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Summary : The purpose of this paper is to apply count data models to predict the
number of times a credit applicant will not pay the amount awarded to repay the cre-
dit. Poisson models and negative binomial distribution models, taking into account the
observed heterogeneity, are generally used in situations where the dependent variable is
discrete. Alternatively, we propose to use non parametric model where the relationship
form between conditional mean and the explanatory variables is unknown. The empiri-
cal results found suggest that the nonparametric poisson model regression has the best
prediction of the number of default payment.
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1 Introduction

Credit scoring systems were created for the evaluation of new credit applications. This
system is generally based on available statistical information, related to the behaviour of
former clients with credits. Financial institutions usually apply parametric econometric
models such as the logistic regression model or classifications techniques such as discrimi-
nant analysis or neural networks to create these systems.

In this work, we propose to predict future repayment behaviour using the expected
number of default payment as an alternative technique. The use of this last variable sug-
gests that appropriate models might be interesting, in which some covariant exogenous
variables are included in order to specify the expected level of indebtedness. These models
can be used as explanatory tools when assessing the level of risk associated with personal
credit transactions.

Thus, instead of using techniques to classify individuals into groups, we suggest in our
work that a judicious approach is to model the variable count "the number of default
payments ", which is a way to get a model to predict the expected level of debt for new
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applicants. Poisson models and negative binomial distribution models, taking into account
the observed heterogeneity, are generally used in situations where the dependent variable
is discrete (Cameron and Trivedi, 1986).

Alternatively, we propose to use two non-parametric poisson models where the rela-
tionship form between conditional mean and the explanatory variables is unknown. The
first model, denoted NP, estimates a totally non-parametric regression using local linear
regression. A Gaussian kernel of second order is used for the explanatory variables. The se-
cond model, noted as INDEX is a single-index model estimated using the semi-parametric
least squares method of Ichimura (1993), which jointly estimates the bandwidth and co-
efficients using the method. non-linear least squares leaving-one.

The contribution of this paper is to develop a credit scoring system based on the
nonparametric poisson model. This means that a financial institution wanted to find a
method of ranking new clients requesting credit into three different classes : the good, the
medium, and the bad in a more efficient way. Good customers would return the money
completely, while bad customers would be the default.

2 Econometric models

2.1 The Poisson regression model

The basic model of the econometric literature for the representation and analysis of
count data is the Poisson model. The endogenous variable, for example, the number of
default payment noted y;, is assumed to follow a Poisson distribution. The probability for
a customer to have unpaid instalments is therefore :
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where fi; is the parameter of the Poisson distribution, such that : E(y;) = Var(y;) =
This parameter is related to p exogenous variables by the log-linear form :
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where z; is a vector (1, p) associated with the parameter vector f,1). The choice of the
log-linear specification is mainly due to the need to have positive u; parameters. For a
sample of size n, the Poisson counting model can be estimated a priori by the maximum
likelihood method. The log-likelihood of this specification is :
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The likelihood equations are :
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The Hessian is given by :
OInL = )
aaaa i3
95 =&

Hessian is negative definite for all x and . Newton’s method is a simple algorithm for
estimation this model and will converges quickly. The estimated asymptotic variance-
covariance matrix of the maximum likelihood estimator is deduced : —[>°7" | —fi;z;x,] 7t

Given the estimation of 3, the prediction for observation i is fi; = exp(z;f3)

2.2 The Negative binomial regression model

The equidispersion hypothesis in the poisson model is very restrictive. In practice due
to an abundance of null values and or the presence of some extreme values, the variance
is often above average. In this case, we speak of an over-dispersion of the variable Y (see
Cox (1983), Hinde and Demétrio (1998)). This situation may call into question the use
of this model, by an underestimation of the variances of the parameters of the model.
Hence the idea of using an alternative counting model, based on the negative binomial
law, which takes into account this over-dispersion by introducing an additional parameter
« which makes it possible to capture the heterogeneity unobserved from the endogenous
variable (which may imply unobserved over dispersion).

