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Abstract. We propose a valuation of European call option with fuzzy
volatility depending on time. The principle in this valuation where other
parameters of option pricing model are supposed to be non fuzzy, con-
sists in replacing volatility by its central value as defined by Bodjanova
(see Bojanova 2005 [13]). After having given a sufficient condition guar-
anteeing the equality of the exact price of European call option with its
price when fuzzy volatility is replaced by its central value, a case study
is carried out to show the application of the approach suggested.
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1. Introduction

The theory of option pricing started its long history back in 1900 when the
French mathematician Louis Bachelier deduced an option pricing formula in
his doctoral thesis (see [2]). He was the first who had the innovative idea
of using a stochastic process as a model for the price evolution of stocks.
However, option pricing theory really made progress in 1973 (see [3] and [11])
when Fisher Black and Myron Scholes, in cooperation with Robert Merton,
derived an option pricing formula that only depends on the actual stock price,
the exercise (strike) price, the risk-free interest rate, the volatility of the stock
and the expiry date (maturity).

The Black-Scholes model (see for example [16], [7] and [15]) for pricing
options at time t = t∗ is based on a stochastic differential equation (SDE) of
the form

dX(t) = X(t)[µ(t,X(t))dt+ σ(t,X(t))dB(t)] (1.1)
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where X(t) ≥ 0 denotes the asset price that is a function of time t. In
particular (see [16]), we consider the time interval t∗ ≤ t ≤ T with an actual
time t∗ ≥ 0 and T > 0 being the maximum duration of associated European
options written on the asset. It is clear that only the actual asset price X∗ ≡
X(t∗) and historical data X(t) (t < t∗) are available. The functions µ(t,X)
and σ(t,X) are the drift and the local volatility of the stochastic price process
X(t) for the asset. The symbol B(t) designates the standard Wierner process
(see [8]).

It is known (see [16]) that by virtue of no arbitrage (i.e. µ(t,X) = r > 0
is the constant risk-free interest rate), the actual price C(X(t), t) at time t of
an option with maturity T on the asset with actual price X(t) satisfied the
Black-Scholes partial differential equation (BSPDE)

∂C(X, t)

∂t
+

1

2
X2σ2(t,X)

∂2C(X, t)

∂X2
+ rX

∂C(X, t)

∂X
− rC(X, t) = 0. (1.2)

The equation (1.2) combined with the terminal condition

C(X,T ) = h(X) (1.3)

where the payoff function attains the form

h(X) =

{
max(X −K, 0) for call options
max(K −X, 0) for put options

(1.4)

with strike price K constitutes the option pricing model. Frequently (see
[16]), the natural boundary conditions

C(0, t) =

{
0 (0 ≤ t ≤ T ) for call options
K (0 ≤ t ≤ T ) for put options

(1.5)

are also imposed.
The option pricing model involves five parameters : X, T , K, r and σ.

Except for the volatility σ, all others are directly observable parameters (see
[8]).

When σ(t,X) ≡ σ is constant, the famous formula of Black-Scholes (see
[3]) give the value of call price C(X, t) of European call option. However,
the actual volatilities can not be expected to be constants where one obvious
evidence is the implied volatility smile. The volatilities do vary from time to
time and exhibit uncertainty properties (see [14]).

In this paper, we consider the option pricing model (1.2)-(1.3) for an
European call option when σ(t,X) ≡ σ(t) is only function of time t and fuzzy.
When σ(t) is non fuzzy (see [8]), the value of call price C(X, t) is given by

C(X, t) = XN(d1)−Ke−rτN(d2) (1.6)

where

d1 =
lnX

K + rτ + 1
2

∫ τ

0
σ2(u)du√∫ τ

0
σ2(u)du

, (1.7)

d2 = d1 −

√∫ τ

0

σ2(u)du, (1.8)
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N denotes the cumulative distribution function of a standard normal variable
and τ = T − t denotes the time for expiration.

Incompleteness is one facet of uncertainty and randomness is the other,
and since there may not be enough data available to develop a probabilistic
distribution for σ(t), it becomes imperative then to use fuzzy set theory to
model the uncertainty of σ(t) in (1.6) in order to obtain a more realistic value
of call price C(X, t) i.e. our objective is to use fuzzy set theory in order to
have a better real approximation of the value of σ(t). In other words, one will
have {

C(X, t) = XN(d1)−Ke−rτN(d2)
σ(t) ≃ σ̃(t)

(1.9)

where σ̃(t) is real approximation of a fuzzy number σ(t).
In the literature, this type of approach was already used for constant

volatility (see for example [14]).
The plan of this paper is as follows. In section 2, we summarize some

basic results of fuzzy set theory allowing us to approximate a fuzzy number
by a real number. In section 3 the valuation of European call option with
fuzzy volatility depending on time is carried out. Finally in section 4, we
carry out a case study to show the relevance of the method suggested

2. Basic results of fuzzy set theory

In this section, we introduce certain terminologies, notations and definitions
that will be used in the sequel.

