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1 Background and Introduction.

Let (X, d, T ) be a dynamical system, where (X, d) is a compact metric space and

T : X → X is a continuous map. The set M(X) of all Borel probability measures

is compact under the weak∗ topology. Denote by M(X,T ) ⊂ M(X) the subset of

all T -invariant measures and E(X,T ) ⊂ M(X,T ) the subset of all ergodic measures.

Multifractal analysis is concerned with the study of pointwise dimension of a Borel

measure µ (provided the limit exists):

dµ(x) = lim
ε→0

log µ(B(x, ε))

log ε
,

where B(x, ε) is an open ε-neighborhood of x. Set

Xα := {x ∈ X : dµ(x) = α}.

The purpose is to describe the set Xα. It is worthwhile to mention that the multifractal

analysis of Birkhoff average is closely related to the pointwise dimension of the Borel
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measure. We refer the reader to the references [4, 14, 20, 21, 22]. Here, we introduce

the general form of Pesin’s multifractal formalism in [12], or [2] as follows. Consider a

function g : Y → [−∞,+∞] in a subset Y of X. The level set

Kg
α = {x ∈ Y : g(x) = α}

are pairwise disjoint, and we obtain a multifractal decomposition of X given by

X = (X \ Y ) ∪
⋃

α∈[−∞,+∞]

Kg
α.

LetG be a function defined in the set of subsets ofX. Themultifractal spectrum : F :

[−∞,+∞]→ R of the pair (g,G) is defined by

F(α) = G(Kg
α),

where g may denote the Birkhoff averages, Lyapunov exponents, pointwise dimension

or local entropies and G may denote the topological entropy, topological pressure or

Hausdorff dimension.

Let (X,G) be a G−action topological dynamical system, where X is a compact

metric space with metric d and G a topological group. In this paper, we assume G is

a discrete countable amenable group. Recall that a group G is amenable if it admits

a left invariant mean(a state on `∞(G) which is invariant under left translation by G).

This is equivalent to the existence of a sequence of finite subsets {Fn} of G which are

asymptotically invariant, i.e.,

lim
n→+∞

|Fn M gFn|
|Fn|

= 0, for all g ∈ G.

Such sequences are called Følner sequences. For the detail of amenable group actions,

one may refer to Ornstein and Weisss pioneering paper [11].

The topological entropy of (X,G) is defined in the following way.

Let U be an open cover of X, the topological entropy of U is

htop(G,U) = lim
n→+∞

1

|Fn|
logN

(
UFn

)
,

where UFn =
∨
g∈Fn

g−1U . It is shown that htop(G,U) is not dependent on the choice

of the Følner sequences {Fn}. And the topological entropy of (X,G) is

htop(X,G) = sup
U
htop(G,U),

where the supremum is taken over all the open covers of X.

Bowen [1] introduced a definition of topological entropy on subsets inspired by

Hausdorff dimension. For an amenable group action dynamical system (X,G), we

define the Bowen topological entropy in the following way.
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Let {Fn} be a Følner sequence in G and U be a finite open cover of X. Denote

diam(U) := max{diam(U) : U ∈ U}. For n ≥ 1 we denote byWFn(U) the collection of

families U = {Ug}g∈Fn with Ug ∈ U . For U ∈ WFn(U) we call the integer m(U) = |Fn|
the length of U and define

X(U) =
⋂
g∈Fn

g−1Ug

= {x ∈ X : gx ∈ Ug for g ∈ Fn}.

For Z ⊂ X, we say that Λ ⊂
⋃
n≥1WFn(U) covers Z if

⋃
U∈ΛX(U) ⊃ Z. For s ∈ R,

define

M(Z,U , N, s, {Fn}) = inf
Λ
{
∑
U∈Λ

exp(−sm(U))}

and the infimum is taken over all Λ ⊂
⋃
j≥NWFj

(U) that covers Z. We note that

M(·,U , N, s, {Fn}) is a finite outer measure on X, and

M(Z,U , N, s, {Fn}) = inf{M(C,U , N, s, {Fn}) : C is an open set that contains Z}.

M(Z,U , N, s, {Fn}) increases as N increases. Define

M(Z,U , s, {Fn}) = lim
N→+∞

M(Z,U , N, s, {Fn})

and

hBtop({Fn}, Z,U) = inf{s :M(Z,U , s, {Fn}) = 0}
= sup{s :M(Z,U , s, {Fn}) = +∞}.

