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Abstract: 

    In the present Paper, the Authors have investigated the pulsatile flow of blood 

through a porous medium with constant permeability, in an inclined artery with mild 

stenosis. The flow of blood is considered to be Newtonian. The presence of an 

azimuthal uniform magnetic field is assumed. The flow takes place under body 

acceleration and a slip velocity is imposed at the stenosed arterial wall. By using 

Perturbation technique, the solutions for the flow field, wall shear stress, volumetric 

flux and the effective viscosity are obtained and their behaviours under the influence 

of various relevant parameters concerning the magnetic field, velocity slip, 

permeability, inclination etc. have been demonstrated pictorially and discussed. It is 

seen that the applied magnetic field, velocity slip, inclination and the permeability of 

the porous medium have significant influence on the flow field, wall shear stress, 

volumetric flow rate and the effective viscosity. 
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1. Introduction: 

      The studies related to blood flow through stenosed arteries have garnered wide 

interest in the field of Bio-Medical research. Stenosis or atherosclerosis may be 

defined as the formation of some constriction in the inner arterial wall owing to the 

deposition of lipoproteins and fatty acids (atherosclerotic plaques) in the lumen of the 

artery. Such constrictions lead to considerable change in the flow of blood, the 

pressure distribution and the wall shear stress, thereby impeding the normal 

circulatory processes and consequently leading to cardiovascular diseases. Even for 

mild atherosclerosis, the velocity gradient in the stenosed wall is steep owing to the 

increased core velocity. This results in comparatively large shear stress on the arterial 

wall. Mathematical models of blood flow through arteries under diverse physiological 



situations were presented by several authors like Fung [1], McDonald [2], Zamir [3] 

and David et al. [4]. Theoretical and experimental investigations concerning flow of 

blood through stenosed arteries were presented by Young [5], Liu et al. [6], Yao and 

Li [7] and Mekheimer and El-Kot [8]. The human body may be subjected to body 

accelerations (vibrations) under certain situations such as riding a heavy vehicle or 

flying in a helicopter. This may cause health problems like vascular disorders and 

increased pulse rate. Studies related to blood flow under the influence of body 

acceleration were carried out by several research workers such as Sud and Sekhon [9] 

and El-Shahed [10]. The Pulsatile nature of blood flow in arteries may be attributed to 

the heart pulse pressure gradient. Studies in pulsatile blood flow were carried out by 

researchers like [10] and Elshehawey et al. [11]. The possibility of velocity slip at the 

blood vessel wall was investigated theoretically by Brunn [12] and Jones [13] and 

experimentally by Bennet [14] and Bugliarello and Hayden [15]. The methods to 

detect and determine slip experimentally at the blood vessel wall have been indicated 

by Astarita et al. [16] and Cheng [17] respectively. It was first Kolin [18] and later 

Korchevskii and Marochnik [19] who suggested the scope of electromagnetic fields in 

Bio-Medical studies. Barnothy [20] indicated that for biological systems, the heart 

rate decreases under the influence of an external magnetic field. In certain 

pathological circumstances, the distribution of fatty cholesterol and artery-clogging 

blood clots in the lumen of the coronary artery may be regarded as equivalent to a 

fictitious porous medium. Xu et al. [21] assumed the blood clot as a porous medium 

to investigate the transport characteristics of blood flow in the extension of multi-

scale model by incorporating a detailed sub model of surface-mediated control of 

blood coagulation (Xu et al. [22, 23]). In general, blood is a non-Newtonian fluid. 

However, it has been established that human blood exhibits Newtonian behaviour at 

all rates of shear for hematocrits up to about 12% [24]. Further, in case of relatively 

larger blood vessels it is sensible to assume that blood has a constant viscosity, since 

the diameters of such vessels are large compared with the individual cell diameters 

and because shear rates are quite high for viscosity to be independent of them. 

Consequently, for such vessels the non-Newtonian character becomes unimportant 

and blood may be regarded as a Newtonian fluid. 

    In view of the aforementioned facts, we may cite the works done by Elshehawey et 

al. [11], Nagarani and Sarojamma [25], Shehawey and EL Sebaei [26], Tzirtzilakis 

[27], etc.  



    The aim of the present study is to investigate theoretically the nature of a pulsatile 

blood flow through a mildly stenosed artery under the combined influence of an 

azimuthal uniform magnetic field, slip velocity, body acceleration and permeability, 

when the artery is inclined to the vertical. The investigation is carried out by treating 

blood flow as Newtonian. 

