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Abstract:

In the present Paper, the Authors have invatsdythe pulsatile flow of blood
through a porous medium with constant permeabilitygn inclined artery with mild
stenosis. The flow of blood is considered to be tdewan. The presence of an
azimuthal uniform magnetic field is assumed. Thawfltakes place under body
acceleration and a slip velocity is imposed at shkenosed arterial wall. By using
Perturbation technique, the solutions for the flioeid, wall shear stress, volumetric
flux and the effective viscosity are obtained aneirt behaviours under the influence
of various relevant parameters concerning the ntagnield, velocity slip,
permeability, inclination etc. have been demonsttatictorially and discussed. It is
seen that the applied magnetic field, velocity,singlination and the permeability of
the porous medium have significant influence on ftoev field, wall shear stress,
volumetric flow rate and the effective viscosity.
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1. Introduction:

The studies related to blood flow throughhesed arteries have garnered wide
interest in the field of Bio-Medical research. Sisis or atherosclerosis may be
defined as the formation of some constriction i@ iner arterial wall owing to the
deposition of lipoproteins and fatty acids (atheleotic plaques) in the lumen of the
artery. Such constrictions lead to considerablengbain the flow of blood, the
pressure distribution and the wall shear stressretly impeding the normal
circulatory processes and consequently leadincatdi@vascular diseases. Even for
mild atherosclerosis, the velocity gradient in #tenosed wall is steep owing to the
increased core velocity. This results in compaedyivarge shear stress on the arterial
wall. Mathematical models of blood flow througheairts under diverse physiological



situations were presented by several authors likegH1], McDonald [2], Zamir [3]
and David et al. [4]. Theoretical and experimemakstigations concerning flow of
blood through stenosed arteries were presenteddom¢’[5], Liu et al. [6], Yao and
Li [7] and Mekheimer and EI-Kot [8]. The human bomhay be subjected to body
accelerations (vibrations) under certain situatisnsh as riding a heavy vehicle or
flying in a helicopter. This may cause health peots like vascular disorders and
increased pulse rate. Studies related to blood flmder the influence of body
acceleration were carried out by several reseamrkexs such as Sud and Sekhon [9]
and El-Shahed [10]. The Pulsatile nature of bldod fin arteries may be attributed to
the heart pulse pressure gradient. Studies in filel¢dood flow were carried out by
researchers like [10] and Elshehawey et al. [1Lhg possibility of velocity slip at the
blood vessel wall was investigated theoreticallyBrynn [12] and Jones [13] and
experimentally by Bennet [14] and Bugliarello andyiden [15]. The methods to
detect and determine slip experimentally at th@dleessel wall have been indicated
by Astarita et al. [16] and Cheng [17] respectivétywas first Kolin [18] and later
Korchevskii and Marochnik [19] who suggested thepscofelectromagnetic fields in
Bio-Medical studies. Barnothy [20] indicated that biological systems, the heart
rate decreases under the influence of an exterragnetic field. In certain
pathological circumstances, the distribution otyfatholesterol and artery-clogging
blood clots in the lumen of the coronary artery nh@yregarded as equivalent to a
fictitious porous medium. Xu et al. [21] assumed Htood clot as a porous medium
to investigate the transport characteristics obdldlow in the extension of multi-
scale model by incorporating a detailed sub modetunsface-mediated control of
blood coagulation (Xu et al. [22, 23]). In genetalpod is a non-Newtonian fluid.
However, it has been established that human blabbis Newtonian behaviour at
all rates of shear for hematocrits up to about 124%. Further, in case of relatively
larger blood vessels it is sensible to assumeltloaid has a constant viscosity, since
the diameters of such vessels are large compardti@ individual cell diameters
and because shear rates are quite high for vigctsitbe independent of them.
Consequently, for such vessels the non-Newtoniaracter becomes unimportant
and blood may be regarded as a Newtonian fluid.

In view of the aforementioned facts, we mag tite works done by Elshehawey et
al. [11], Nagarani and Sarojamma [25], Shehawey EBhdSebaei [26], Tzirtzilakis
[27], etc.



The aim of the present study is to investigheoretically the nature of a pulsatile
blood flow through a mildly stenosed artery undee tombined influence of an
azimuthal uniform magnetic field, slip velocity, dyoacceleration and permeability,
when the artery is inclined to the vertical. Theastigation is carried out by treating
blood flow as Newtonian.