Set

hBtop({Fn}, Z) = sup
U
hBtop({Fn}, Z,U),

where U runs over all finite open covers of Z. We call hBtop({Fn}, Z) the Bowen topo-

logical entropy of (X,G) restricted to Z or the Bowen topological entropy of Z(w.r.t.

the Følner sequence {Fn}).
Similar to the Bowen topological entropy of subsets for Z−actions(see, for example,

Pesin [12]), it is easy to show that

hBtop({Fn}, Z) = lim
diam(U)→0

hBtop({Fn}, Z,U).

So the Bowen topological entropy can be defined in an alternative way.

For a finite subset F in G, we denote by

BF (x, ε) = {y ∈ X : dF (x, y) < ε}
= {y ∈ X : d(gx, gy) < ε, for any g ∈ F}. (1.1)
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Definition 1.1. For Z ⊆ X, s ≥ 0, N ∈ N, {Fn} a Følner sequence in G and ε > 0,

define

M(Z,N, ε, s, {Fn}) = inf
∑
i

exp(−s|Fni
|),

where the infimum is taken over all finite or countable families {BFni
(xi, ε)} such that

xi ∈ X,ni ≥ N and
⋃
iBFni

(xi, ε) ⊇ Z. The quantity M(Z,N, ε, s, {Fn}) does not

decrease as N increases and ε decreases, hence the following limits exists:

M(Z, ε, s, {Fn}) = lim
N→+∞

M(Z,N, ε, s, {Fn}),M(Z, s, {Fn}) = lim
ε→0
M(Z, ε, s, {Fn}).

Bowen topological entropy hBtop(Z, {Fn}) can be equivalently defined as the critical value

of the parameter s, where M(Z, s, {Fn}) jumps from +∞ to 0, i.e.,

M(Z, s, {Fn}) =

0, s > hBtop(Z, {Fn}),
+∞, s < hBtop(Z, {Fn}).

In [1] Bowen showed that htop(X,T ) = hBtop(X,T ) for any compact metric dynamical

system (X,T ). A Følner sequence {Fn} in G is said to be tempered (see Shulman [17])

if there exists a constant C which is independent of n such that

|
⋃
k<n

F−1
k Fn| ≤ C|Fn|, for any n. (1.2)

In Lindenstrauss [6], (1.2) is also called Shulman Condition.

The increasing condition

lim
n→+∞

|Fn|
log n

=∞. (1.3)

In [23], the authors prove Brin-Katok’s entropy formula [3] for amenable group action

dynamical systems. The statement of this formula is the following.

Theorem 1.1 (Brin-Katok’s entropy formula: ergodic case). Let (X,G) be a compact

metric G−action topological dynamical system and G a discrete countable amenable

group. Let µ be a G−ergodic Borel probability measure on X and {Fn} a tempered

Følner sequence in G with the increasing condition (1.3), then for µ almost everywhere

x ∈ X,

lim
δ→0

lim inf
n→+∞

− 1

|Fn|
log µ(BFn(x, δ))

= lim
δ→0

lim sup
n→+∞

− 1

|Fn|
log µ(BFn(x, δ)) = hµ(X,G).

Since this formula gives an alternative definition for metric entropy(known as local

entropy), we give the following definition of local entropy in amenable group action

case.
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Definition 1.2. Let (X,G) be a compact metric G−action topological dynamical sys-

tem and G a discrete countable amenable group. Denote by M(X) the collection of

Borel probability measures on X. For any µ ∈ M(X), x ∈ X,n ∈ N, ε > 0 and {Fn}
any Følner sequence in G, denote by

hlocµ (x, ε, {Fn}) = lim inf
n→+∞

− 1

|Fn|
log µ(BFn(x, ε)).

Then the (lower) local entropy of µ at x (along {Fn}) is defined by

hlocµ (x, {Fn}) = lim
ε→0

hlocµ (x, ε, {Fn})

and the (lower) local entropy of µ is defined by

hlocµ ({Fn}) =

∫
X

hlocµ (x, {Fn})dµ.

Similarly, we can define the upper local entropy.

In this case the common value will be denoted by

hlocµ (x, {Fn}) := hlocµ (x, {Fn}) = h
loc

µ (x, {Fn}).