2. The formulation of the Problem: 

      For the present problem, we consider an axially symmetric, laminar, one-

dimensional and fully developed flow of blood, through an inclined and constricted 

circular artery, in the presence of a time-dependent pressure gradient, body 

acceleration and a uniform circular (azimuthal) magnetic field of moderate intensity. 

Thus, the induced magnetic field is negligible. We assume that this constricted artery 

has a rigid wall and that the artery is filled with a porous medium of constant 

permeability. Further, the artery is inclined to the vertical and a slip velocity is 

imposed at the stenosed region of the arterial wall. Here, blood is assumed as a 

Newtonian fluid and the corresponding flow is considered to be Newtonian. The flow 

configuration is presented pictorially, in the section for figures. 

     Following Nagarani and Sarojamma [25], the geometry of an arterial stenosis is 

presented as: 
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Where ( )R z  is the radius of the artery in the stenosed region, L  is the constant 

arterial radius in the non-stenosed region, 0d  is the half-length of the stenosis and sd  

is the greatest height of the stenosis such that sd

L
 is less than unity for a mild stenosis. 

For a low Reynolds number flow through an artery with mild stenosis, we may omit 

the radial velocity since it is very small (Nagarani and Sarojamma [25]).    

    In cylindrical coordinate system( )r , ,zθ , the momentum equation governing the 

flow is deduced from Navier-Stokes equations of motion and presented as under: 
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Where u  denotes the velocity along the z - axis, P  the pressure, ρ  the density, t  the 

time, ( )F t  the body acceleration, B  the applied magnetic field in azimuthal (θ ) 

direction,υ  the kinematic viscosity, σ  the electrical conductivity, g  the acceleration 

due to gravity, β  the angle of inclination of the artery with the vertical  and K  the 

permeability of the porous medium. 

    The relevant boundary conditions are as under: 
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Where sV  is the slip velocity at the stenosed region of the arterial wall. 

    When 0t ,>  periodic body acceleration ( )F t  is imposed on the flow and this may 

be presented as under (Nagarani and Sarojamma [25]): 

( ) ( )00F t f cos tω θ= + ,                                                                                       ( )6→   

Where 0 2 bFω π= , 0f  and bF  being respectively the amplitude of body acceleration 

and frequency (in Hertz) of body acceleration. Also, θ  is the lead angle with respect 

to the heart action. bF  is taken to be so small that wave effect may be omitted 

(Nagarani and Sarojamma [25]).   

     Further, for 0t ,≥  the pressure gradient is assumed as: 
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Where ( ) ( )0 1P z , P z  are respectively the steady state pressure gradient and the 

amplitude of the oscillatory part of the pressure gradient. Further, 2P Pfω π=  where 

Pf  is the pulse rate frequency. 

    We make the following non-dimensional substitutions: 
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Where , M, Kε  and sd  are respectively the Pulsatile Reynolds number or the 

Womersley frequency parameter, Hartmann number or magnetic parameter, the 

permeability parameter and the dimensionless height of the stenosis. The remaining 

quantities relevant to this problem are described at their appropriate places.                                                                                                                                             

We substitute the quantities defined in( )8  into ( ) ( ) ( ) ( ) ( ) ( )1 2 4 5 6 and 7, , , ,  and then 

simplifying, we get the following in non-dimensional forms: 

Non-dimensional form of the geometry of arterial stenosis is: 
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Momentum equation: 
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Subject to the following non-dimensional boundary conditions: 
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3. Method of solution: 

    Assuming the Pulsatile Reynolds number ε  to be very small, the velocity u  may 

be approximated by the following series (perturbation technique): 
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Substituting ( )13  in ( ) ( ) ( )10 11 and 12,  and equating the coefficients of 0ε  and 2ε  

and then neglecting the terms containing higher powers of ε , we obtain: 
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Where ( ) ( ) ( )01h t B cos t B cos cos tω θ β ε′= + + + + . 

The corresponding boundary conditions are as under: 
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The solution of the equations ( ) ( )14 15,  subject to the boundary conditions 

( ) ( )16 17,  are as under: 
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Consequently, the non-dimensional axial velocity ( )u z,r,t  is given by: 
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Non-dimensional Wall Shear Stress: 

Assuming the constricted wall of this artery to be rigid, the non-dimensional wall 

shear stress τ  at r R=  is given by: 
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Non-dimensional volumetric flow rate: 

The dimensionless volumetric flow rate ( )Q z,t  may be defined as under: 
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Non-dimensional Effective viscosity: 

     Following Pennington and Cowin [28], the effective viscosity Eµ  in dimensional 

form may be expressed as follows: 
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Where Eµ  is the non-dimensional effective viscosity. 