In a negative binomial regression model, we define the probability that Y takes the
value y;
Ty + ) ( 1
F(y,l)F(é) 1 -+ AL

or o is an auxiliary parameter that measures the degree of over-dispersion. This law has a
conditional mean y; and a conditional variance y;(1 4+ ap;). The Negative Binomial Law
tends to Poisson’s Law when « goes to zero. If a@ > 0, the poisson model is rejected to
the negative binomial model profile.
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2.3 The nonparametric poisson model

When random variables Y are univariate continuous and variable X are continuous
multivariate random , the kernel estimate of the conditional mean of Y given X = x is
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where K(.) is a product kernel. The bandwidth h can be chosen by leave-one-out cross-
validation such as generalized cross-validation and expected Kullback-Liebler cross vali-
dation (based on AIC for the nonparametric regression model).

When random variables Y are discrete we can use frequency methods, replacing the kernel
weighting function K ((z; — ), h) by the indicator function 1[z; = x]. But in practice this
requires a large sample size and discrete random variables that take only a few distinct
values.

Hall, Racine, and Li (2004) and Li and Racine (2007), propose use of alternative
weighting functions that lead to smoother estimation, thereby reducing estimator variance
at the expense of introducing some bias as in the continuous case, and that enable use of
cross-validation for bandwidth selection.

For scalar probability mass function estimation with discrete random variable Y that
takes ¢ distinct values, the kernel function K ((y; — y), h), for example, is replaced by the
weight function

Kd(yi,y,A) = 1=X if yi=y (1)
A .
= ? 7 )
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where A = 0 yields the frequency estimate and A = 1 corresponds to a uniform weight.
For nonparametric regression with discrete regressor X, one can more simply replace the
kernel K((y; —y), h) with Kd(y;,y,\) =1 if ; = x and Kd(y;,y, ) = A if x; = x. When
discrete data are ordered, nearby observations can be exploited in estimation, as in the

continuous case. Then the kernel K ((y; —y), h) is replaced with

c!
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where y takes the ordered values 0,1, ...,c — 1. If the discrete data take a large number
of values, as can be the case for count data, then this will yield similar results to the
continuous case and it can be simpler to use the usual kernel methods.

2.4 Poisson semiparametric models

As alternative approach, we can consider single-index poison models where the condi-
tional mean a scalar is a function of a linear combination of the regressors, with E[y|z] =
g(x'B), where the scalar function g(.) is unspecified.

For an unknown function g(.) the single-index model § is only identified up to location
and scale. To see this, note that for scalar v the function g*(a+bv) can always be expressed
as g(v), so the function g*(a + bx3) is equivalent to g(x'3). Common normalizations are
to drop the intercept and restrict. Additionally g(.) must be differentiable. In the simplest



case all regressors are continuous. If instead some regressors are discrete, then at least one
regressor must be continuous ; see Ichimura (1993).

Several different estimators have been proposed that lead to a root-n consistent and
asymptotically normal estimator of 5 and an estimator of the function g(.) that is consistent,
though with a convergence rate less than root-n. These estimators include semiparame-
tric least squares (Ichimura, 1993) and average derivative estimation (Hardle and Stoker,
1989). See, for example, Pagan and Ullah (1999) and Li and Racine (2007). These esti-
mators ignore the intrinsic heteroskedasticity of count data, so will be inefficient.

For generalized linear models with a specified variance function, Weisberg and Welsh
(1994) propose a more efficient version of Ichimura’s semiparametric least squares. We
suppose

Elyi|zi] = 9(9‘7;5)
Viyile] = ov(g(;8)),
where the functional form for the mean function g(.) is not specified, but that for the

variance function v(.) is specified. For counts usually v(u) = ¢u or v(u) = o + au?. If
g() were known, then g solves

izl v(g(z:B)) iB)z; = 0.

