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1 INTRODUCTION

Let {X(t), 0 ≤ t <∞} be a stable subordinator with exponent α, 0 < α < 1, defined on
a probability space (Ω,F ,A). Let at, t > 0, be a non-negative valued function of t such
that (i) 0 < at ≤ 1, (ii) at → ∞ as t → ∞ (iii) at/t → 0 as t → ∞. let Y (t) =

X(t + at) − X(t), t > 0 and Y (0) = 0. Define λβ(t) = θαa
1
α
t (log t

at
(log t)β(log at)

1−β)
α−1
α ,

where θα = (B(α))
1−α
α , B(α) = (1−α)α

α−1
α (cos(πα

2
))

1
α−1 , 0 < α < 1 and 0 ≤ β ≤ 1. Observe

that the process has the property that t−
1
αX(t) and X(1) are identically distributed.

A real valued increasing process {X(t), t > 0} with stationary independent increments is
called a subordinator. For any given t, the characteristic function of X(t) is the form

E(e{iuX(t)}) = exp

{
−t|u|α

(
1− ui

|u|
tan

(
πα

2

))}
, 0 < β < 1.

Throughout the paper ε, c, δ and K (integer), with or without suffix, stand for pos-
itive constants; i.o. means infinitely often; we shall define for each u ≥ 0 the func-
tions log u = log(max(u, 1)), log log u = log log(max(u, 3)), g(t) = (t log t)/at and gβ(t) =
t
at

(log t)β(log at)
1−β with 0 ≤ β ≤ 1, so that λ(t,β) = (2at log gβ(t))−

1
2 .

Vasudeva and Divanji [6] have obtained the following limit inferior for the increments of

stable subordinators. Under certain condition on at, it was shown that lim inf
t→∞

Y (t)

λ1(t)
= 1a.s.
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Hwang et al.[2] and Bahram and Shehawy [1] studied this subsequence principle for incre-
ments of Gaussian processes in obtaining limsup. In this paper we study an almost sure limit
inferior behaviour for increments of stable subordinators for proper selection of subsequences
and extended to delayed sums.

2 Main results

Theorem 2.1 Let at, t > 0 be a non-decreasing function of t such i) 0 < at ≤ t, ii)
at → ∞, as t → ∞ and iii) at/t → 0 as t → ∞ . Let (tk) be an increasing sequence of
positive integers such that

lim sup
k−→∞

tk+1 − tk
atk

< 1.(1)

Then

lim inf
k−→∞

Y (tk)

λβ(tk)
= ε∗ a.s.,

where

ε∗ = inf{ε > 0 :
∑
k

(gβ(tk))
−ε−γ <∞, 0 ≤ β ≤ 1} and γ =

α

α− 1
< 0, 0 < α < 1.

Theorem 2.2 Let at, t > 0 be a nondecreasing function of t such i) 0 < at < t, ii)
at −→ ∞, as t −→ ∞ and iii) at/t → 0 as t → ∞ . Let (tk) be an increasing sequence
of positive integers such that

lim inf
k−→∞

tk+1 − tk
atk

> 1.(2)

Then

lim inf
k−→∞

Y (tk)

λβ(tk)
= 1 a.s.,

where 0 ≤ β ≤ 1.

In order to prove Theorem 2.1, we need to give the following Lemma

Lemma 2.1 (see [4] or [6]) Let X1 be a positive stable random variable with characteristic
function

E(exp{iuX1}) = exp

{
−|u|α

(
1− iu

|u|
tan

(
πα

2

))}
, 0 < α < 1. Then, as x −→ 0,

P (X1 ≤ x) ' x
α

2(1−α)√
2παB(α)

exp
{
−B(α)x

α
α−1

}
where

B(α) = (1− α)α
α−1
α (cos(

πα

2
))

1
α−1 .
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Proof of theorem 2.1. Equivalently, we show that for any given ε1 > 0, as k −→∞,

P (Y (tk) ≤ (ε∗ + ε1)λβ(tk) i.o.) = 1(3)

and
P (Y (tk) ≤ (ε∗ − ε1)λβ(tk) i.o.) = 0.(4)

The condition (1) implies that tk+1 < tk + atk , for large k and by Mijnheer [5], we have

P (Y (tk) ≤ (ε∗ + ε1)λβ(tk)) = P

X1 ≤
(ε∗ + ε1)λβ(tk)

a
1/α
tk

 .(5)

Observe that
(ε∗+ε1)λβ(tk)

a
1/α
tk

= (ε∗ + ε1)θα (log gβ(tk))
α−1
α taken as x, in the above lemma,

one can find a k1 and some conctant C1, such that for all k ≥ k1 ,

P

(
X1 ≤

(ε∗ + ε1)λβ(tk)

a
1/α
tk

)
≥ C1(log gβ(tk))

−1
2 exp

{
−(ε∗ + ε1)

α
α−1 log gβ(tk)

}
,

where gβ(t) = t
at

(log t)β(log at)
1−β and 0 ≤ β ≤ 1. Notice that from the definition of ε∗, we

have ε∗ ≥ 1 implies that there exists ε2 > 0 such that (ε∗ + ε1)
α
α−1 < (1 − ε2) < 1. Hence

P
(
X1 ≤ (ε∗+ε1)λβ(tk)

a
1/α
tk

)
≥ C1

(log gβ(tk))
1
2 (gβ(tk))

1−ε2
. Let lk = tk

atk
and mk = (log tk)

β(log atk)
1−β.