2. Theformulation of the Problem:

For the present problem, we consider an lgxisymmetric, laminar, one-
dimensional and fully developed flow of blood, thgh an inclined and constricted
circular artery, in the presence of a time-depehderessure gradient, body
acceleration and a uniform circular (azimuthal) metge field of moderate intensity.
Thus, the induced magnetic field is negligible. ¥ésume that this constricted artery
has a rigid wall and that the artery is filled wighporous medium of constant
permeability. Further, the artery is inclined tce thiertical and a slip velocity is
imposed at the stenosed region of the arterial.wédlre, blood is assumed as a
Newtonian fluid and the corresponding flow is caesed to be Newtonian. The flow
configuration is presented pictorially, in the sactfor figures.

Following Nagarani and Sarojamma [25], thergetry of an arterial stenosis is

presented as:
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L, for ‘E‘ >do
Where ﬁ(E) is the radius of the artery in the stenosed regionis the constant

arterial radius in the non-stenosed regiabl,is the half-length of the stenosis adg

is the greatest height of the stenosis suchgfrats less than unity for a mild stenosis.

For a low Reynolds number flow through an arterthwnild stenosis, we may omit

the radial velocity since it is very small (Nagarand Sarojamma [25]).

In cylindrical coordinate syste(rﬁ,@,i), the momentum equation governing the

flow is deduced from Navier-Stokes equations ofiaroand presented as under:
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Whereu denotes the velocity along the axis, P the pressurep the density,f the
time, E(f) the body accelerationd the applied magnetic field in azimutha@)
direction,v the kinematic viscosityg the electrical conductivityg the acceleration

due to gravity,8 the angle of inclination of the artery with thertical andK the

permeability of the porous medium.
The relevant boundary conditions are as under:

Where\7s is the slip velocity at the stenosed region ofatterial wall.
Whent >0, periodic body acceleratioﬁ(f) is imposed on the flow and this may

be presented as under (Nagarani and Sarojamma [25])
E(f) = f, cos(Z)bf+ H) : - (6)
Where wy = ZITEb, fo andEb being respectively the amplitude of body accelenat
and frequency (in Hertz) of body acceleration. Alois the lead angle with respect
to the heart actionF, is taken to be so small that wave effect may béttech
(Nagarani and Sarojamma [25]).

Further, fort = 0, the pressure gradient is assumed as:

- aﬁa(:jf) =R (E) + Pl(E) cos(Z)p f) - (7)

Where PO(E), Pl(z) are respectively the steady state pressure gtadiet the

amplitude of the oscillatory part of the pressuradgent. Furthergop = 277?,3 where

f 5 is the pulse rate frequency.

We make the following non-dimensional subsiitos:
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Where £, M, K and dg are respectively the Pulsatile Reynolds numberther

Womersley frequency parameter, Hartmann number agnetic parameter, the
permeability parameter and the dimensionless haglie stenosis. The remaining

guantities relevant to this problem are desctibet their appropriate places.
We substitute the quantities defined8h into (1),(2),(4),(5,(8 and J and then

simplifying, we get the following in non-dimensidriarms:
Non-dimensional form of the geometry of arterigngisis is:

_9 nz
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1, for |2 > d,

Momentum equation:

52% =4{Bcos(wt+6) +B' cos B +(1+&, cost )} +%%(r %—L:J—(M +%)u - (10)
Subject to the following non-dimensional boundaoyditions:

u=Vg atr=R - (19
U_patr=0 - (12)
or

3. Method of solution:
Assuming the Pulsatile Reynolds numlgeto be very small, the velocity may

be approximated by the following series (pertudratechnique):
u(zrt)=vy(zrt)+&2v,(zr,t) +...... - (13)
Substituting(13) in (10),(1) and 1} and equating the coefficients ef and £

and then neglecting the terms containing highergrewf £, we obtain:
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Whereh(t) = Bcos(wt +8) + B’ cos 3+ (1+, cost) .
The corresponding boundary conditions are as under:

Vo=Vs,V; =0 atr=R - (16)
v,

Mo, M_gatr=0 - (17)
ar ar

The solution of the equationgl4),(15 subject to the boundary conditions
(16),(17) are as under:
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v, =V (r)h'(t), whereh'(t) represents the derivative bft) with respect td
And,

v(r)
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Consequently, the non-dimensional axial veIoci(;z,r,t) is given by:

X

Where,y(r) = dx .