And then, for any G-invariant Borel probability measure µ, and α ≥ 0, define

K̂α(µ) = {x ∈ X : hlocµ (x, {Fn}) = α}.

In [20], Takens and Verbitski defined the (q, µ)-entropy hµ(T, q, ·) by extending the

definition of generalized Hausdorff dimension dimq
µ(·) and showed the following formula

htop(K̂α(µ)) = qα + hµ(T, q, K̂α(µ)),

where htop(·) denotes the topological entropy. Later, in 2007, Yan and Chen [15] con-

sidered the multifractal spectra associated with Poincaré recurrences and established

an exact formula on multifractal spectrum of local entropies for recurrence time.

2 Preliminaries and main results

Let µ ∈M(X1, T1) be an invariant Borel measure. For α ≥ 0, define

Kα(µ) = {x ∈ X1 : hlocµ (x, {Fn}) = α}.

In this paper, we are interested in local entropies and spectra associated for amenable

group actions, we study the size of the set Kα(µ).

Next, we will try to give our result by defining the weighted (G, q, t)-energy. Let µ

be an invariant non-atomic Borel measure. Without loss of generality we may assume
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that µ is positive on any non-empty open set. For any at most countable collection

G = {B{Fn}(x, ε)}, any q, t ∈ R define the (G, q, t)-free energy of G by

Fµ(G, q, t) =
∑

BFn (x,ε)∈G

µ(BFn(x, ε))q exp(−t|Fn|).

For any given set Z ⊂ X1, Z 6= ∅, and numbers q, t ∈ R, ε > 0, N ∈ N, put

Mµ,c(Z, q, t, ε, N) = inf
G
Fµ(G, q, t)

where the infimum is taken over all finite or countable collections G = {BFni
(xi, ε)}

with xi ∈ Z and ni ≥ N such that Z ⊂
⋃
BFn (x,ε)∈G BFni

(xi, ε). To complete the

definition, we assume that

Mµ,c(∅, q, t, ε, N) = 0

for any q, t, ε and N. The quantities Ma
µ,c(Z, q, t, ε, N) are non-decreasing in N , hence

the following limit exists:

Mµ,c(Z, q, t, ε) = lim
N→∞

Mµ,c(Z, q, t, ε, N) = sup
N>1

Mµ,c(Z, q, t, ε, N).

Since we consider covers with centers in a given set, the qualities Mµ,c(Z, q, t, ε) are not

necessarily monotonic with respect to the set Z. We enforce monotonicity by putting

Mµ(Z, q, t, ε) = sup
Z′⊂Z

Mµ,c(Z
′
, q, t, ε).

We now state (without proof) some basic facts. And these are standard proofs of

Hausdorff dimension type and similar to the properties of topological entropy in [1],

topological pressure in [13].

Lemma 2.1. For any t ∈ R the set function Mµ(Z, q, t, ε) has the following properties:

(1) Mµ(∅, q, t, ε) = 0;

(2) Mµ(Z1, q, t, ε) ≤Mµ(Z2, q, t, ε) for any Z1 ⊂ Z2;

(3) Mµ(
∞⋃
i=1

Zi, q, t, ε) ≤
∞∑
i=1

Mµ(Zi, q, t, ε) for any Zi ⊂ X, i = 1, 2, · · · .

Remark 2.1. It is easily to check that Mµ(·, q, t, ε) is an outer measure. And Mµ(Z, q, t, ε)

plays a similar role with the M(Z, ε, s) in Definition 1.1.

Lemma 2.2. There exists a critical value hµ({Fn}, q, Z, ε) ∈ [−∞,∞] such that

Mµ(Z, q, t, ε) =

0 if t > hµ({Fn}, q, Z, ε)

∞ if t < hµ({Fn}, q, Z, ε).
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Lemma 2.3. The following holds:

(1) hµ({Fn}, q, ∅, ε) = −∞;

(2) hµ({Fn}, q, Z1, ε) ≤ hµ({Fn}, q, Z2, ε) for Z1 ⊂ Z2;

(3) hµ({Fn}, q,
∞⋃
i=1

Zi, ε) = sup
i
hµ({Fn}, q, Zi, ε) where Zi ⊂ X1, i = 1, 2, · · · .

Definition 2.1. The ({Fn}, q, µ)-entropy of Z is

hµ({Fn}, q, Z) = lim sup
ε→0

hµ({Fn}, q, Z, ε).