Since
atk
tk
→ 0, as k → ∞, lk is non-decreasing and mk → ∞, as k → ∞, one can find a

constant k2 ≥ k1 such that
l
ε2
k
m
ε2
k

(log lkmk)
1
2
≥ 1, whenever k ≥ k2. By condition (1), for all k ≥ k2,

we therefore have,

P
(
X1 ≤ (ε∗+ε1)λβ(tk)

a
1/α
tk

)
≥ C1(gβ(tk))

−1

= C1(
tk(log tk)

β(log atk )
1−β

atk
)−1

= C1(
atk
tk

(
log atk
log tk

)β 1
log atk

)

≥ C1(
atk
tk

(
log atk
log tk

) 1
log atk

)

= C1(g(tk))
−1

= C1
tk+1−tk
tk log tk

.

(6)

Observing that
∑∞
k=k2

tk+1−tk
tk log tk

≥
∫∞
c

dt
t log t

for some c > 0 and that
∫∞
c

dt
t log t

=∞. Hence from

(5) and (6), we get,
∞∑

k=k2

P (Y (tk) ≤ (ε∗ + ε1)λβ(tk) =∞.

The Condition (1 ) implies that tk+1 ≤ tk + atk , for large k one can observe that Y (tk)
′s are

mutually independent and hence by Borel-Cantelli Lemma, we have,

P (Y (tk) ≤ (ε∗ + ε1)λβ(tk) i.o) = 1,
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which establishes (3 ).
Now we complete the proof by showing that, for any ε1 ∈ (0, 1),

P (Y (tk) ≤ (ε∗ − ε1)λβ(tk) i.o) = 1.

From condition (1 ), we have tk+1 ≤ tk + atk , for large k and from Mijnheer [5], one can find
a k3 such that for all k ≥ k3,

P (Y (tk) ≤ (ε∗ − ε1)λβ(tk) i.o) = P (X(tk + atk)−X(tk) ≤ (ε∗ − ε1)λβ(tk) i.o).

Hence in order to prove (4), it is enough to show that

P (X(tk + atk)−X(tk) ≤ (ε∗ − ε1)λβ(tk) i.o) = 0.(7)

We know that t−
1
αX(t)

d
= X(1) which implies

P (X(tk + atk)−X(tk) ≤ (ε∗ − ε1)λβ(tk)) = P

X(1) ≤ (ε∗ − ε1)λβ(tk)

a
1/α
tk


and

(ε∗ − ε1)λβ(tk))

a
1/α
tk

= (ε∗ − ε1)θα (log(gβ(tk))
(α−1)/α .

By taking x = (ε∗ − ε1)θα (log(gβ(tk))
(α−1)/α, where gβ(t) = t

at
(log t)β(log at)

1−β,
in the above lemma, one can find a k4 and C2 such that for all k ≥ k4,

P

X(1) ≤ (ε∗ − ε1)λβ(tk)

a
1/α
tk

 ≤ C2

(log(gβ(tk)))1/2
exp

{
−(ε∗ − ε1)

α
(α−1) log gβ(tk)

}
.

Observe that using properties of {at}, one can find some constant C3 and k4 such that for
all k ≥ k4,

P
(
X(1) ≤ (ε∗ − ε1)θα

(
log(gβ(tk))

(α−1)/α
))

≤ C3

(gβ(tk))(ε
∗−ε1)

α
(α−1)

.

Notice that ε∗ = inf{ε > 0 :
∑
k(gβ(tk))

−ε−γ < ∞, 0 ≤ β ≤ 1} and γ = α
α−1 < 0,

0 < α < 1 which yields ε∗ ≥ 1.
Since ε1 ∈ (0, 1), choose ε1 sufficiently small one can find k5 such that for all k ≥ k5,

∞∑
k=k5

P

X(1) ≤ (ε∗ − ε1)λβ(tk)

a
1
α
tk

 ≤ ∞∑
k=k5

C3

(gβ(tk))(ε
∗−ε1)−γ

<∞,
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where γ = α
α−1 , 0 < α < 1.

