to the above Proposition, relations in Theorem 2.1 and remark 2.2 hold. Relation
(3.1) for Y = W and Y = φW because of (2.13) implies respectively

kα(λ+ ν) = λα(λ− ν) = 0 and kα(λ+ ν) = −να(λ− ν).

Combination of the last two relations results in

α(λ+ ν)(λ− ν) = 0.

7

george
Cross-Out

george
Inserted Text
since

george
Highlight
κάπως αλλιώς να γραφεί



If λ+ ν = 0 then relation (2.12) yields λ2 = − c
4

. This case occurs when the ambient space

is CH2 . Furthermore, the last relation leads to the conclusion that λ and ν are constant.
In this case M is locally congruent to a real hypersurface of type (B ). Substitution of the
eigenvalues of such real hypersurfaces in relation λ+ ν = 0 leads to a contradiction.

Therefore, on M relation α(λ− ν) = 0. Thus, locally either α = 0 or λ = ν . If α = 0 in
case of CP 2 we have to cases:
1) if λ 6= ν then M is locally congruent to a non-homegeneous real hypersurface considered

as a tube of radius r =
π

4
over a holomorphic curve,

2) if λ = ν then M is locally congruent to a geodesic hypersphere of radius r =
π

4
.

In case of CH2 if α = 0 M is a Hopf hypersurface with Aξ = 0 (for the construction of
such real hypersurfaces see [5]).

If α 6= 0 then λ = ν and this implies

(Aϕ− ϕA)X = 0

for any X tangent to M . So due to Theorem 2.2 M is locally congruent to a real hypersurface
of type (A) and this completes the proof of Theorem 1.1.

4 Proof of Theorem 1.2

More analytically relation (1.3) because of (1.1) is written

g(φAX,Rξ(Y ))ξ + g(AφX,Rξ(Y ))ξ + η(Y )Rξ(φAX)− kη(Y )Rξ(φX) = 0, (4.1)

where X ∈ D and Y ∈ TM .

First we prove the following Proposition

Proposition 4.1 There do not exist Hopf hypersurfaces in M2(c) whose structure Jacobi
operator satisfies relation (1.3).

Proof: Let M be a Hopf hypersurface. Then we have Aξ = αξ , where α is constant.
Relation (4.1) for X = W and Y = ξ because of (2.13) implies

(λ− k)Rξ(φW ) = 0.

Suppose that λ 6= k then Rξ(φW ) = 0. The latter due to (2.13) yields
c

4
+αν = 0. Relation

(4.1) for X = φW and Y = W results in

(ν + λ)(
c

4
+ αλ) = 0.

If ν+λ 6= 0 then
c

4
+αλ = 0 and this leads to Rξ(W ) = 0. From the last relation we conclude

that the structure Jacobi operator vanishes identically. It is known because of Proposition
that such real hypersurfaces do not exist.
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So ν + λ = 0 and relation (2.12) because of the latter implies λ2 = − c
4

. This case occurs

when the ambient space is the complex hyperbolic space CH2 . Furthermore, we conclude

that the real hypersurface has three constant eigenvalues since
c

4
+ αν = 0 and λ2 = − c

4
.

So it is locally congruent to a real hypersurface of type (B ). Substitution of the eigenvalues
in relation λ+ ν = 0 leads to a contradiction.

Therefore, on M we have λ = k . Relation (4.1) for X = W and Y = φW because of
(2.13) yields

(λ+ ν)(
c

4
+ αν) = 0.

If λ + ν 6= 0 then the last relation gives
c

4
+ αν = 0. Thus, M has three dinstict eigen-

values constant and this implies that M is locally congruent to a real hypersurface of type

(B ). Substitution of the eigenvalues of sych real hypersurface in
c

4
+ αν = 0 leads to a

contradiction.

So on M we have λ + ν = 0 and relation (2.12) because of the latter implies λ2 = − c
4

.

This case occurs when the ambient space is the complex hyperbolic space CH2 . Moreover, we
conclude that the real hypersurface has three constant eigenvalues and so is locally congruent

to a real hypersurface of type (B ). Substitution of the eigenvalues in relation λ2 = − c
4

leads

to a contradiction and this completes the proof of the Proposition. 2

Next we examine non-Hopf hypersurfaces, whose structure Jacobi satisfies relation (4.1).
Since M is a non-Hopf hypersurface we have that β 6= 0 and relation (2.3) holds. Relation
(4.1) for X = U and Y = φU implies

(γ + µ)g(Rξ(φU), φU) = 0.