Similar to Lemma 2.3, we state (without proof) some basic properties of hµ(G, q, ·).

Proposition 2.1. The following holds:

(1) hµ({Fn}, q, ∅) = −∞;

(2) hµ({Fn}, q, Z1) ≤ hµ({Fn}, q, Z2) for Z1 ⊂ Z2;

(3) hµ({Fn}, q,
∞⋃
i=1

Zi) = sup
i
hµ({Fn}, q, Zi) where Zi ⊂ X1, i = 1, 2, · · · .

In this paper, we will prove

Theorem 2.1. Let µ be a non-atomic G-invariant measure and positive on any non-

empty open set. For any α ≥ 0 and every q ∈ R, we have

hBtop({Fn}, Kα(µ)) = qα + hµ({Fn}, q,Kα(µ)).

3 Proof of Main results

Proposition 3.1. Let µ be non-atomic G-invariant measure and positive on any non-

empty open set. For any subset Z ⊂ X one has hµ({Fn}, 0, Z) = hBtop({Fn}, Z).

Proof. If Z = ∅, the statement is obvious, since both sides are equal to −∞. Suppose

that Z 6= ∅, we start by showing hµ({Fn}, 0, Z) ≥ hBtop({Fn}, Z). Let U be an open

cover of X and choose any ε <
γ(U)

2
with γ(U) denotes the Lebesgue number of U .

Consider an arbitrary collection G = {BFni
(xi, ε)} with ni > N such that xi ∈ Z and

Z ⊂
⋃
BFni

(xi,ε)∈G BFni
(xi, ε). For the fixed U , we can choose Uni

∈ WFni
such that

BFni
(xi, ε) ⊂ Uni

. Let ΓG = {Uni
}. Obviously, ΓG covers Z and

Fµ(G, 0, t) =
∑

BFni
(xi,ε)∈G

exp(−t|Fni
|) =

∑
Uni∈ΓG

exp(−t|Fni
|).
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Since G is arbitrary, we conclude that

Mµ,c(Z, 0, t, ε, N) = inf
G
Fµ(G, 0, t) ≥M(Z,U , t, N).

Taking limits as N →∞,

M(Z,U , t) ≤Mµ,c(Z, 0, t, ε) ≤Mµ(Z, 0, t, ε).

Therefore,

hBtop({Fn}, Z,U) ≤ hµ({Fn}, 0, Z, ε)

for any ε <
γ(U)

2
. Let ε→ 0, we have

hBtop({Fn}, Z, {Ui}ki=1) ≤ lim sup
ε→0

hµ({Fn}, 0, Z, ε) = hµ({Fn}, 0, Z),

which yields that

hBtop({Fn}, Z) ≤ hµ({Fn}, 0, Z).

Let us now show the opposite inequality. Assume that hµ({Fn}, 0, Z)−hBtop({Fn}, Z) >

3γ > 0. Then there exists ε > 0 such that

hµ({Fn}, 0, Z, ε)− hBtop({Fn}, Z) > 2γ.

By definition of topological entropy, there exists an open cover U with diam(U) < ε

such that

hµ({Fn}, 0, Z, ε)− hB({Fn}, Z,U) > γ. (3.4)

Let Z ′ be an arbitrary subset of Z and Γ = {Uni
} be an arbitrary collection of strings

covering Z ′. We may assume that Uni
∩ Z ′ 6= ∅ for Uni

∈ Γ. Otherwise we just delete

those strings and obtain a smaller collection of strings, which still covers Z ′. For any

Uni
∈ Γ, we choose an arbitrary xUni

∈ Uni
∩ Z ′. Thus,

xUni
∈ Uni

⊂ BFni
(xUni

, ε).

Therefore, the collection G = {BFn(xUni
, ε)} is a centered cover of Z ′. From the defini-

tion of weighted free energies, we obtain

Mµ,c(Z
′, 0, s, ε) ≤M(Z ′,U , s)

for any s ∈ R. Furthermore,

Mµ(Z, 0, s, ε) = sup
Z′⊂Z

Mµ,c(Z
′, 0, s, ε) ≤M(Z,U , s).

The last inequality holds due to the monotonicity ofM(.,U , s) with respect to the first

argument. Finally, we get hµ({Fn}, 0, Z, ε) ≤ h({Fn}, Z,U) which is contradicted with

(3.4).

