
Q-symmetry and Conditional Q-symmetries for

Drinfel'd{Sokolov{Wilson (DSW) system

Hassan A.Zedan ,1 M. Alghamdi1 and Seham Sh.Tantawy ,3
1Math.Dept., Faculty of Science, King Abdulaziz University,

P.O.Box:80203,Jeddah 21895,Saudi Arabia
2Math.Dept., Faculty of Science,Kafr El-Sheikh University, Egypt.

3Math.Dept., Faculty of Education.Ain Shams University.

hassanzedan2003@yahoo.com

Abstract

We study in this paper the Q-symmetry and conditional Q-symmetries
of Drinfel'd{Sokolov{Wilson (DSW) equations. The solutions which
we obtain in this paper take the form of convergent power series with
easily computable components.
Keywords: Q-symmetry, conditional Q-symmetries,Lie Symmetry,
(DSW) equations

1 Introduction

The investigation of exact solutions of nonlinear wave equations plays an im-
portant role in the study of nonlinear physical phenomena.
Recently, many e�ective methods for obtaining exact solutions of nonlinear

wave equations have been proposed, such as B�acklund transformation method
[1], homogeneous balance method [2], [?], bifurcation method [4], [?], the hy-
perbolic tangent function expansion
method [6], [?], the Exp-function method [8], the Jacobi elliptic function

expansion method [9]-[11], Hirotas bilinear method [12] and others. In this
paper, we are concerned with the classical Drinfel'd{Sokolov{Wilson equation

ut + p v vx = 0;

vt + q uxxx + r u vx + s v ux = 0; (1)

where p, q, r, s are some nonzero parameters.
Recently, DSWE and the coupled DSWE, a special case of the classical

DSWE, have been studied by several authors [?]-[?]. In this study, we construct
the Q-symmetry and conditional Q-symmetries of Drinfel'd{Sokolov{Wilson
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(DSW) equations. The solutions procedure Q-symmetry and conditional Q-
symmetries, by the help of symbolic computation of Matlab or Mathematica to
simplify.
Non-trivial conditional symmetries of a PDE (partial di�erential equation)

allows us to obtain in explicit form such solutions which cannot be found by
using the symmetries of the whole set of solutions of the given PDE[?].
Moreover, conditional symmetries reduce the class of PDEs to systems of

ODEs (ordinary di�erential equations). As a rule, the reduced equations one
obtains from conditional symmetries and from Q-symmetry are signi�cantly
simpler than those found by reduction using symmetries of the full set of solu-
tions.This allows us to construct exact solutions of the reduced equations.

2 Conditional Q-symmetries

The classical symmetry properties can be extended if one studies eqs.(??) and
(1) together with the invariant surface of the symmetry generator as an over-
determined system of partial di�erential equations[?].
That is, if one studies the Lie symmetry properties of the system (??), (1)

and

�1(x; t; u; v)� �1(x; t; u; v) ux � �2(x; t; u; v) ut = 0;
�2(x; t; u; v)� �1(x; t; u; v) vx � �2(x; t; u; v) vt = 0; (2)

where (??) and (2) are the invariant surfaces corresponding to the Lie sym-
metry group generator

Z = �1(x; t; u; v)
@

@x
+ �2(x; t; u; v)

@

@t
+ �1(x; t; u; v)

@

@u
+ �2(x; t; u; v)

@

@v
; (3)

the invariance condition, leading to conditional Q-symmetries for (??) and(1)
is given by

Z(3)F jfF (j)=0;Q(k)=0g= 0; (4)

where

F1 = ut + p v vx;

F2 = vt + q uxxx + r u vx + s v ux;

Q1 = �1(x; t; u; v)� �1(x; t; u; v) ux � �2(x; t; u; v) ut;
Q2 = �2(x; t; u; v)� �1(x; t; u; v) vx � �2(x; t; u; v) vt: (5)

Here Z(3) denotes the third prolongation of Z, namely
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Z(3) = Z + 1
@