By Borel-Cantelli Lemma, (7) holds which implies (4) holds and proof of the theorem is
completed.

Proof of Theorem 2.2
To prove the Theorem, it is enough to show that for any ε ∈ (0, 1),

P (Y (tk) ≤ (1 + ε)λβ(tk) i.o.) = 1(8)

and
P (Y (tk) ≤ (1− ε)λβ(tk) i.o.) = 0(9)

By the Theorem of Vasudeva and Divanji [6], we claim that

lim inf
k−→∞

Y (tk)

λβ(tk)
≥ lim inf

k−→∞

Y (tk)

λ1(tk)
≥ lim inf

t−→∞

Y (t)

λ1(t)
= 1 a.s.,

which establishes (9).
The condition (2) implies that there exists a k1 such that tk+1 > tk + atk , for all k ≥ k1.
This in turn implies that {Y (tk), k ≥ 1} is a sequence of mutually independent r.v.s. We
can observe that with a minor modification, the proof of (8) follows on similar lines of (3).
That is using Lemma 2.1, one can find C1 and k2 such that for all k ≥ k2.

P

(
X1 ≤

(1 + ε1)λβ(tk)

a
1/α
tk

)
≥ C1(g(tk))

−(1+ε1)
α
α−1

.

Choose ε
′
> 0 such that (1 + ε1)

α
α−1 < (1− ε′) < 1 and hence we have,

P

(
X1 ≤

(1 + ε1)λβ(tk)

a
1/α
tk

)
≥ C1(g(tk))

−(1−ε′ ).

Following similar arguments of proof of (5) and (6), we get
∑∞
k=k2

P (Y (tk) ≤ (1+ε1)λβ(tk)) =
∞, which in turn implies the proof of (8). Hence the proof of the Theorem is completed.

3 Similar result for delayed sums

Let {Xn, n ≥ 1} be a sequence of i.i.d strictly positive stable r.v.s with index α, 0 < α < 1.
Let {an, n ≥ 0} be a sequence of non-decreasing functions of positive integers of n such that

0 < an < n, for all n and we assume that an/n ↓ 0 as n→∞. Define λβ(n) = θαa
1
α
n (log n

an
+

β log log n+ (1− β) log log an)
α−1
α , where θα = (B(α))

1−α
α , B(α) = (1− α)α

α
1−α (cos(πα

2
))

1
α−1 ,

0 ≤ β ≤ 1 and 0 < α < 1 . Observe that the process has the property that n−1/αX(n)
and X(1) are identically distributed. Let Sn =

∑n
k=1Xk and set Mn = Sn+an − Sn, where

{Mn, n ≥ 1} is called a (forward) delayed sum (See Lai [3]). Define the the r.v.s, Xn =
X(n) − X(n − 1), n = 1, 2, ... ; X(0) = 0, then Sn =

∑n
k=1Xk with S0 = 0, which yields

Mn = Sn+an − Sn = X(n+ an) +X(n) = Y (n).
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Now we extend the Theorem 2.1 and Theorem 2.2 to {Mn, n ≥ 1} under the subsequence
principle.
Theorem 3.1 Let {an, n > 0} be a sequence of non-decreasing functions of positive integers
of n such that i) 0 < an ≤ n , n > 0, ii) an → ∞, as n → ∞ , and iii) an/n → 0, as
n→∞. Let (nk, k ≥ 1) be any increasing sequence of positive integers such that

lim sup
nk+1 − nk

ank
< 1.(10)

Then

lim inf
k−→∞

Mnk

λβ(nk)
= ε∗ a.s.,

where

ε∗ = inf{ε > 0 :
∑
k

(gβ(nk))
−εγ <∞, 0 ≤ α ≤ 1} and γ =

α

α− 1
, 0 < α < 1.

Proof
To prove the theorem it is sufficient to show that for any given ε1 ∈ (0, 1)

P (Mnk ≤ (ε∗ + ε)λβ(nk) i.o.) = 1(11)

and
P (Mnk ≤ (ε∗ − ε2)λβ(nk) i.o.) = 0.(12)

The proof of (11) is an immediate consequence of (3) and the proof of (12) follows on the
similar lines of Vasudeva and Divanji [6]. Hence the details are omitted.

Theorem 3.2 Let {an, n > 0} be a sequence of non-decreasing functions of positive integers
of n such that i) 0 < an ≤ n , n > 0, ii) an →∞, as n→∞ , and iii)an/n→ 0, as n→∞.

Let (nk, k ≥ 1) be any increasing sequence of positive integers such that lim inf
k→∞

nk+1 − nk
ank

> 1.

Then lim inf
k−→∞

Mnk

λβ(nk)
= 1 a.s.

The proof of Theorem 3.2 is a direct consequence of above Theorem 2.2 and hence the details
are omitted.
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