With g(.) unknown estimation follows an alternating procedure. Given an initial estimate
B, for example from standard Poisson regression, estimate §(.) by kernel regression of y;
on z;0 and then, given §(.) and 3 , estimate the first derivative ¢'(.) by kernel methods.
Then re-estimate 3 based on the equations with the unknown functions g(.) and g¢'(.)
replaced by estimates §(.) and §'(.), and so on. Weisberg and Welsh (1994) show that the
resulting estimator of 8 has the same asymptotic distribution as in the usual GLM case
where g() is known, and that if a second-order kernel is used the estimate §(.) converges
to g(.) at the optimal convergence rate of n?/°

3 Prediction in credit scoring models

Usually, studies in this area take a part of the sample for estimation purposes and
another part is used to check the preditive performance of the estimated models. Defi-
nition of good and bad clients was based on the number of monthly payment that were
defaulted. When using poisson model, a score was associated to each individual. The score
is a transformation of the probability of having been drawn from each of the two popula-
tions under study. If the estimated probability of being a good client is greater that the
estimated probability of being bad, the prediction for the individual is that it belongs to
the good group (and conversely, for a smaller probability). This prediction is compared
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reports Number of non-payments.
age in years plus twelfths of a year.
income Yearly income (in USD 10,000).
expenditure Average monthly credit card expenditure.
owner Factor. Does the individual own their home ?
selfemp Factor. Is the individual self-employed ?
dependents Number of dependent.

TABLE 1 — Description of the regressors used in the study

to the actual client behaviour. When this is done for all individuals in the sample, an
estimation of classification rates is obtained.

Eventually,the performance of credit scoring models is evaluated through the percen-
tage of correct classification for the individuals who already applied for credit, according
to their subsequent behaviour. Nevertheless, the percentage of bad clients that would be
classified as good by the scoring is a very important issue. It is this measure that is to
be minimized since the smaller it is, the smaller the risk of granting credit to potential
defaulters.

For count data models, prediction has to be performed in two steps. Firstly, the number
of expected defaulted monthly instalments is found. Afterwards, the definition of predicted
good or predicted bad is assigned to the individual following the same criterium that is
used to define good and bad clients in the sample. At the end, predicted and real behaviour
are compared to obtain estimated classification rates that may be used to evaluate the
performance of this methodology to traditional approaches.

4 Estimation results

4.1 Data description

The data used in this study refer to the number of defaulted payments as those which
have been analysed by Green (2003). There is a random subsample of 1002 clients for all
the bank clients at a given date. They contain information about clients who had obtained
loans for consumption. The interest credit is a personal loan which characterized by the
fact that the amount of money granted is moderate. Usually, the loan is repaid over a
short period of time and is often repaid monthly with constant payments throughout the
repayment period and small in relation to individual income

The dependent variable is the number of monthly non-payments. The largest value in



Variable Poisson NB2
Intercept —2.80 —2.844
(0.218) (0.25)
income 0.128 0.135
(0.053) (0.063)
owneryes —0.104 —0.089
(0.218) (0.243)
selfempyes 0.595 0.49
(0.316) (0.39)
expenditure 0.0007 0.0008
(0.0002) (0.0003)
o 0.572
(0.239)
log-likelihood | —306.247 | —299.379
AIC 622.49 610.76
BIC 4617.494 | 5404.758

TABLE 2 — Poisson and NB2 fitted models

the sample is 4. The number of zero counts is 813. The proportion of clients with zero
non-payments is 81.32 %. A description of the variables used in this paper can be found
in Table 1.

4.2 Model comparison

For estimation purposes, some individuals were eliminated from the original sample.
Individuals with repayment lasting more than four months at sample collection were ex-
cluded from the estimation process on the grounds that there was not enough information
about their repayment behaviour and that posterior classification could be misleading.

Table 2 shows estimates and standard errors for two parametric models. The negative
binomial model (NB2) fits the distribution of the data much better than the Poison, with
log-likelihood increasing from -306.247 to -299.379. It is interesting to see that parame-
ter estimates are the same, except for variable selfempyes, but note how estimation of a
Poison model leads to distorted standard errors due to the fact that heterogeneity is not
taken into account.

