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Abstract

We study in this paper the Q-symmetry and conditional Q-symmetries
of Drinfel’d-Sokolov—Wilson (DSW) equations. The solutions which
we obtain in this paper take the form of convergent power series with
easily computable components.

Keywords: Q-symmetry, conditional Q-symmetries,Lie Symmetry,
(DSW) equations

1 Introduction

The investigation of exact solutions of nonlinear wave equations plays an im-
portant role in the study of nonlinear physical phenomena.

Recently, many effective methods for obtaining exact solutions of nonlinear
wave equations have been proposed, such as Bécklund transformation method
[1], homogeneous balance method [2], [?], bifurcation method [4], [?], the hy-
perbolic tangent function expansion

method [6], [?], the Exp-function method [8], the Jacobi elliptic function
expansion method [9]-[11], Hirotas bilinear method [12] and others. In this
paper, we are concerned with the classical Drinfel’d-Sokolov—Wilson equation

Uy +p v v, =0,
U+ q Uz +7 U Vy + SV Uy =0, (1)

where p, q, r, s are some nonzero parameters.

Recently, DSWE and the coupled DSWE, a special case of the classical
DSWE, have been studied by several authors [?]-[?]. In this study, we construct
the Q-symmetry and conditional Q-symmetries of Drinfel’d—Sokolov—Wilson



(DSW) equations. The solutions procedure Q-symmetry and conditional Q-
symmetries, by the help of symbolic computation of Matlab or Mathematica to
simplify.

Non-trivial conditional symmetries of a PDE (partial differential equation)
allows us to obtain in explicit form such solutions which cannot be found by
using the symmetries of the whole set of solutions of the given PDEJ[?].

Moreover, conditional symmetries reduce the class of PDEs to systems of
ODEs (ordinary differential equations). As a rule, the reduced equations one
obtains from conditional symmetries and from Q-symmetry are significantly
simpler than those found by reduction using symmetries of the full set of solu-
tions.This allows us to construct exact solutions of the reduced equations.

2 Conditional Q-symmetries

The classical symmetry properties can be extended if one studies egs.(??) and
(1) together with the invariant surface of the symmetry generator as an over-
determined system of partial differential equations[?].

That is, if one studies the Lie symmetry properties of the system (?7), (1)
and

(2t u,0) — & (2, 8, u,v) uy — Eq(x, tyu,v) up =0,
772(1'775;“,1)) - fl(m,t,u,v) Vg — 52(xvt,uvv) v =0, (2)

where (?7?) and (2) are the invariant surfaces corresponding to the Lie sym-
metry group generator

0 0 0 0
Z= gl(xvtaufv)aim + §2(l‘,t,u,’l})& =+ 771(13757%71)% + 772(95775’“771)%7 (3)

the invariance condition, leading to conditional Q-symmetries for (??) and(1)
is given by

ZOF | (pt—0,qw—0y= 0, (4)
where
Fi = w+pvo,,
Fo = v+ qugee+7uv,+ S0 Uy,
Q1 = n(z,tu,v) — & (z,tu,v) uy — Eq(x, t, u,v) uy,
Qa = ny(z,t,u,v) — & (z,t,u,v) vy — Eq(x, t,u,v) vy (5)

Here Z®) denotes the third prolongation of Z, namely



A Z+’Y1a +723 +’Y3a ‘1‘748 +7118 +7228u
3 0 0 0
+712a + V335 + Vg + 7348 TV ou
0 0 0
+Y222 Dty + V333 o + Y112 P T Y25 — 3 + Vszag .
0 0
Y344 90, + 4450 (6)
where
Y1 = Da(ny) —ue Da(§y) —ur Da(y),
Yo = Di(ny) —ue Di(§;) — ur Di(&s),
Y3 = Dw(772) — Vg Dz(gl) — Ut Dw(£2)7
Yo = Di(ny) —ve Di(&1) — v Di(€s),
Y11 = Da(v1) = Uza Da(§1) — Uzt Du(&a),
Yoz = Di(va) = war Di(§1) — uee Di(€s),
Y111 = De(v11) = Yzwe De(1) — Uaat Daz(€2)- (7)

A generator Z which satisfies condition (4) is called a conditional Q-symmetry
generator, where by the invariant surfaces (??) and (2). The F¥) and Q*)denote
the j—th and k—th prolongations, respectively. D, denotes the total derivative
with respect to x and D; with respect to ¢.