4. Results and discussion: 

    In order to get an insight into the biological and physical aspects of this problem, 

we obtain the profiles of the axial velocity, wall shear stress, volumetric flow rate and 

the effective viscosity, and we examine their behaviours under the influence of the 

various non-dimensional parameters relevant to this problem. The data-tabulation 



involved in this problem is carried out with the aid of Python(x,y) v2.7.6.0, using the 

packages: cmath, mpmath and numpy. For all the figures, we take 00 2 0 3z . , d .= = , 

0 2.ε =  and 
3

πθ = . Clearly, [ ]0r ,R∈  and using ( )9  and then noting that 0z d<  for 

the aforementioned choice of 0z , d , we find that 0 9375R .= . Thus, for our choice of 

0z , d , [ ]0 0 9375r , .∈ . 

       The figures 1, 2, 3 and 4 demonstrate the nature of the non-dimensional axial 

velocityu  againstr , under the effect of M , sV , t , β , B, B ,ω′ , 0ε  and K . It is 

inferred that u  decreases as each of M , β , B  and ω  increases whereas a rise in each 

of sV , B′ , 0ε  and K  leads to an increase inu . Also, from figure 2, it is observed that 

as t  increases from 1t =  to 5t =  i.e. as tω  rises from 
4

t
πω =  to 

5

4
t

πω = , u  

increases. However, as t  further increases from 5t =  to 8t =  i.e. as tω  further rises 

from 
5

4
t

πω =  to 
8

4
t

πω = , u  decreases. From( )8 , we note that 0t tω ω= . Hence, 

u  rises and then falls with the change in the period of the body acceleration ( )F t . 

From all the above mentioned figures it is obvious that the velocity is greatest on the 

axis ( 0r = ) and least at the stenosed wall (r R= ). As r  increases within[ ]0 ,R , u  

decreases from some maximum value at the axis and attains the dimensionless slip 

velocity su V=  at the stenosed wall.  

      The behaviours of dimensionless wall shear stress τ  versus time parameter t  

under the effects of the parameters M , sV , β , B, B ,ω′ , 0ε , sd and K  are depicted in 

the figures 5, 8 and 9. It is noted that the wall shear stress falls with the rise in each 

of M , sV , β , ω  and sd . On the other hand, the shear stress exhibits a growth with 

the increase in each of B′ , 0ε  and K . However, a growth in B  causes τ  to initially 

rise for smaller values of t  and then decrease for comparatively larger values of t . 

This may be attributed to the periodic nature of the body acceleration as well as the 

pressure gradient. 

       The profiles for the non-dimensional volumetric flow rate Q  against time 

parameter t  under the influence of the parameters M , sV , β , B, B ,ω′ , 0ε , sd and K  

are demonstrated in the figures 6, 10 and 11. It is observed that the volumetric flow 



rate registers a drop with the growth in each of M , β , ω and sd . But an 

augmentation in each of sV , B′  and K  leads to a corresponding increase in Q . Also, 

a rise in each of B  and 0ε  causes Q  to rise for relatively smaller values of t  and then 

leads Q  to fall for comparatively larger values oft . This is attributable to the periodic 

nature of the body acceleration and the pulsatile nature of the pressure gradient. 

       The effects of the quantitiesM , sV , β , B, B ,ω′ , 0ε , sd and K  on the 

dimensionless effective viscosity Eµ  against time t  are depicted in the figures 7, 12 

and 13. Clearly, Eµ  exhibits a growth with a rise in each of M , β  and ω . However, 

an increase in each of sV , B′ , K  and sd  leads to a fall in Eµ . Moreover, an 

augmentation inB  causes Eµ  to decrease for smaller values of t  and then leads to an  

increase for relatively larger values of t . This is due to the periodic body acceleration 

and the pulsatile pressure gradient. Furthermore, a growth in 0ε  causes Eµ  to 

increase for smaller values of t  and then leads to a decrease for moderate values of t . 

Thereafter, for comparatively larger values of t , Eµ  again registers a growth as 0ε  

increases. This is due to the pulsatile nature of the pressure gradient.    

