Locally conformally symplectic structures and Lie-Rinehart-Jacobi structures on Weil bundle

Servais Cyr GATSE*, Côme Chancel LIKOUKA†

Abstract

This paper is dedicated to a study of a locally conformally symplectic \mathbb{A} -structures in the case where the set, \mathbb{A} , is a Weil algebra. If M is a smooth manifold and $M^{\mathbb{A}}$ the associated Weil bundle, we shown that the C^{∞} $(M^{\mathbb{A}}, \mathbb{A})$ -module of first-order differential operators admits a Lie-Rinehart-Jacobi \mathbb{A} -structure.

 $\textbf{Keywords:} \ \ \text{locally conformally symplectic manifold, Weil bundle, Lie-Rinehart algebra.}$

MSC(2010): 58A20, 58A32, 17D63, 13N10.

1 Introduction

1.1 first-order differential operators

Consider a commutative algebra Λ with unit 1_{Λ} over a commutative field \mathbb{K} with characteristic zero. let \mathbb{E} be an Λ -module. The action

$$\Lambda \times \mathbb{E} \longrightarrow \mathbb{E}, (a, x) \longmapsto a \cdot x$$

denotes a multiplication by x.

A differential operator of order $\leq k, (k \in \mathbb{N})$, from Λ into \mathbb{E} , is a \mathbb{K} -linear map

$$\varphi:\Lambda\longrightarrow\mathbb{E}$$

such that for any $a \in \Lambda$, the map

$$\Lambda \longrightarrow \mathbb{E}, b \longmapsto \varphi(a \cdot b) - a \cdot \varphi(b)$$

is a differential operator of order $\leq (k-1)$ from Λ into \mathbb{E} . Thus a \mathbb{K} -linear map

$$\varphi:\Lambda\longrightarrow\mathbb{E}$$

^{*}Université Marien Ngouabi, BP: 69, Brazzaville, Congo. E-mail: servais.gatse@umng.cg

[†]Université Marien Ngouabi, BP: 69, Brazzaville, Congo. E-mail: côme.likouka@umng.cg

is a first-order differential operator from Λ into \mathbb{E} if and only if for any $a, b \in \Lambda$,

$$\varphi(a \cdot b) = \varphi(a) \cdot b + a \cdot \varphi(b) - a \cdot b \cdot \varphi(1_{\Lambda}). \tag{1}$$

When $\varphi(1_{\Lambda}) = 0$, we have the usual notion of derivation from Λ into \mathbb{E} . Moreover the following assertions are equivalent:

- 1. A \mathbb{K} -linear map $\varphi: \Lambda \longrightarrow \mathbb{E}$ is a first-order differential operator;
- 2. A \mathbb{K} -linear map $\varphi R_{\varphi(1_{\Lambda})} : \Lambda \longrightarrow \mathbb{E}, a \longmapsto \varphi(a) a \cdot \varphi(1_{\Lambda})$ is a derivation.

1.2 A-manifolds

In this part, M denotes a paracompact and connected smooth manifold, a first-order differential operator of the algebra of numerical functions of class C^{∞} on M, will be said differential operator on M and the set, $\mathcal{D}(M)$, of this applications is a $C^{\infty}(M)$ -module and admits a real Lie algebra structure. The set, \mathbb{A} , designs a Weil algebra i.e. a real commutative algebra with unit, of finite dimension, and with an unique maximal ideal \mathfrak{M} of codimension 1 over \mathbb{R} . The quotient \mathbb{A}/\mathfrak{M} is a field. We deduce that

$$\mathbb{A} = \mathbb{R} \bigoplus \mathfrak{M}. \tag{2}$$

In this case, there exists an integer h, called the height of \mathbb{A} such that $\mathfrak{M}^{h+1} = (0)$ and $\mathfrak{M}^h \neq (0)$. For example, the algebra of dual numbers $\mathbb{D} = \mathbb{R}[T]/(T^2)$ is a Weil algebra with height 1.

A near point of $p \in M$ of kind \mathbb{A} is a morphism of algebras

$$\xi: C^{\infty}(M) \longrightarrow \mathbb{A}$$

such that

$$\xi(f) = f(p) [mod\mathfrak{M}]$$

for any $f \in C^{\infty}(M)$.