Now, we derive the general determining equations for the conditional Q-
symmetry generators of egs. (??) and (1) and consider the following special

case.

We set €, = €,(2), & = £(t), 1, = 7,(w) and 7, = 7,(v). The invariance
condition (4) leads to the following expression:

Yo+ PNy Ve +pU Yy =0,
Yo+ gy T M Ve FT U3 5Ny Uy +5 vy = 0. (8)
This leads to

P v My(V) +up 0y (w) +p v (v Mh(0) — vg €5 (x)) — e E5(E) =0,

7 vg 1y (1) + 8w 9y(0) v 1 (0) + 5 v ug (1 (u) — €4 (x))

v (7h(0) = €5(2)) — v E3(E) + ¢ (tawe 71 (u) — 3 Ugas €4 ()

+3 Uy g 7 (W) = B uge €7(2) +ud 0P (w) — u, €Y (2) =0, (9)

In particular, from @ = 0 and @2 = 0 follow:



&z tyu,v) vy = ny(z,tu,v) — & (z,t,u,v) ug,
&z t,u,v) vy = ny(z,t,u,v) — & (z,t,u,v) v,. (10)

The determining equations for the conditional Q-symmetry generator Z are
obtained by equating the coefficients of the independent coordinates to zero.

By solving this system of linear partial differential equations for the infinites-
imal & (), £5(t), ny(u) and ny(v), we get the following infinitesimal

functions:

- 2 k‘3 u
nl(u) - 3 ’
2 k‘3 v
772('0) - - 3 )
ks x
61('75) = ki + Z )
E(t) = katkat, (11)

where k1, ks and k3 are arbitrary constants.
The conditional Q-symmetry is given by:

ki3 z. 0 0 2 k‘3 u 0 2 k‘3 v 0
Z = (k — + (ko + ks t)— — — - — 12
it =g et b g = =g =5 a0 1%
The general solution of the associated invariant surface condition
ks x Ou ou 2 ks u
k —+(ka+kst) = = -
(it =575, Tkt ha g 3
ks x Ov ov 2ksv
k —+ (ko +kst)— = —
(it =5 ) TRt ks Dy 3
are given by
¢, (2)
¢ M\
U($7 ) (3 kl + k3 .’E)27
,(2)
t) = ———— 13
vz, t) (3 kl+ k3 2)2’ (13)
where ¢ (z) and ¢, (z) are arbitrary functions of z and
ko + kst
o) = g (14

k3 (3 kl + k3 $)3.
Substituting (??) and (13) into equations (?7) and (1), we obtain the system

of nonlinear ordinary differential equations for ¢ (z) and ¢, (z) which take



the form:

—2kspp?(2) + 1 (2) — 3pze, (2)¢ph(z) = 0,
—24 k5 q 0, (2) =2 ks ©,(2) 0,(2) (r+s) =3z (r¢,(2) ¢,(2) + s¢,(2) ¢\ (2))

+¢!(2) — 186 k3 q = ¢} (2) — 162 kg 2°q o] — 27 2% q ¢'(z) =0, (15)
p_de, A, mo_ e,
where ¢ = £, ¢f = o= and ¢! = o=+ ; (i = 1,2).

Solving a system of an ordinary differential eqs. (??) and (15), we have six

cases of solutions for ¢ (2) and ¢, (2) :

Case 1.

e (2) =

with p =

Case 2.

with p =

Case 3.

with p =

Case 4.

with p =
Case 5.

e (2) =

with p =

a1z and @, (z) = b,

bo T
R q= 7OT’ s =—r, ks =1, a,and by are arbitrary constants.

a1z and ¢, (z) = by,
a, by (27 +55)
22 17 210

, ks =1, a,and by are arbitrary constants.

a1z and @_(z) = by,
2a, 8bg s _ 25

TR q= 59791 T = 31 ks = I a, and by are arbitrary constants.
0
a1z and ¢, (z) = by,
2b 25 3
_73(22 y 4= —%98, r= —3718, ks 5 G and by are arbitrary constants.
0
arz and ¢, (z) = by,
a, b0(2k37°+(3+2]€3)8) .

=- db bit tants.

2 b(g) ks q 6 k§(31+4 o) , a, and bg are arbitrary constants



Case 6.