N |-
O —;

u(zrt)=vy(zrt)+&vy(zr,t)



Non-dimensional Wall Shear Stress:
Assuming the constricted wall of this artery to rioigid, the non-dimensional wall
shear stresg atr =R is given by:

27
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Wherer = —up(%] is the dimensional wall shear stress afR.
r - —

r=R

Consequently, we get:
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Non-dimensional volumetric flow rate:

The dimensionless volumetric flow ra@(z,t) may be defined as under:

Q(z,t):T, Whereé(i,f) is the dimensional volumetric flow rate and is
L

aven by Q202 02,1

ConsequentlyQ(zt)=4[ru(zr,t) dr =15+ 1, , where,

o+—21
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Non-dimensional Effective viscosity:

Following Pennington and Cowin [28], the efiee viscosityZJE in dimensional

form may be expressed as follows:

o7y
He = o(z4)
_ (1+& cost)R?

= Mg = Q(Z,t)

Where 4 is the non-dimensional effective viscosity.

4. Results and discussion:

In order to get an insight into the biological goittysical aspects of this problem,
we obtain the profiles of the axial velocity, wshear stress, volumetric flow rate and
the effective viscosity, and we examine their bétas under the influence of the

various non-dimensional parameters relevant to pinaéblem. The data-tabulation



involved in this problem is carried out with thel af Python(x,y) v2.7.6.0, using the

packages: cmath, mpmath and numpy. For all thediguve takez=0.2,d, = 0.3,
£=0.2 and H:g. Clearly, r 0[0,R] and using(9) and then noting thdy < d, for

the aforementioned choice af, d,, we find thatR=0.937E. Thus, for our choice of
z,dy, rJJ0, 0.937§.

The figures 1, 2, 3 and 4 demonstrate thtaraeeof the non-dimensional axial
velocityu againstr, under the effect ofM ,V,,t,3,B, B ,w,& and K. It is
inferred thatu decreases as eachMf, 5,B and w increases whereas a rise in each
of Vg, B', & and K leads to an increasetn Also, from figure 2, it is observed that

ast increases fromt=1 to t=5 i.e. aswt rises from a)t:g to a)t:STH, u

increases. However, dasfurther increases frorh=5 to t =8 i.e. aswt further rises

from owt :57” to wt :87”, u decreases. Fro(ﬁ), we note thatwt = aot . Hence,

u rises and then falls with the change in the pedbthe body acceleratioﬁ(f).

From all the above mentioned figures it is obvithet the velocity is greatest on the
axis (r =0) and least at the stenosed wall<(R). As r increases withif0,R], u
decreases from some maximum value at the axis #amhsathe dimensionless slip
velocity u=V; at the stenosed wall.

The behaviours of dimensionless wall shesesstr versus time parametdr
under the effects of the parametdvis,V, 5,B, B',w, &, d;and K are depicted in
the figures 5, 8 and 9. It is noted that the wh#a stress falls with the rise in each
of M, Vg, B, w and dq. On the other hand, the shear stress exhibit®wtigrwith
the increase in each &', &, and K. However, a growth irB causesr to initially

rise for smaller values of and then decrease for comparatively larger vahies
This may be attributed to the periodic nature @ tiody acceleration as well as the
pressure gradient.

The profiles for the non-dimensional volunwetflow rate Q against time
parametert under the influence of the parametdds,V,, 8,B, B',w, &, d,and K

are demonstrated in the figures 6, 10 and 11. dbserved that the volumetric flow



rate registers a drop with the growth in each Mf,5, wand d,. But an
augmentation in each &f;, B' and K leads to a corresponding increasenAlso,
arise in each oB and &, causeuQ to rise for relatively smaller values bfand then
leadsQ to fall for comparatively larger valuestofThis is attributable to the periodic

nature of the body acceleration and the pulsastene of the pressure gradient.
The effects of the quantitiés, V,, S, B, B ,w, &, d,and K on the

dimensionless effective viscosif against timet are depicted in the figures 7, 12
and 13. Clearly 4 exhibits a growth with a rise in each ™ , 5 and w. However,
an increase in each df;, B',K and d, leads to a fall inf/f. Moreover, an
augmentation iB causest/: to decrease for smaller valuestoand then leads to an

increase for relatively larger values tof This is due to the periodic body acceleration

and the pulsatile pressure gradient. Furthermorgroavth in &, causes /i to

increase for smaller values bfand then leads to a decrease for moderate values o

Thereafter, for comparatively larger valuestof/f again registers a growth &g

increases. This is due to the pulsatile naturéeftressure gradient.
5. Conclusions:

In view of the above flow model and thédsequent observations, we arrive at
the following conclusions:

@) For this inclined artery, the imposition ofettmagnetic field causes a
decrease in each of axial velocity of blood, wdilear stress and the
volumetric flow rate. But the effective viscositf/ldood rises as the magnetic
field increases. This shows that the applied azmautmagnetic has
considerable scope in the field of treating cardsmular diseases resulting
from stenosis. The use of an azimuthal magnetid ian aid in effectively
controlling the blood velocity and minimizing tharge shear stress on the
stenosed arterial wall. The axial velocity profilge parabolic in shape.