Suppose that γ + µ 6= 0 then the above relation yields g(Rξ(φU), φU) = 0. Moreover,
relation (4.1) for X = φU and Y = U gives g(Rξ(U), U) = 0. Furthermore, relation (4.1)
for X = U and Y = ξ because of g(Rξ(φU, φU) = 0 and (2.11) results in αδ = 0. Thus, we
conclude that Rξ(U) = Rξ(φU) = 0 and the structure Jacobi operator vanishes identically,
which is impossible because of Proposition 2.1.

Therefore, on M we have γ + µ = 0 and the inner product of relation (4.1) for X = U
and Y = ξ with U due to (2.11) gives

δ(β2 − αk − c

4
) = 0.

If δ 6= 0 then the above relation yields β2 =
c

4
+ αk . Moreover, the inner product of

relation (4.1) for X = φU and Y = ξ with U because of (2.11) implies
c

4
+ αk = 0.

Substitutition of the latter in β2 =
c

4
+ αk results in β = 0, which is impossible.

So on M we have δ = 0 and since γ = −µ relation (2.11) becomes

Rξ(U) = (
c

4
− αµ− β2)U, Rξ(φU) = (

c

4
+ αµ)φU and Rξ(ξ) = 0. (4.2)
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The inner product of relation (4.1) for X = U and Y = ξ with φU because of (4.2) yields

(k + µ)(
c

4
+ αµ) = 0.

If k + µ 6= 0 then
c

4
+ αµ = 0, which implies that αµ 6= 0. The inner product of relation

(4.1) for X = φU and y = ξ bearing in mind all the previous relations yields

(k − µ)(
c

2
− β2) = 0.

If β2 6= c

2
then the above relation yields k = µ and γ = −k . Since k = µ we obtain ξµ = 0

and relation (2.6) implies κ2 = 0. Furthermore, differantiation of the latter with respect to
φU gives

(φU)µ = (φU)γ = 0.

Furthermore, differenatiation of
c

4
+ αµ = 0 with respect to φU because of the above

relation and relation (2.6) gives κ3 = 3µ − α . Since (φU)γ = 0 relation (2.8) implies

κ1 =
β

2
. So relation (2.4) bearing in mind all the previous relations gives

β2

2
= c + 7µ2 .

Differentiatin of the last relation with respect to φU yields (φU)β = 0 and relation (2.7)

implies
β2

2
+
c

2
+ 2µ2 = 0. Moreover, since κ1 =

β

2
we conclude that (φU)κ1 = 0 and

relation (2.9) due to γ = −µ , κ1 =
β2

2
, κ3 = 3µ− α and κ2 = 0 results in

β2

2
= 4µ2 − 2c .

Combination of the last one with
β2

2
= c + 7µ2 implies c = 3µ2 . Substitution of the latter

in
β2

2
+ 2µ2 +

c

2
= 0 leads to a contradiction.

Therefore, we have β2 =
c

2
. Differentiation of the latter with respect to φU because

of relation (2.7) implies βκ1 +
c

2
+ 2µ2 = 0. Relation (2.4) due to the last one implies

2µκ3 = µ2 +
c

2
. Moreover, differentiating γ = −µ with respect to φU due to (2.8) implies

(φU)µ = 2µκ1 +βµ . Furthermore, relation
c

4
+αµ = 0 holds and differentiation of the latter

with respect to (φU) and bearing in mind all the previous relations results in 2µ2 = c . The

last one gives (φU)µ = 0. So we have that since (φU)(
c

4
+αµ) = 0 due to µ 6= 0 and (φU)µ =

0 we obtain (φU)α = 0, which because of relation (2.6) yields κ3 = 3µ− α . Substitution of

the latter and 2µ2 = c in 2µκ3 = µ2 +
c

2
implies c = 0, which is a contradiction.

Thus, on M we have µ+ k = 0. Summarizing on M the following relations hold

δ = 0, γ + µ = 0 and µ+ k = 0.

The inner product of relation (4.1) for X = U and Y = ξ with φU and for X = φU and
Y = ξ with U because of (4.2) and k 6= 0 implies

Rξ(U) = Rξ(φU) = 0.

The latter results in the fact that the structure Jacobi operator vanishes identically and
because of Proposition 2.1 we conclude that such real hypersurfaces do not exist and this
completes the proof of Theorem 1.2.
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