¢, (2) = a1z and ¢, (2) = by,
. a, bo r .
withp = 55 §= —~—, $s= -7, k3 =1, a, and by are arbitrary constants.
2 b 70

Substituting from Eqs.(??)-(??) into Eqs.(??) and (13), we obtain the so-
lutions for the Drinfel’d-Sokolov—Wilson (DSW) system (??) and (1) in the

following:
Family 1.
a,z
t _ 1
U;(.’Ea ) (3 kl +.’E)2
bo
v(z,t) = Ghta? (16)
with p = ;Tlg’ q= b;’OT, s =—r, ks =1, a, and by are arbitrary constants.
Family 2.
a,z
) = —
’LL(LIIa ) (3 kl _1_1,)2
bo
v(z,t) = Bl +a? (17)
with p = 2‘111%’ q= —W, ks =1, a, and by are arbitrary constants.
Family 3.
a,z
) = o
’U,(.’Ea ) (3 kl +.’E)2
bo
with p = —%, q= —%, r= —2??18, ks = —%1, a,and by are arbitrary
constants.
Family 4.
a,z
t _ 1
U(LC7 ) (3 kl +k3 I)Q
bo
) = 19
v(@;?) (3 k1 + ks x)? (19)
with p = _;Tlgv q = —22b$98, r = —25’13, ks = —%, a,and by are arbitrary
constants.
Family 5.
a,z
) =
u(@, ) (3 kL + k3 7)2
b
v(z,t) = —— (20)

(3 ki + ks 37)2



with p = ngilkg, qg= -2 (2616;2231(3:153) 3 a, and by are arbitrary con-
0 3
stants.
Family 6.
a,z
u(z,t) = —-———
() (3 k1 + kg x)?
bo
v(z,t) = ——— 21
(2,) (3 k1 + ks x)? (21)
with p = %, q= bg—or, s =—r, ks =1, a, and by are arbitrary constants
0
ko+ks t

and z = o (3 hiths

3 Q-symmetry generators

Before we consider conditional symmetries of (??) and (1), let us briefly describe
the classical Lie approach and introduce our notation [?]. We are concerned
with a partial differential equation of order r with m + 1 independent variables
(zo, 21, ..., Tm) and two field variable v and v, i.e. an

equation of the form

ou 0"u
F my Dy g Ty ey g T o T :0’
1(1‘0,1’]7 y L u aTo 8,Ij1...a:rjr)
81} 8TU
F: My Uy " Ty o T T 207 2
2(T0, T1, ey Tyn, ¥ dzo ale...amjr) .

where 0 < j1 < jo < ... < j. <m,j =0,...,m. A Lie transformation group
that leave (?7) and (22) invariant is generated by a Lie symmetry generator
Z which is defined by

m
0 0
7 = ij(aﬂo, Ty ooy Ty Uy V) =——FN1 (s Ty vey Tyny Uy V) = +05(T0y T1y ovy Tims u,v)%.

= Oz, ou
(23)
Zy, and Z,,, are the associated vertical form of (23), defined by

- 0

Zw1 = (771—ij uj)%a
§=0
“ 0

Ly = (772 - Zf] Uj)%? (24)
§=0

where Zy,, |o,= Z |o,and Zy,, |9,= Z |o, . Here 61 and 05 are a differential



1-form, called the contact form, which defined by

91 = du— Z U d.’Ej,
7=0

92 == d’U—Z Uy d.’l?j.
7=0

Equations (??) and (22) are called invariant under the prolonged Lie symmetry

generators Z,, and Z,, if

Ly, i =0,
Ly Fy=0. (25)

wo

L denotes the Lie derivative. Z,, and Z,, are found by prolonging the vertical
generator Z,,, and Z,,, i.e.,

Zw, = Z D; (Uh) S T Z Dj17,,_,jr(U1)au77
7=0 J Gqreerdr=0 Gq e Jr
. i b m o
Zwy, = Y D; (Ua) 0. Tt > Dj, dr(V2) o=, (26)
— Jj . - _ Jeedn
j=0 Jpseeesdr=0 G e
where

m

U = (771_Z§j uj),
j=0

U = (=3¢ 0y), (27)
7=0

and D; is the total derivative operator. We give the definition for conditional
invariance of (?7) and (22) as follows:
Definition:Equations (??) and (22) are called Q-conditionally invariant if

Ly, F =0,
wy
LZ“,Q F, =0, (28)
under the two conditions
Zw1 |91= O and sz |92: O (29)

Zy, and Z,, are called the Q-symmetry generators. Z,, and Z,, are called
the prolonged vertical Q-symmetry generators.