We recall that $M^{\mathbb{A}}$ is a manifold of infinitely near points on M of kind \mathbb{A} or simply the Weil bundle of kind \mathbb{A} [4]. For any $f \in C^{\infty}(M)$, the map

$$f^{\mathbb{A}}: M^{\mathbb{A}} \longrightarrow \mathbb{R}^{\mathbb{A}} \cong \mathbb{A}, \xi \longmapsto \xi(f)$$

is smooth. In [2], one showns that the set, $C^{\infty}(M^{\mathbb{A}}, \mathbb{A})$, of smooth functions on $M^{\mathbb{A}}$ with values in \mathbb{A} , is a commutative algebra over \mathbb{A} with unit. Moreover the map

$$C^{\infty}\left(M\right)\longrightarrow C^{\infty}\left(M^{\mathbb{A}},\mathbb{A}\right),f\longmapsto f^{\mathbb{A}}$$

is a monomorphism of algebras which satisfies for any $f,g\in C^{\infty}\left(M\right)$ and for any $\lambda\in\mathbb{R}$

$$(f+g)^{\mathbb{A}} = f^{\mathbb{A}} + g^{\mathbb{A}};$$
$$(\lambda f)^{\mathbb{A}} = \lambda f^{\mathbb{A}};$$
$$(f \cdot g)^{\mathbb{A}} = f^{\mathbb{A}} \cdot g^{\mathbb{A}}.$$

If (\mathbf{U}, β) is a local chart of M with local coordinates $(x_1, ..., x_{2n})$ the map

$$\beta^{\mathbb{A}}: \mathbf{U}^{\mathbb{A}} \longrightarrow \mathbb{A}^{2n}, \xi \longmapsto (\xi(x_1), ..., \xi(x_{2n}))$$

is a bijection from $\mathbf{U}^{\mathbb{A}}$ into an open of \mathbb{A}^{2n} . Thus $M^{\mathbb{A}}$ is an \mathbb{A} -manifold of dimension 2n.

2 Differential operators on $M^{\mathbb{A}}$

A differential operators on $M^{\mathbb{A}}$ is a \mathbb{R} -linear map $C^{\infty}\left(M^{\mathbb{A}}\right) \longrightarrow C^{\infty}\left(M^{\mathbb{A}}\right)$ fulfilling (1).

Proposition 1 There is an equivalence between the following statements:

- 1. A differential operator on $M^{\mathbb{A}}$ is a differential operator of $C^{\infty}(M^{\mathbb{A}})$;
- 2. A differential operator on $M^{\mathbb{A}}$ is a linear map

$$\partial:C^{\infty}\left(M\right)\longrightarrow C^{\infty}\left(M^{\mathbb{A}},\mathbb{A}\right)$$

such that

$$\partial (f \cdot g) = \partial (f) \cdot g^{\mathbb{A}} + f^{\mathbb{A}} \cdot \partial (g) - f^{\mathbb{A}} \cdot g^{\mathbb{A}} \cdot \partial (1_{C^{\infty}(M)})$$
 (3)

for any $f, g \in C^{\infty}(M)$;

3. A differential operator on $M^{\mathbb{A}}$ is a differential operator of $C^{\infty}\left(M^{\mathbb{A}},\mathbb{A}\right)$ which is \mathbb{A} -linear.

Proof. We use the same technics that in [2].

We denote, $\mathcal{D}_{\mathbb{A}}(M^{\mathbb{A}})$, the $C^{\infty}(M^{\mathbb{A}}, \mathbb{A})$ -module of \mathbb{A} -linear differential operators. The skew-symmetric and \mathbb{A} -linear map

$$\left[\cdot,\cdot\right]:\mathcal{D}_{\mathbb{A}}\left(M^{\mathbb{A}}\right)\times\mathcal{D}_{\mathbb{A}}\left(M^{\mathbb{A}}\right)\longrightarrow\mathcal{D}_{\mathbb{A}}\left(M^{\mathbb{A}}\right),\left(\varphi,\psi\right)\longmapsto\varphi\circ\psi-\psi\circ\varphi$$

defines a \mathbb{A} -Lie algebra structure on $\mathcal{D}_{\mathbb{A}}(M^{\mathbb{A}})$ and we verify that

$$\left[\varphi,f^{\mathbb{A}}\cdot\psi\right]=\left(\varphi\left(f^{\mathbb{A}}\right)-f^{\mathbb{A}}\cdot\varphi\left(1_{C^{\infty}(M^{\mathbb{A}},\mathbb{A})}\right)\right)\cdot\psi+f^{\mathbb{A}}\cdot\left[\varphi,\psi\right]\tag{4}$$

for any $f^{\mathbb{A}} \in C^{\infty}(M^{\mathbb{A}}, \mathbb{A})$.