@ux
+ 2

@

@ut
+ 3

@

@vx
+ 4

@

@vt
+ 11

@

@uxx
+ 22

@

@utt

+12
@

@uxt
+ 33

@

@vxx
+ 44

@

@vtt
+ 34

@

@vxt
+ 111

@

@uxxx

+222
@

@uttt
+ 333

@

@vxxx
+ 112

@

@uxxt
+ 122

@

@uxtt
+ 334

@

@vxxt

+344
@

@vxtt
+ 444

@

@vttt
; (6)

where

1 = Dx(�1)� ux Dx(�1)� ut Dx(�2);
2 = Dt(�1)� ux Dt(�1)� ut Dt(�2);
3 = Dx(�2)� vx Dx(�1)� vt Dx(�2);
4 = Dt(�2)� vx Dt(�1)� vt Dt(�2);
11 = Dx(1)� uxx Dx(�1)� uxt Dx(�2);
22 = Dt(2)� uxt Dt(�1)� utt Dt(�2);
111 = Dx(11)� uxxx Dx(�1)� uxxt Dx(�2): (7)

A generator Z which satis�es condition (4) is called a conditional Q-symmetry
generator, where by the invariant surfaces (??) and (2). The F (j) andQ(k)denote
the j�th and k�th prolongations, respectively. Dx denotes the total derivative
with respect to x and Dt with respect to t:
Now, we derive the general determining equations for the conditional Q-

symmetry generators of eqs. (??) and (1) and consider the following special
case.
We set �1 = �1(x), �2 = �2(t), �1 = �1(u) and �2 = �2(v). The invariance

condition (4) leads to the following expression:

2 + p �2 vx + p v 3 = 0;

4 + q 111 + r �1 vx + r u 3 + s �2 ux + s v 1 = 0: (8)

This leads to

p vx �2(v) + ut �
0
1(u) + p v (vx �

0
2(v)� vx �01(x))� ut �02(t) = 0;

r vx �1(u) + s ux �2(v) + vt �
0
2(v) + s v ux( �

0
1(u)� �01(x))

+r u vx ( �
0
2(v)� �01(x))� vt �02(t) + q (uxxx �01(u)� 3 uxxx �01(x)

+3 ux uxx �
00
1(u)� 3 uxx �001(x) + u3x �

(3)
1 (u) � ux �

(3)
1 (x)) = 0: (9)

In particular, from Q1 = 0 and Q2 = 0 follow:
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�2(x; t; u; v) ut = �1(x; t; u; v)� �1(x; t; u; v) ux;
�2(x; t; u; v) vt = �2(x; t; u; v)� �1(x; t; u; v) vx: (10)

The determining equations for the conditional Q-symmetry generator Z are
obtained by equating the coe�cients of the independent coordinates to zero.
By solving this system of linear partial di�erential equations for the in�nites-

imal �1(x), �2(t), �1(u) and �2(v); we get the following in�nitesimal
functions:

�1(u) = �2 k3 u
3

;

�2(v) = �2 k3 v
3

;

�1(x) = k1 +
k3 x

3
;

�2(t) = k2 + k3 t; (11)

where k1; k2 and k3 are arbitrary constants.
The conditional Q-symmetry is given by:

Z = (k1 +
k3 x

3
)
@

@x
+ (k2 + k3 t)

@

@t
� 2 k3 u

3

@

@u
� 2 k3 v

3

@

@v
(12)

The general solution of the associated invariant surface condition

(k1 +
k3 x

3
)
@u

@x
+ (k2 + k3 t)

@u

@t
= �2 k3 u

3
;

(k1 +
k3 x

3
)
@v

@x
+ (k2 + k3 t)

@v

@t
= �2 k3 v

3
;

are given by

u(x; t) =
'
1
(z)

(3 k1 + k3 x)2
;

v(x; t) =
'
2
(z)

(3 k1 + k3 x)2
; (13)

where '
1
(z) and '

2
(z) are arbitrary functions of z and

z(x; t) =
k2 + k3 t

k3 (3 k1 + k3 x)3
: (14)

Substituting (??) and (13) into equations (??) and (1), we obtain the system

of nonlinear ordinary di�erential equations for '
1
(z) and '

2
(z) which take
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the form:

�2k3p'22(z) + '
0
1(z)� 3pz'2(z)'

0
2(z) = 0;

�24 k33 q '1(z)� 2 k3 '1(z) '2(z) (r + s)� 3 z (r '1(z) '
0
2
(z) + s '

2
(z) '0

1
(z))

+'0
2
(z)� 186 k23 q z '01(z)� 162 k3 z2q '001 � 27 z3 q '0001 (z) = 0; (15)

where '0i =
d'

i

dz ; '
00
i =

d2'
i

dz2 and '000i =
d3'

i

dz3 ; (i = 1; 2):
Solving a system of an ordinary di�erential eqs. (??) and (15), we have six

cases of solutions for '
1
(z) and '

2
(z) :

Case 1.