5. Conclusions: 

         In view of the above flow model and the subsequent observations, we arrive at 

the following conclusions: 

(a)      For this inclined artery, the imposition of the magnetic field causes a 

decrease in each of axial velocity of blood, wall shear stress and the 

volumetric flow rate. But the effective viscosity of blood rises as the magnetic 

field increases. This shows that the applied azimuthal magnetic has 

considerable scope in the field of treating cardiovascular diseases resulting 

from stenosis. The use of an azimuthal magnetic field can aid in effectively 

controlling the blood velocity and minimizing the large shear stress on the 

stenosed arterial wall. The axial velocity profiles are parabolic in shape. 

(b)     In case of this inclined artery, the imposition of the slip velocity leads to a 

growth in each of axial velocity of blood and the volumetric flow rate. Thus, 

the blood flow rate is enhanced. But, the wall shear stress and the effective 

viscosity decrease with the imposition of the slip velocity. Hence, slip 



inducing medical drugs may be beneficial in effectively controlling the wall 

shear stress and the effective viscosity of blood in a stenosed artery.   

(c)     As the angle of inclination increases, the blood velocity, the wall shear 

stress and the volumetric flow rate decrease whereas the effective viscosity 

increases. 

(d)    In this inclined artery, a rise in the permeability of the medium causes each 

of axial blood velocity, wall shear stress and the volumetric flow rate to 

increase and the effective viscosity to decrease. In certain pathological 

conditions, the distribution of fatty cholesterol and artery-clogging blood clots 

in the lumen of the coronary artery may be represented by a fictitious porous 

medium. Therefore, an augmentation in the permeability of such porous 

media can enhance the blood flow rate in a stenosed artery. This may be 

achieved through the development of proper medical procedures and by 

developing medical drugs that enhance the permeability in a stenosed / 

clogged artery. 

(e)     In the inclined artery, a growth in the height of arterial stenosis causes a 

corresponding decrease in each of wall shear stress at the stenosed region of 

the arterial wall, blood flow rate and the effective viscosity. Hence, the blood 

flow rate in the stenosed artery may be enhanced by reducing the height of 

stenosis i.e. by unblocking clogged arteries. This again calls for developing 

suitable medical procedures and medical drugs. 

(f)      As B  (relative effectiveness of the periodic body acceleration to the 

pulsatile pressure gradient) rises, the axial blood flow velocity decreases. But 

the wall shear stress and the volumetric flow rate initially increase and then 

again decrease, as B  increases. However, the effective viscosity initially 

drops and then again rises, with the augmentation in B . The fluctuating trends 

in case of shear stress, the flow rate and the effective viscosity are attributable 

to the periodic body acceleration and the pulsatile pressure gradient. Patients 

with cardiovascular problems should avoid situations demanding excessive 

body accelerations. 

(g)       Each of axial blood velocity, shear stress and blood flow rate exhibits a 

growth whereas the effective viscosity registers a drop as B′  (relative 

effectiveness of body force per unit volume of blood to the pulsatile pressure 



gradient) increases. Therefore, an increase in the total blood volume may lead 

to increased arterial wall shear stress.  

(h)       Each of axial blood velocity, shear stress and blood flow rate registers a 

fall whereas the effective viscosity exhibits a rise with the rise in ω  (relative 

effectiveness of the frequency of body acceleration to the pulse rate 

frequency). 

(i)      A rise in 0ε  (relative effectiveness of the amplitude of the oscillatory part 

of pressure gradient to the steady state pressure gradient) leads to an 

augmentation in axial blood velocity and the shear stress. On the other hand, 

due to a rise in 0ε , the volumetric flow rate and the effective viscosity exhibit 

an increasing and a decreasing trend versus time. This is due to the pulsatile 

nature of the pressure gradient.  

        It may be noted that the above results and the ensuing conclusions are presented 

under the selected range of data. 
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Schematic figure of an inclined stenosed artery 
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Figure 1: Variation of velocity u  against r , under the effect of M  and sV  for  

0 0 8 0 8 0 5
4 8

0 25 0 9375 1s , . , B . , ,B . ,d . , R . , t ,
π πε βω ′= = = == = = = K → ∞  

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.3 0.5 0.7 0.9375r

u
21t , πβ= =

28t , πβ= =
25t , πβ= =

01t ,β= =

81t , πβ= =

 
Figure 2: Variation of velocity u  against r , under the effect of t  and β  for  
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Figure 3: Variation of velocity u  against r , under the effect of B, B ,ω′  and 0ε  for  
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Figure 7: Variation of effective viscosityEµ  against t , under the effect of K  for 
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