3 Differential A-forms

Let $_{sks}^{k}\left(\mathcal{D}_{\mathbb{A}}\left(M^{\mathbb{A}}\right),C^{\infty}\left(M^{\mathbb{A}},\mathbb{A}\right)\right)=\Omega^{k}\left(M^{\mathbb{A}},\mathbb{A}\right)$ be the $C^{\infty}\left(M^{\mathbb{A}},\mathbb{A}\right)$ -module of skew-symmetric multilinear forms of degree k $(k\in\mathbb{N})$ on $\mathcal{D}_{\mathbb{A}}\left(M^{\mathbb{A}}\right)$.

We have

$$\Omega^{0}\left(M^{\mathbb{A}},\mathbb{A}\right)=C^{\infty}\left(M^{\mathbb{A}},\mathbb{A}\right).$$

One denotes

$$\Omega\left(M^{\mathbb{A}},\mathbb{A}\right) = \bigoplus_{k=0}^{2n} \Omega^k\left(M^{\mathbb{A}},\mathbb{A}\right).$$

Remark 2 This algebra is canonically isomorph to $\mathbb{A} \bigotimes \Omega (M^{\mathbb{A}})$.

Theorem 3 If η is a differential form of degree k on M, then there exists an unique differential \mathbb{A} -form on $M^{\mathbb{A}}$ of degree k such that

$$\eta^{\mathbb{A}}\left(f_1^{\mathbb{A}} \cdot \theta_1^{\mathbb{A}}, ..., f_k^{\mathbb{A}} \cdot \theta_k^{\mathbb{A}}\right) = \left(f_1, ..., f_k\right)^{\mathbb{A}} \cdot \left[\eta\left(\theta_1, ..., \theta_k\right)\right]^{\mathbb{A}}$$
 (5)

for any differential operators $\theta_1, ..., \theta_k \in \mathcal{D}(M)$ and for any $f_1, ..., f_k \in C^{\infty}(M)$. Moreover, for any η_1, η_2 elements of $\Omega(M)$, we have

$$(\eta_1 + \eta_2)^{\mathbb{A}} = \eta_1^{\mathbb{A}} + \eta_2^{\mathbb{A}};$$

$$(\eta_1 \wedge \eta_2)^{\mathbb{A}} = \eta_1^{\mathbb{A}} \wedge \eta_2^{\mathbb{A}}.$$

Proof. It is obvious.

The map $\Omega(M) \longrightarrow \Omega(M^{\mathbb{A}}, \mathbb{A}), \eta \longmapsto \eta^{\mathbb{A}}$ is a morphism of real graded algebras.

4 Locally conformally symplectic structures on Weil bundle

Recall that a locally conformally symplectic manifold is a triplet (M, α, ω) such that

- M is a smooth C^{∞} -manifold of dimension 2n;
- $\alpha: \mathfrak{X}(M) \longrightarrow C^{\infty}(M), X \longmapsto \alpha(X)$ satisfying $d\alpha = 0$. Such as α called the Lee 1-form;
- $\omega: \mathfrak{X}(M) \times \mathfrak{X}(M) \longrightarrow C^{\infty}(M), (X,Y) \longmapsto \omega(X,Y)$ satisfying $d\omega = -\alpha \wedge \omega$. For more details see [1].

We verify that for any X a vector field on M, then the map

$$\rho_{\alpha}(X): C^{\infty}(M) \longrightarrow C^{\infty}(M), f \longmapsto X(f) + f \cdot \alpha(X)$$

is a differential operator. Moreover the map

$$\rho_{\alpha}: \mathfrak{X}(M) \longrightarrow \mathcal{D}(M), X \longmapsto X + \alpha(X)$$

is a representation and $\mathfrak{X}(M)$ admits a symplectic Lie-Rinehart-Jacobi structure. We denote d_{α} instead $d_{\rho_{\alpha}}$ the cohomology operator associated with the representation ρ_{α} .

For $X \in \mathfrak{X}(M^{\mathbb{A}})$, considered as derivation of $C^{\infty}(M)$ into $C^{\infty}(M^{\mathbb{A}}, \mathbb{A})$ in sense of [2], the application

$$\rho_{\alpha^{\mathbb{A}}}: \mathfrak{X}\left(M^{\mathbb{A}}\right) \longrightarrow \mathcal{D}_{\mathbb{A}}\left(M^{\mathbb{A}}\right), X \longmapsto \rho_{\alpha^{\mathbb{A}}}\left(X\right)$$

is $C^{\infty}(M^{\mathbb{A}}, \mathbb{A})$ -linear and is a morphism of \mathbb{A} -Lie algebras.