We also performed nonparametric kernel estimation of the conditional density of de-
pendant variable reports given exploratory variables income, owneryes, selfempyes
, and expenditure. Then f(y|x) is obtained as the ratio of a four-dimensional kernel
density estimate to a four dimensional kernel density estimate, where reports is treated
as ordered discrete data with the weighting function (), income and expenditure are
treated as continuous with a second-order Gaussian kernel of fixed bandwidth, and owne-
ryes, selfempyes , is an unordered binary discrete variable with the weighting function



Prévues by NB2 Predicted by semi .param
Actual | 0 | 1 |23 |4 0111213 4
0 154120101 62 | 62 | 37 | 8 7
1 16 | 20100 419141 0
2 6 [ 010[0]O0 21121 0
3 1 10]0]0]O0 110010 0
4 0 [0|0[0]O 0101010 0

TABLE 3 — Reports : Actual versus prediction

Predicted | Mean | S.D | Min | Max | Corl[y, g]?

Reports (y) | 0.164 | 048 | 0 3 .
Poisson 0.134 {042 | O 4 0.1
NB2 0.139 1 044 | 0 4 - 0.04
NP 1.129 [ 1.01| O 5 0.16
INDEX 1.075 [ 1.03 | 0 4 -0.1

TABLE 4 — Reports :Summary of various fitted means

(). The bandwidth is chosen using expected Kullback-Liebler cross-validation.

We additionally estimate semiparametric models of the conditional mean of reports
given the three regressors income, owneryes,selffempyes , and expenditure. The
fourth model, denoted INDEX, is a single-index model estimated using the semiparame-
tric least squares method of Ichimura (1993) that jointly estimates the bandwidth and
coefficients using leave-one-out nonlinear least squares.

4.3 Prediction

Table 3 is a classification table that compares the actual count y; to the predicted
count ¢; , where y; = k if the conditional density estimate f(y|z;) is maximized when
y = k. The semiparametric estimates predict zeros well and underpredict intermediate
and larger counts. By contrast the NB2 model, does similarly well in predicting zeros and
ones, but underpredicts intermediate and larger counts much more. For example, for the
18 observations with reports equal 1 the NB2 model predicts that only 2 count , whereas
the semiparametric model predicts that 9 counts. For the 7 observations with reports
excess of 2 the NB2 model predicts that 0 count , whereas The semiparametric predicts
two counts in excess of 2 .

Table 4 presents descriptive statistics for the predicted values the number of default
payments of studies models. The NB2 model does particularly poorly, with the lowest
squared correlation (of -0.004) between the actual and fitted values. Fitting the entire



Reports | yhat.poiss | yhat.nb | yhat.npreg | yhat.npindex
Reports 1.00 0.06 -0.06 0.11 0.01
yhat.poiss 0.06 1.00 0.42 0.04 -0.10
yhat.nb 0.06 0.42 1.00 -0.04 -0.09
yhat.npreg 0.11 0.04 -0.04 1.00 -0.10
yhat.npindex 0.01 -0.10 -0.09 -0.10 1.00

TABLE 5 — Reports : Correlations of various fitted means

distribution using an NB2 model in this data example leads to poorer fit of the mean, as
is also evident from the average fitted mean of 0.139 being substantially higher than the
sample mean of 0.164. The empirical results found suggest that the best fit models are
semi-parametric single-index regression. The nonparametric model leads to fitted values
that are fairly similar to those for the index models. The nonparametric model is preferred
because Corly, §)? is 0.16 compared to -0.1 for the single-index model.

Table 5 presents correlations for the fitted values. The nonparametric poisson model

fitted values are highly correlated with the actual number of default paiement, suggesting
that the nonparametric poisson model may be a good model for these data.

FIGURE 1 — Fitted values from four models plotted against actual value.
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Figure 1 presents plots of the fitted values from all these models except for the Poisson
against the actual number of default paiement. These plots also suggest that the best
fitting model is the nonparametric poisson model.