8



Remark 3.1. If q = 0, Theorem 2.1 can be showed by Proposition 3.1 easily. We will

prove Theorem 2.1 for each q ∈ R in next section.

Proof of Theorem 2.1 Consider α ≥ 0 and the corresponding level set

Kα(µ) = {x ∈ X1 : hlocµ (x, {Fn}) = α}

= {x ∈ X1 : lim
ε→0

lim sup
n→∞

− log µ(Ba
Fn

(x, ε))

|Fn|
= lim

ε→0
lim inf
n→∞

− log µ(Ba
Fn

(x, ε))

|Fn|
= α}.

Choose some monotonic sequence εM → 0 as M → ∞ and this sequence will be fixed

for the rest of this section. Let δ > 0 and put

Kα,M =
{
x ∈ Kα(µ) : α− δ < lim inf

n→∞

− log µ(BFn(x, εM))

|Fn|

}
.

Obviously, Kα,M ⊂ Kα,M+1 and Kα(µ) =
⋃∞
M=1Kα,M . Due to the monotonicity of

− log µ(BFn(x, ε))

|Fn|
with respect to ε, for each x ∈ Kα(µ) and every ε > 0 one has

lim sup
n→∞

− log µ(BFn(x, ε))

|Fn|
≤ α.

Fix x ∈ Kα,M , there exists N0 = N0(x, δ, εM) such that

α− δ < − log µ(BFn(x, εM))

|Fn|
≤ α + δ

for all n ≥ N0. Put

Kα,M,N = {x ∈ Kα,M : N0 = N0(x, δ, εM) < N}.

Again, it is easy to see that Kα,M,N ⊂ Kα,M,N+1 and Kα,M =
⋃∞
N=1Kα,M,N . Using the

properties of weighted topological entropy, we conclude that

hBtop({Fn}, Kα(µ),U) = lim
M→∞

lim
N→∞

hBtop({Fn}, Kα,M,N ,U).

Lemma 3.1. Suppose U is an open cover respect to X. Consider Kα,M,N for some

M,N ∈ N such that εM < γ(U)
2

, where γ(U) denotes the Lebesgue number of U . Then

for s ≥ qα + |q|δ + t one has

M({Fn}, Kα,M,N ,U , s) ≤Mµ,c({Fn}, Kα,M,N , q, t, εM).

Proof. Suppose that n > N and Gn = {BFni
(xi, εM)} is an arbitrary cover of Kα,M,N

with xi ∈ Kα,M,N such that ni ≥ n ≥ N for all i. Then for every xi, we can get some

string Uni
satisfying Bni

(xi, εM) ⊂ Uni
, i.e., there exists Γn := {Uni

} such that

Kα,M,N ⊂
⋃

BFni
(xi,εM )∈Gn

Bni
(xi, εM) ⊂

⋃
Uni∈Γn

Uni
.
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Since xi ∈ Kα,M,N for all i and ni ≥ n > N , we get

exp(−(α + δ)|Fni
|) ≤ µ(BFni

(xi, εM)) ≤ exp(−(α− δ)|Fni
|).

If q ≥ 0, then µ(BFni
(xi, εM))q ≥ exp(−q(α + δ)|Fni

|) and∑
BFni

(xi,εM )∈Gn

µ(BFni
(xi, εM))q exp(−t|Fni

|) ≥
∑

BFni
(xi,εM )∈Gn

exp(−|Fni
|(qα + qδ + t))

≥
∑

Uni∈Γn

exp(−|Fni
|s)

≥M(Kα,M,N ,U , s, n)

(3.5)

for s ≥ qα + qδ + t. On the other hand, if q ≤ 0, then µ(BFni
(xi, εM))q ≥ exp(−(α −

δ)q|Fni
|) and∑

BFni
(xi,εM )∈Gn

µ(BFni
(xi, εM))q exp(−t|Fni

|) ≥
∑

BFni
(xi,εM )∈Gn

exp(−|Fni
|(qα− qδ + t))

≥
∑

Uni∈Γn

exp(−|Fni
|s)

≥M(Kα,M,N ,U , s, n)

(3.6)

for s ≥ qα− qδ + t. Together (3.5) with (3.6), we have

M(Kα,M,N ,U , s, n) ≤Mµ,c(Kα,M,N , q, t, εM , n).