Proposition 4 The application

$$d_{\alpha^{\mathbb{A}}}^{\mathbb{A}}:\Omega\left(M^{\mathbb{A}},\mathbb{A}\right)\longrightarrow\Omega\left(M^{\mathbb{A}},\mathbb{A}\right)$$

is \mathbb{A} -linear and satisfies $d_{\alpha^{\mathbb{A}}}^{\mathbb{A}}(\eta^{\mathbb{A}}) = (d_{\alpha}\eta)^{\mathbb{A}}$.

Proof. We verify that $d_{\alpha^{\mathbb{A}}}^{\mathbb{A}}$ is \mathbb{A} -linear. If $\eta \in \Omega^{k}(M)$, for any $\theta_{1},...,\theta_{k+1} \in \mathcal{D}(M)$, we get

$$\begin{bmatrix} d_{\alpha^{\mathbb{A}}}^{\mathbb{A}} \left(\eta^{\mathbb{A}} \right) \end{bmatrix} \begin{pmatrix} \theta_{1}^{\mathbb{A}}, ..., \theta_{k+1}^{\mathbb{A}} \end{pmatrix} = \begin{bmatrix} (d_{\alpha} \eta) \left(\theta_{1}, ..., \theta_{k+1} \right) \end{bmatrix}^{\mathbb{A}} \\ = (d_{\alpha} \eta)^{\mathbb{A}} \left(\theta_{1}^{\mathbb{A}}, ..., \theta_{k+1}^{\mathbb{A}} \right).$$

We deduce the assertion. \blacksquare

Theorem 5 When the triplet (M, α, ω) is a locally conformally symplectic manifold, then $(M^{\mathbb{A}}, \alpha^{\mathbb{A}}, \omega^{\mathbb{A}})$ is also a locally conformally symplectic \mathbb{A} -manifold.

Proof. The theorem follows from the above proposition and see [2], [3].

5 Symplectic Lie-Rinehart-Jacobi A-algebra on Weil bundle

Proposition 6 If φ is an element of $\mathcal{D}_{\mathbb{A}}(M^{\mathbb{A}})$ and if \widetilde{f} is an element of $C^{\infty}(M^{\mathbb{A}}, \mathbb{A})$, we have

$$\left[\varphi, \widetilde{f}\right] = \varphi\left(\widetilde{f}\right) - \widetilde{f} \cdot \varphi\left(1_{C^{\infty}(M^{\mathbb{A}}, \mathbb{A})}\right) \tag{6}$$

and the restriction of this bracket to $C^{\infty}(M^{\mathbb{A}}, \mathbb{A})$ is zero.

Proof. It is obvious.

5.1 Lie-Rinehart \mathbb{A} -algebra structure on $\mathcal{D}_{\mathbb{A}}\left(M^{\mathbb{A}}\right)$

We denote δ the cohomology operator associated with the representation

$$id^{\mathbb{A}}:\mathcal{D}_{\mathbb{A}}\left(M^{\mathbb{A}}\right)\longrightarrow\mathcal{D}_{\mathbb{A}}\left(M^{\mathbb{A}}\right).$$

Proposition 7 If

$$\widetilde{\alpha^{\mathbb{A}}}: \mathcal{D}_{\mathbb{A}}\left(M^{\mathbb{A}}\right) \longrightarrow C^{\infty}\left(M^{\mathbb{A}}, \mathbb{A}\right)$$

is a linear \mathbb{A} -form, then the $C^{\infty}(M^{\mathbb{A}}, \mathbb{A})$ -linear map

$$\partial_{\widetilde{\alpha^{\mathbb{A}}}}:\mathcal{D}_{\mathbb{A}}\left(M^{\mathbb{A}}\right)\longrightarrow\mathcal{D}_{\mathbb{A}}\left(M^{\mathbb{A}}\right),\varphi\longmapsto\varphi+\widetilde{\alpha^{\mathbb{A}}}\left(\varphi\right)$$

is a representation of \mathbb{A} -Lie algebra if and only if

$$\delta\widetilde{\alpha^{\mathbb{A}}} = \left(\delta 1_{C^{\infty}(M^{\mathbb{A}},\mathbb{A})}\right) \wedge \widetilde{\alpha^{\mathbb{A}}}.$$