'
1
(z) = a1z and '2(z) = b0;

with p =
a1
2 b20

; q =
b0 r

70
; s = �r; k3 = 1; a1and b0 are arbitrary constants:

Case 2.

'
1
(z) = a1z and '2(z) = b0;

with p =
a
1

2 b20
; q = �b0 (2 r + 5 s)

210
; k3 = 1; a1and b0 are arbitrary constants.

Case 3.

'
1
(z) = a1z and '

2
(z) = b0;

with p = � 2a1
31 b20

; q = � 8b0 s
29791

; r = �25 s
31

; k3 = �
31

4
; a1 and b0 are arbitrary constants.

Case 4.

'
1
(z) = a1z and '2(z) = b0;

with p = � a
1

3 b20
; q = �2b0 s

279
; r = �25 s

31
; k3 = �

3

2
; a

1
and b0 are arbitrary constants.

Case 5.

'
1
(z) = a1z and '2(z) = b0;

with p =
a
1

2 b20 k3
; q = �b0 (2 k3 r + (3 + 2 k3) s)

6 k23(31 + 4 k3)
; a

1
and b0 are arbitrary constants.
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Case 6.

'
1
(z) = a1z and '2(z) = b0;

with p =
a
1

2 b20
; q =

b0 r

70
; s = �r; k3 = 1; a1 and b0 are arbitrary constants.

Substituting from Eqs.(??)-(??) into Eqs.(??) and (13), we obtain the so-
lutions for the Drinfel'd{Sokolov{Wilson (DSW) system (??) and (1) in the
following:
Family 1.

u(x; t) =
a
1
z

(3 k1 + x)2

v(x; t) =
b0

(3 k1 + x)2
(16)

with p =
a1
2 b20

; q = b0 r
70 ; s = �r; k3 = 1; a1 and b0 are arbitrary constants.

Family 2.

u(x; t) =
a
1
z

(3 k1 + x)2

v(x; t) =
b0

(3 k1 + x)2
(17)

with p =
a
1

2 b20
; q = � b0 (2 r +5 s)

210 ; k3 = 1; a1 and b0 are arbitrary constants.

Family 3.

u(x; t) =
a
1
z

(3 k1 + x)2

v(x; t) =
b0

(3 k1 + x)2
(18)

with p = � 2a
1

31 b20
; q = � 8b0 s

29791 ; r = �
25 s
31 ; k3 = �

31
4 ; a1and b0 are arbitrary

constants.
Family 4.

u(x; t) =
a
1
z

(3 k1 + k3 x)2

v(x; t) =
b0

(3 k1 + k3 x)2
(19)

with p = � a
1

3 b20
; q = � 2b0 s

279 ; r = � 25 s
31 ; k3 = � 3

2 ; a1and b0 are arbitrary

constants.
Family 5.

u(x; t) =
a
1
z

(3 k1 + k3 x)2

v(x; t) =
b0

(3 k1 + k3 x)2
(20)
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with p =
a
1

2 b20 k3
; q = � b0 (2 k3 r+(3+2 k3) s)

6 k23(31+4 k3)
; a

1
and b0 are arbitrary con-

stants.
Family 6.

u(x; t) =
a
1
z

(3 k1 + k3 x)2

v(x; t) =
b0

(3 k1 + k3 x)2
(21)

with p =
a
1

2 b20
; q = b0 r

70 ; s = �r; k3 = 1; a1 and b0 are arbitrary constants
and z = k2+k3 t

k3 (3 k1+k3 x)3
:

3 Q-symmetry generators

Before we consider conditional symmetries of (??) and (1), let us briey describe
the classical Lie approach and introduce our notation [?]. We are concerned
with a partial di�erential equation of order r with m+1 independent variables
(x0; x1; :::; xm) and two �eld variable u and v, i.e. an
equation of the form

F1(x0; x1; :::; xm; u;
@u

@x0
; :::;

@ru

@xj1 :::@xjr
) = 0;

F2(x0; x1; :::; xm; v;
@v

@x0
; :::;

@rv

@xj1 :::@xjr
) = 0; (22)

where 0 � j1 � j2 � ::: � jr � m; j = 0; :::;m: A Lie transformation group
that leave (??) and (22) invariant is generated by a Lie symmetry generator
Z which is de�ned by

Z =
mX
j=0

�j(x0; x1; :::; xm; u; v)
@

@xj
+�1(x0; x1; :::; xm; u; v)

@

@u
+�2(x0; x1; :::; xm; u; v)

@

@v
:

(23)
Zw1 and Zw2 are the associated vertical form of (23), de�ned by

Zw1 = (�1 �
mX
j=0

�j uj)
@

@u
;

Zw2 = (�2 �
mX
j=0

�j vj)
@

@v
; (24)

where Zw1 j�1= Z j�1and Zw2 j�2= Z j�2 : Here �1 and �2 are a di�erential
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1-form, called the contact form, which de�ned by

�1 = du�
mX
j=0

uj dxj ;

�2 = dv �
mX
j=0

vj dxj :

Equations (??) and (22) are called invariant under the prolonged Lie symmetry
generators Zw1 and Zw2 if

L �Zw1
F1 = 0;

L �Zw2
F2 = 0: (25)

L denotes the Lie derivative. �Zw1 and
�Zw2 are found by prolonging the vertical

generator Zw1 and Zw2 , i.e.,

�Zw1 =
mX
j=0

Dj (U1)
@

@uj
+ :::+

mX
j
1
;:::;jr=0

Dj1 ;:::;jr (U1)
@

@u
j1 ;:::;jr

;

�Zw2 =
mX
j=0

Dj (U2)
@

@vj
+ :::+

mX
j1 ;:::;jr=0

Dj
1
;:::;jr (U2)

@

@v
j1 ;:::;jr

; (26)

where

U1 = (�1 �
mX
j=0

�j uj);

U2 = (�2 �
mX
j=0

�j vj); (27)

andDj is the total derivative operator. We give the de�nition for conditional
invariance of (??) and (22) as follows:
De�nition:Equations (??) and (22) are called Q-conditionally invariant if

L �Zw1
F1 = 0;

L �Zw2
F2 = 0; (28)

under the two conditions

Zw1 j�1= 0 and Zw2 j�2= 0: (29)

Zw1 and Zw2 are called the Q-symmetry generators.
�Zw1 and

�Zw2 are called
the prolonged vertical Q-symmetry generators.
Let us study eqs. (??) and (1) by the used of the above de�nition. From the

above de�nition it follows that the Lie derivative (??) and (28), for equations
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F1 � ut + p v vx = 0;

F2 � vt + q uxxx + r u vx + s v ux = 0; (30)

under the two conditions

Zw1 j �1 = �1 � �1 ux � �2 ut = 0;
Zw2 j �2 = �2 � �1 vx � �2 vt = 0; (31)

have to be studied. Let us consider the Q-symmetry generator in the form:

Z = �1(x; t; u; v)
@

@x
+ �2(x; t; u; v)

@

@t
+ �1(x; t; u; v)

@

@u
+ �2(x; t; u; v)

@

@v
: (32)

By applying the Lie derivative (??) and condition (??) , we get :

D
t
(U1) + p �2 vx + p v Dx

(U2) = 0: (33)

Also, by applying the Lie derivative (28) and condition (30), we obtain :

D
t
(U2)+q Dxxx (U1)+r �1 vx+r u Dx

(U2)+s �2 ux+s v Dx (U1) = 0; (34)

where

D
x
=

@

@x
+ ux

@

@u
+ uxx

@

@ux
+ uxt

@

@ut
+ vx

@

@v
+ vxx

@

@vx
+ vxt

@

@vt
+ :::