5 Conclusion

In this paper, we used nonparametric poison models to account for both heterogeneity
and zero inflation present in a data set for credit-scoring purposes aiming at analysing
the credit-scoring behaviour for individual loans and identifying the number of classes
of clients without making assumptions about the parametric form of the heterogeneity
term. We fitted four competing models in order to capture the present heterogeneity and
to better describe the data.

The main contribution of the paper is that we tried to model with more sophisticated
models the number of defaulted payments, allowing for a different kind of credit scoring
rather than the traditional good versus bad categorization. Our results verify in a sta-
tistically concrete basis what is well-known in credit-scoring literature, namely that the
two-class categorization is not sufficient and that the population consists of more groups.
Classification problems in the context of credit granting decisions may use count data
models due to the characteristics of the dependent variable. In fact, the number of de-
faulted payments is the variable used to define whether a client is good (repaying) or bad
(defaulter). Adequate use of count data models with non parametric form is useful to find
which are the most influential variables in the studied process. It has to be noted that
estimation required assymptotic approximations for standard errors.

Further research is needed to desetangle some obscure points such as model selec-
tion or missspecification in non parametric poisson models. In this situation although
prepayment has not been considered, one should see the way to include duration of re-
payment at sample collection and its influence in final estimation and classification results.
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6 Appendix

Estimation of Poisson model
formula.model<- reports ~ age + income -+ expenditure

cepois <- glm(formula.model, data = CreditCard, family = poisson)
summary (ccpois)

logLik(ccpois)

pre<-round(predict(ccpois,datastq),3)

lambda <-round(exp(pre),3)

yhat.poiss <- rpois(nrow(datastq),lambda )

table(yhat.poiss)

predictl <- cbind(yte,yhat.poiss)

table(yte,yhat.poiss)

Estimation of Negatif binomial model
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library (MASS)

model.nb <- glm.nb(formula.model, data = CreditCard)
summary(model.nb)
prel<-round(predict(model.nb,datastq),3)

lambdal <-round(exp(prel),3)

yhat.nb = rpois(nrow(datastq),lambdal )
table(yhat.nb)

predict2 <- cbind(yte,yhat.nb)

table(yte,yhat.nb)

Nonparametric conditional mean estimation (local linear kernel)

library(np)

bw.npreg <- npregbw(formula.model,regtype="11" bwmethod="cv.aic" ,data =
CreditCard)

summary(bw.npreg)

model.npreg <- npreg(bws=bw.npreg, gradients=TRUE)
summary(model.npreg)
pre3<-round(fitted(model.npreg,datastq),3)

lambda2 <-round(exp(pre3),3)

yhat.npreg = rpois(nrow(datastq),lambda2)
table(yhat.npreg)

predict3 <- cbind(yte,yhat.npreg)

table(yte,yhat.npreg)

Semiparametric single index conditional mean estimation

bw.npindex <- npindexbw(formula.model,data = CreditCard)
summary(bw.npindex)

model.npindex <- npindex(bws=bw.npindex, gradients=TRUE)
summary(model.npindex)

pred<-round(fitted(model.npindex ,datastq),3)

lambda3 <-round(exp(pre4),3)

yhat.npindex = rpois(nrow(datastq),lambda3)
table(yhat.npindex)

predict4 <- cbind(yte,yhat.npindex)

table(yte,yhat.npindex)

Compare the various predicted conditional means

predictedmeans <- cbind(reports,yhat.poiss,yhat.nb,yhat.npreg,yhat.npindex)
apply(predictedmeans,2,mean)

apply(predictedmeans,2,sd)

summary (predictedmeans)

round(cor(predictedmeans),2)
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Plots of the fitted values

par(mar=c(2, 2))

plot(yhat.poiss~ reports ,ylab="Fitted : poisson")
plot(yhat.nb~reports ,ylab="Fitted : Negative binomial")
plot(yhat.npreg~reports ,ylab="Fitted : Nonparametric")
plot(yhat.npindex~reports,ylab="Fitted : Single-index")
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