(b)  In case of this inclined artery, the impositminthe slip velocity leads to a
growth in each of axial velocity of blood and th@umetric flow rate. Thus,
the blood flow rate is enhanced. But, the wall shsteess and the effective

viscosity decrease with the imposition of the sliplocity. Hence, slip



inducing medical drugs may be beneficial in effesly controlling the wall
shear stress and the effective viscosity of blooa stenosed artery.

(c) As the angle of inclination increases, the Hla@locity, the wall shear
stress and the volumetric flow rate decrease whettea effective viscosity
increases.

(d) Inthis inclined artery, a rise in the permeapibf the medium causes each
of axial blood velocity, wall shear stress and tledumetric flow rate to
increase and the effective viscosity to decrease.cdrtain pathological
conditions, the distribution of fatty cholesteraldaartery-clogging blood clots
in the lumen of the coronary artery may be reprieseby a fictitious porous
medium. Therefore, an augmentation in the permigabof such porous
media can enhance the blood flow rate in a stenasety. This may be
achieved through the development of proper mediracedures and by
developing medical drugs that enhance the permialil a stenosed /
clogged artery.

(e) In the inclined artery, a growth in the heigtfitarterial stenosis causes a
corresponding decrease in each of wall shear sateg®e stenosed region of
the arterial wall, blood flow rate and the effeetiviscosity. Hence, the blood
flow rate in the stenosed artery may be enhancectethycing the height of
stenosis i.e. by unblocking clogged arteries. ©gain calls for developing
suitable medical procedures and medical drugs.

() As B (relative effectiveness of the periodic body aecaion to the
pulsatile pressure gradient) rises, the axial blibmd velocity decreases. But
the wall shear stress and the volumetric flow raigally increase and then
again decrease, aB increases. However, the effective viscosity iflitia
drops and then again rises, with the augmentatid®.iThe fluctuating trends
in case of shear stress, the flow rate and theteféeviscosity are attributable
to the periodic body acceleration and the pulsgtitsssure gradient. Patients
with cardiovascular problems should avoid situai@emanding excessive
body accelerations.

(9) Each of axial blood velocity, shear stresd hlood flow rate exhibits a
growth whereas the effective viscosity registerddrap as B' (relative

effectiveness of body force per unit volume of ldo the pulsatile pressure



gradient) increases. Therefore, an increase itotiaé blood volume may lead
to increased arterial wall shear stress.

(h) Each of axial blood velocity, shear stresd bBlood flow rate registers a
fall whereas the effective viscosity exhibits angith the rise inw (relative
effectiveness of the frequency of body accelerationthe pulse rate
frequency).

)] Arise ing, (relative effectiveness of the amplitude of theiléstory part

of pressure gradient to the steady state pressiadiegt) leads to an
augmentation in axial blood velocity and the shstegss. On the other hand,

due to a rise irgy, the volumetric flow rate and the effective vistpexhibit

an increasing and a decreasing trend versus titme.i3 due to the pulsatile
nature of the pressure gradient.
It may be noted that the above resultsthacensuing conclusions are presented

under the selected range of data.
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Schematic figure of an inclined stenosed artery
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Figure 8: Variation of shear stregsagainstt, under the effect oM,V , and dg

for £,=0.8,B=08§ B':o.5,w:’ZT, K - o
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Figure 9: Variation of shear stregsagainstt, under the effect oB, B',w and &,

for M =3,V, = 0.04 ds:0.25,,8:§, K — o
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Figure 10: Variation of flow rat€) againstt, under the effect oM, V,, and d

for £,=0.8,B=08§ B':o.5,w:’ZT, K -
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Figure 11: Variation of flow rat€) againstt, under the effect oB, B',cw and &, for

M =3,V, = 0.04 ds:0.25,,8:§, K —
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Figure 12: Variation of effective viscosity: againstt, under the effect oM, V[,

d, for £,=0.8,B=08 B'=o.5,a):’zT, K -
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Figure 13: Variation of effective viscosityz againstt , under the effect 0B, B',w,

g, for M =3,V, = 0.04 ds=0.25,,8:7§T,K Lo