Let n→∞;

M(Kα,M,N ,U , s) ≤Mµ,c(Kα,M,N , q, t, εM).

Lemma 3.2. Suppose Kα,M,N for some M,N ∈ N and U is an open cover of X satisfy

diam(U) < εM
2

. Then for s ≤ qα− |q|δ + t one has

Mµ(Kα,M,N , q, t, εM) ≤M(Kα,M,N ,U , s).

Proof. Fix some integers M,N and let Z ⊂ Kα,M,N , Z be a nonempty set. Since the

open cover U satisfy diam(U) < εM
2

, we can choose any n > N and let Γn = {Uni
} be

an arbitrary collection of strings covering Z with ni ≥ n. Without loss of generality we

may assume that Uni
∩ Z 6= ∅ for each Uni

∈ Γn. Pick any xUni
∈ Uni

∩ Z. It follows

from diam(U) < εM
2

that

Uni
⊂ BFni

(xUni
, εM).
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The collection BFn(x, εM) is centered cover of Z. Since xUni
∈ Z ⊂ Kα,M,N and n > N ,

one has

exp(−|Fni
|(α + δ)) ≤ µ(BFn(xUFni

, ε)) ≤ exp(−|Fni
|(α− δ))

For q ≥ 0

Mµ,c(Z, q, t, εM , n) ≤
∑

Uni∈Γn

µ(Bn(xUni
, εM))q exp(−nit)

≤
∑

Uni∈Γn

exp(−|Fni
|(qα− qδ + t))

≤
∑

Uni∈Γn

exp(−|Fni
|s)

for s ≤ qα− qδ + t. Since Γn is arbitrary, we get

Mµ,c(Z, q, t, εM , n) ≤M(Z,U , s, n).

Let n→∞,

Mµ,c(Z, q, t, εM) ≤M(Z,U , s) ≤M(Kα,M,N ,U , s).

Moreover,

Mµ(Kα,M,N , q, t, εM) ≤M(Kα,M,N ,U , s). (3.7)

For q ≤ 0, we have

µ(BFni
(xUni

, εM))q ≤ exp(−|Fni
|q(α + δ)).

Hence,

Mµ,c(Z, q, t, εM , n) ≤
∑

Uni∈Γn

µ(BFn(xUa
ni
, εM))q exp(−|Fni

|t)

≤
∑

Uni∈Γn

exp(−|Fni
|(qα + qδ + t))

≤
∑

Uni∈Γn

exp(−|Fni
|s)

for s ≤ qα + qδ + t. Similar to the case q > 0, we can get

Ma
µ (Kα,M,N , q, t, εM) ≤ m(Kα,M,N ,U , s). (3.8)

Together (3.7) with (3.8), we complete the proof.

Finally, we prove Theorem 2.1. By the definition of Bowen topological entropy, we

only need to show

hBtop({Fn}, Kα(µ)) = qα + hµ({Fn}, q,Kα(µ)).
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We may assume that Kα(µ) 6= ∅. Otherwise, the statement is obvious, since both sides

are equal to −∞. When Kα(µ) 6= ∅, we divide the proof into two steps:

Step 1: hBtop({Fn}, Kα(µ)) ≤ qα + hµ({Fn}, q,Kα(µ)). Suppose that the opposite is

true: let

γ =
1

4
(hBtop({Fn}, Kα(µ))− qα− hµ({Fn}, q,Kα(µ))) > 0.

Clearly,

hBtop(Kα(µ)) = lim
diam(U)→0

hBtop({Fn}, Kα(µ),U).

There exists a family of open covers U such that

hBtop({Fn}, Kα(µ),U) > qα + hµ({Fn}, q,Kα(µ)) + 3γ.

Let δ > 0 be an arbitrary positive number if q = 0 and δ = γ
2|q| if |q| > 0. Consider

Kα,M,N defined above, choose sufficiently large M,N such that the following three

conditions are satisfied:

hBtop({Fn}, Kα,M,N ,U) > qα + hµ({Fn}, q,Kα(µ)) + 2γ,

εM < δ, hµ({Fn}, q,Kα(µ)) +
γ

2
≥ hµ({Fn}, q,Kα(µ), εM).

(3.9)

This is possible because

hBtop({Fn}, Kα(µ), {Ui}ki=1) = lim
M→∞

lim
N→∞

hBtop({Fn}, Kα,M,N , {Ui}ki=1)

and

hµ({Fn}, q,Kα(µ)) = lim sup
ε→0

hBµ ({Fn}, q,Kα(µ), ε).