Let us study egs. (??7) and (1) by the used of the above definition. From the
above definition it follows that the Lie derivative (??7) and (28), for equations



B U +pov v, =0,
o = 04 quege+7ruvg,+8svu, =0, (30)

under the two conditions

Zw, | 0, =m =& Uz — & up =0,
Zwy | 0, =m0 =& Ve — &y v =0, (31)

have to be studied. Let us consider the Q-symmetry generator in the form:

9 (39

0
Z =& (z,t,u,v)— 5

63: —|—772(x,t,u,1))

0 0
+&5(z, tyu, v)a + nl(m,t,u,v)%

By applying the Lie derivative (?7) and condition (??) , we get :

D, (Uh)+pnyva+pov D, (U2) =0. (33)
Also, by applying the Lie derivative (28) and condition (30), we obtain :

D, (U3)+q Dyyw (Ur)4r ny vetr u D, (Us)+s 0y up+s v D, (Uy) =0, (34)

where

D = 2wl vt vun L b0t Lt
S e M T I PR PRI TR
D, = 8—&-ua—i—ua—k 8+ (’9+ 8+ 8+ (35)
t T ot ta tta ua:tau Uta 'Utta ’U:vtavm

The determining equations for the Q-symmetry generator Z are now ob-
tained by equating the coefficients of the independent coordinates to zero.

By solving this system of linear partial differential equations for the in-
finitesimal £, &5, nyand 7,, we obtain:

2 k
771(%@%”) = - ;ua
2 ks
772(%@%”) = - 31),
3
k-
&z t,u,v) = ki + ;x
&z, t,u,v) = ko4 kst (36)

All of the similarity variables associated with the Lie symmetries (36) can
be derived by solving the following characteristic equation:



dz dt _ du @

= == 37
3 & U 2 87)
Consequently
dx B dt _du dv (38)
(k’1+%) (kg‘l‘kg t) —72%”'“ _2]?”.
To get the similarity variable z, we integrate the equation
d _ __dt .
(k1+@) = (kﬁzs 7. So, we get :
3 k1 + k:
kg (kg + kg t)§
From (38), we have :
dt _ du
(kg + k3 t) o _MT“SU ’
dt dv
(ko + ks t) T T 2kav k; v’ (40)

By solving Eq.(40), we obtain the similarity solutions for the reduced ordi-
nary differential equations as follows:

wz,t) = (ko+kst)® Fi(z),
v, ) = (ha+ks )T Fa(z), (41)

3k tks
ks (kotks )5
Substituting (??) and (41) into equations (??) and (1), we finally obtain the
system of nonlinear ordinary differential equations for F,(z) and F,(z) which
take the form:

where z = F,(z) and F,(z) are arbitrary functions of z.

2F(2) 2 F(2) L P F,(2) F5(2) _ 0
3 3 ks ’
2RG), sREFE RO B 2BE T R
3 ks ks 3 ks
2 3
where F! = d;;i JF! = ddf; and F!" = dd;i i (1=1,2).

Solving a system of an ordinary differential eqs.(??) and (42),we have three
cases of solutions for F,(z) and F,(z) :
Case 1.

F(z2) = ajzand F,(z) =b z,

k k
with a1 = 3 and b ==+ 3

s o+ s

10



Case 2.

F (z2) = a1 zand F,(z) =b z,
b
with a; = i\/:j\/ﬁs and ks = £b1/p(r + ). (44)
Case 3.
F (z) = a1zand F,(z) =0 z,
b p g
with a = Tg and r = b%ip - (45)

Substituting from Egs.(43)-

(45) into Egs.(??) and (41), we obtain the so-

lutions for the Drinfel’d-Sokolov—Wilson (DSW) system (??) and (1) in the

following:
Family 1.
w(z,t) = a1z (ka+ks t)%,
v(z,t) = b1 2z (ka+ kst _72, 46
b ko + k
: _ ks _ k3
with aq = " and b; = :I:\/Im.
Family 2.
w(z,t) = a1z (ka+ks t)%ga
v(z,t) = b1 2z (ka+Fkst _72, 47
b ko + k
with a; = i\b/lTii and ks = b1 +/p(r + s).
Family 3.
u(z,t) = a1z (ka+ks t)%?,
v(,t) = by z(ka+kst)s, (48)
. b2 _ k3
with a1 = ksp and r = b;p s.

11
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