Proof. It is clear that

$$\left[\partial_{\widetilde{\alpha^{\mathbb{A}}}}\left(\varphi\right),\partial_{\widetilde{\alpha^{\mathbb{A}}}}\left(\psi\right)\right] = \partial_{\widetilde{\alpha^{\mathbb{A}}}}\left(\left[\varphi,\psi\right]\right) + \left(\delta\widetilde{\alpha^{\mathbb{A}}} - \left(\delta 1_{C^{\infty}(M^{\mathbb{A}},\mathbb{A})}\right) \wedge \widetilde{\alpha^{\mathbb{A}}}\right)\left(\varphi,\psi\right).$$

Hence the result following. ■

Theorem 8 When $M^{\mathbb{A}}$ is a smooth \mathbb{A} -manifold, then

- 1. A Lie-Rinehart \mathbb{A} -algebra structure on $\mathcal{D}_{\mathbb{A}}\left(M^{\mathbb{A}}\right)$ is always of the form $\left(\mathcal{D}_{\mathbb{A}}\left(M^{\mathbb{A}}\right),\partial_{\widetilde{\alpha^{\mathbb{A}}}}\right);$
- 2. The equation $\delta \widetilde{\alpha}^{\mathbb{A}} = (\delta 1_{C^{\infty}(M^{\mathbb{A}},\mathbb{A})}) \wedge \widetilde{\alpha}^{\mathbb{A}}$ is equivalent to $\widetilde{\alpha}^{\mathbb{A}} \left(1_{C^{\infty}(M^{\mathbb{A}},\mathbb{A})} \right)$ is a constante and $\widetilde{\alpha}^{\mathbb{A}} / \mathfrak{X} \left(M^{\mathbb{A}} \right)$ is $d^{\mathbb{A}}$ -closed.

5.2 Lie-Rinehart-Jacobi \mathbb{A} -algebra structure on $\mathcal{D}_{\mathbb{A}}\left(M^{\mathbb{A}}\right)$

We consider the results of the above theorem and we denote $\delta_{\widetilde{\alpha^{\mathbb{A}}}}$ the cohomology operator associated with the representation $\partial_{\widetilde{\alpha^{\mathbb{A}}}}$. For any $\eta \in _{sks}^k \left(\mathcal{D}_{\mathbb{A}}\left(M^{\mathbb{A}}\right), C^{\infty}\left(M^{\mathbb{A}}, \mathbb{A}\right)\right)$, we verify that

$$\delta_{\widetilde{\alpha^{\mathbb{A}}}} \eta = \delta \eta + \widetilde{\alpha^{\mathbb{A}}} \wedge \eta. \tag{7}$$

Theorem 9 The C^{∞} $(M^{\mathbb{A}}, \mathbb{A})$ -module $\mathcal{D}_{\mathbb{A}}$ $(M^{\mathbb{A}})$ admits a symplectic Lie-Rinehart-Jacobi \mathbb{A} -algebra is equivalent to the existence of a C^{∞} $(M^{\mathbb{A}}, \mathbb{A})$ -linear form $\widetilde{\alpha^{\mathbb{A}}}$ and a nondegenerate skew-symmetric C^{∞} $(M^{\mathbb{A}}, \mathbb{A})$ -bilinear form $\widetilde{\omega^{\mathbb{A}}}$ such that

1.

$$\delta\widetilde{\alpha}^{\mathbb{A}} = \left(\delta 1_{C^{\infty}(M^{\mathbb{A}},\mathbb{A})}\right) \wedge \widetilde{\alpha}^{\mathbb{A}};$$

2.

$$\delta\widetilde{\omega^{\mathbb{A}}} = -\widetilde{\alpha^{\mathbb{A}}} \wedge \widetilde{\omega^{\mathbb{A}}}.$$

References

- [1] Gatsé, S.C., (2016). Hamiltonian Vector Field on Locally Conformally Symplectic Manifold, International Mathematical Forum, vol. 11, no. 19, (pp. 933-941). http://dx.doi.org/10.12988/imf.2016.6666
- [2] Bossoto, B.G.R., Okassa, E.,(2012). A-poisson structures on Weil bundles, Int., J. Contemp. Math. Sciences, Vol. 7(16), (pp. 785-803).
- [3] Bossoto, B.G.R., Okassa, E.,(2008). Champs de vecteurs et formes différentielles sur une variété des points proches, Arch. Math (Brno), 44, (pp. 159-171).
- [4] Weil, A.,(1953). Théorie des points proches sur les variétés différentiables, Colloq. Géom. Diff. Strasbourg, (pp. 111-117).