Dt =
@

@t
+ ut

@

@u
+ utt

@

@ut
+ uxt

@

@ux
+ vt

@

@v
+ vtt

@

@vt
+ vxt

@

@vx
+ ::: (35)

The determining equations for the Q-symmetry generator Z are now ob-
tained by equating the coe�cients of the independent coordinates to zero.
By solving this system of linear partial di�erential equations for the in-

�nitesimal �1, �2, �1and �2; we obtain:

�1(x; t; u; v) = �2 k3 u
3

;

�2(x; t; u; v) = �2 k3 v
3

;

�1(x; t; u; v) = k1 +
k3 x

3
;

�2(x; t; u; v) = k2 + k3 t: (36)

All of the similarity variables associated with the Lie symmetries (36) can
be derived by solving the following characteristic equation:
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dx

�1
=
dt

�2
=
du

�1
=
dv

�2
: (37)

Consequently

dx

(k1 +
k3 x
3 )

=
dt

(k2 + k3 t)
=

du

� 2 k3 u
3

=
dv

� 2 k3 v
3

: (38)

To get the similarity variable z, we integrate the equation
dx

(k1+
k3 x
3 )

= dt
(k2+k3 t)

v: So, we get :

z =
3 k1 + k3 x

k3 (k2 + k3 t)
1
3

: (39)

From (38), we have :

dt

(k2 + k3 t)
=

du

� 2 k3 u
3

;

dt

(k2 + k3 t)
=

dv

� 2 k3 v
3

: (40)

By solving Eq.(40), we obtain the similarity solutions for the reduced ordi-
nary di�erential equations as follows:

u(x; t) = (k2 + k3 t)
�2
3 F1(z);

v(x; t) = (k2 + k3 t)
�2
3 F2(z); (41)

where z = 3 k1+k3 x

k3 (k2+k3 t)
1
3
, F

1
(z) and F

2
(z) are arbitrary functions of z.

Substituting (??) and (41) into equations (??) and (1), we �nally obtain the
system of nonlinear ordinary di�erential equations for F1(z) and F2(z) which
take the form:

�2 F1(z)
3

� z F
0
1(z)

3
+
p F2(z) F

0
2(z)

k3
= 0;

�2 F2(z)
3

+
s F2(z) F

0
1(z)

k3
+
r F1(z) F

0
2(z)

k3
� z F

0
2(z)

3

+ q F 0001 (z)

k3
= 0;(42)

where F 0i =
d'

i

dz ; F
00
i =

d2'
i

dz2 and F 000i =
d3'

i

dz3 ; (i = 1; 2):
Solving a system of an ordinary di�erential eqs.(??) and (42),we have three

cases of solutions for F
1
(z) and F

2
(z) :

Case 1.

F
1
(z) = a1 z and F2(z) = b1 z;

with a1 =
k3
r + s

and b1 = �
k3p
p(r + s)

: (43)
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Case 2.

F1(z) = a1 z and F2(z) = b1 z;

with a1 = �
b1
p
pp

r + s
and k3 = �b1

p
p(r + s): (44)

Case 3.

F
1
(z) = a1 z and F2(z) = b1 z;

with a1 =
b21 p

k3
and r =

k23
b21 p

� s: (45)

Substituting from Eqs.(43)-(45) into Eqs.(??) and (41), we obtain the so-
lutions for the Drinfel'd{Sokolov{Wilson (DSW) system (??) and (1) in the
following:

Family 1.

u(x; t) = a1 z (k2 + k3 t)
�2
3 ;

v(x; t) = b1 z (k2 + k3 t)
�2
3 ; (46)

with a1 =
k3
r+s and b1 = �

k3p
p(r+s)

:

Family 2.

u(x; t) = a1 z (k2 + k3 t)
�2
3 ;

v(x; t) = b1 z (k2 + k3 t)
�2
3 ; (47)

with a1 = � b1
p
pp

r+s
and k3 = �b1

p
p(r + s):

Family 3.

u(x; t) = a1 z (k2 + k3 t)
�2
3 ;

v(x; t) = b1 z (k2 + k3 t)
�2
3 ; (48)

with a1 =
b21 p
k3

and r =
k23
b21 p

� s:
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