By the definition of hBtop({Fn}, Kα,M,N , {Ui}ki=1) , the inequality (3.9) implies

M(Kα,M,N , {Ui}ki=1, qα + hµ({Fn}, q,Kα(µ)) + 2γ)) =∞.

It follows from s = qα+hµ({Fn}, q,Kα(µ)) + 2γ, t = hµ({Fn}, q,Kα(µ)) + γ−|q|δ and

Lemma 3.1 that

Mµ,c(Kα,M,N , q, hµ({Fn}, q,Kα(µ)) + γ − |q|δ, εM) =∞.

Moreover,

Mµ(Kα,M,N , q, hµ({Fn}, q,Kα(µ)) + γ − |q|δ, εM) =∞. (3.10)

Here, we arrive at a contradiction with the assumption above. Indeed,

hµ({Fn}, q,Kα(µ)) + γ − |q|δ ≥hµ({Fn}, q,Kα(µ)) +
γ

2

≥hµ({Fn}, q,Kα(µ), εM)

≥hµ({Fn}, q,Kα,M,N , εM)
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and therefore one must have

Mµ(Kα,M,N , q, hµ(T1, q,Kα(µ)) + γ − |q|δ, εM) = 0

which contradicts (3.10).

Step 2: hBtop({Fn}, Kα(µ)) ≥ qα + hµ({Fn}, q,Kα(µ)). Suppose that the opposite is

true: let

γ =
1

4
(qα + hµ({Fn}, q,Kα(µ))− hBtop({Fn}, Kα(µ))) > 0.

By hµ({Fn}, q,Kα(µ)) = lim sup
ε→0

hµ({Fn}, q,Kα(µ), ε), we can choose a decreasing se-

quence εM → 0 such that

hµ({Fn}, q,Kα(µ)) = lim
M→∞

hµ({Fn}, q,Kα(µ), εM).

Let δ > 0 be an arbitrary positive number if q = 0 and δ = γ
2|q| if |q| > 0. Choose

sufficiently large M such

εM < δ, hµ({Fn}, q,Kα(µ), εM) > hµ({Fn}, q,Kα(µ))− γ

2
.

Since

hBtop({Fn}, Kα(µ)) = lim
diam(U)→0

hB(Kα(µ),U).

One can find a family of open covers U such that

diam(U) <
εM
2

and

qα + hµ({Fn}, q,Kα(µ)) > h({Fn}, Kα(µ),U) + 3γ.

Furthermore, consider Kα,M,N defined above, we can get

qα + hµ({Fn}, q,Kα(µ)) > hBtop({Fn}, Kα,M,N ,U) + 2γ (3.11)

hµ({Fn}, q,Kα(µ), εM)− γ ≤ hµ({Fn}, q,Kα,M,N , εM) (3.12)

for M,N large enough. This is possible because

hBtop({Fn}, Kα(µ), {Ui}ki=1) = lim
M→∞

lim
N→∞

hBtop({Fn}, Kα,M,N , {Ui}ki=1)

and

hµ({Fn}, q,Kα(µ), εM) = lim
M→∞

lim
N→∞

hµ({Fn}, q,Kα,M,N , εM).

By the definition of hBtop({Fn}, Kα,M,N ,U) , the inequality (3.11) implies

M(Kα,M,N ,U , qα + hµ({Fn}, q,Kα(µ))− 2γ) = 0.
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It follows from s = qα + hµ(T, q,Kα(µ)) − 2γ, t = hµ({Fn}, q,Kα(µ)) − γ + |q|δ and

Lemma 3.2 that

Mµ(Kα,M,N , q, hµ({Fn}, q,Kα(µ))− γ + |q|δ, εM) = 0. (3.13)

Here, we arrive at a contradiction with the assumption above. Indeed, by (3.12)

hµ({Fn}, q,Kα(µ))− γ + |q|δ ≤hµ({Fn}, q,Kα(µ))− γ

2

≤hµ({Fn}, q,Kα(µ), εM)− γ
≤hµ({Fn}, q,Kα,M,N , εM).

Therefore one must have

Mµ(Kα,M,N , q, hµ({Fn}, q,Kα(µ))− γ + |q|δ, εM) =∞

which contracts (3.13).
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