Definition 2.1. Let X be a universal set and A a subset of X. The fuzzy set
A is a set of ordered pairs

A = {(x, µA(x))|x ∈ X} (2.1)

where

µA : X → [0, 1] (2.2)

is a mapping where the range µA(x) of x ∈ X is called the membership
function or grade of membership (also degree of compatibility or degree of
truth) of x in A.

Definition 2.2. Let A be a fuzzy set in X. The support of A, denoted by S(A),
is the crisp set of all x ∈ X such that µA(x) > 0.

Definition 2.3. The α - level set (or α - cut) of a fuzzy set A of X is a classical
set (or crisp interval) denoted by Aα and defined as

Aα = {x ∈ X|µA(x) ≥ α} (2.3)

Definition 2.4. Let A be a fuzzy set in X. The height h(A) of A is defined as

h(A) = sup
x∈X

µA(x) (2.4)

If h(A) = 1 then the fuzzy set A is called a normal fuzzy set.
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Definition 2.5. Let A be a fuzzy set in X. A is convex if and only if

µA[λx1 + (1− λ)x2] ≥ min[µA(x1), µA(x2)] (2.5)

for all x1, x2 in X and all λ ∈ [0, 1].

Definition 2.6. A fuzzy number (or more generally a fuzzy quantity) N is a
convex and normal fuzzy set of the real line R.

Remark 2.7. In many situations we often summarize numerical information,
as for example, around Rs. 5000, near zero, about ten degrees Celsius, about
15− 20 percent, possibly not less than 2000 units. These sorts of numerically
transmittable data are not precise or crisp in terms of classical mathematical
reasoning, but are very meaningful in terms of human communication, per-
ception and reasoning. These imprecise data could be the examples of what
are called fuzzy numbers (see [1]).

The membership function of a fuzzy number N has the following prop-
erties (see [1]):

(i) µN (x) = 0, outside of some interval [a, d]

(ii) There are real numbers b and c, a ≤ b ≤ c ≤ d such that µN (x) is
monotone increasing on the interval [a, b] and monotone decreasing on
the interval [c, d].

(i) µN (x) = 1, for each x ∈ [b, c]

Thus, in accordance with Bodjanova (see S. Bodjanova 2005 [13]), we assume
that the membership function of a fuzzy number N can be expressed for all
x ∈ R in the form

µN (x) =


g(x) when x ∈ [a, b)
1 when x ∈ [b, c]
h(x) when x ∈ (c, d]
0 otherwise,

(2.6)

where a, b, c, d are real numbers such that a < b ≤ c < d, g is a real valued
function that is increasing and is right continuous and h is a real valued
function that is decreasing and is left continuous. A fuzzy number N with
shape functions g and h defined by

g(x) = (
x− a

b− a
)n (2.7)

h(x) = (
d− x

d− c
)n (2.8)

respectively, where n > 0, will be denoted by N = ⟨a, b, c, d⟩n.
If N is a fuzzy number, then Nα is a closed interval of R for all α ∈ [0, 1],

and, one introduces an alternative notation of Nα as (see [1])

Nα = [m1(α),m2(α)] ∈ R (2.9)

where m1(α) and m2(α) are respectively the lower and upper bounds of the
interval Nα.
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Proposition 2.8. [13]
If N = ⟨a, b, c, d⟩n then for all α ∈ [0, 1],

Nα = [g−1(α), h−1(α)] (2.10)

Cardinality of a fuzzy number N described by (2.6) is the value of the
integral

cardN =

∫ d

a

µN (x)dx =

∫ 1

0

(m2(α)−m1(α))dα. (2.11)

Proposition 2.9. [13]
If N = ⟨a, b, c, d⟩n then

CardN =
b− a

n+ 1
+ (c− b) +

d− c

n+ 1
(2.12)

Definition 2.10. [13]
The median value of a fuzzy number N characterized by (2.6) is the real

number MN from the support of N such that∫ MN

a

µN (x)dx =

∫ d

MN

µN (x)dx (2.13)

For practical purposes (see [13]) expression (2.13) can be rewritten as∫ MN

a

µN (x)dx =
CardN

2
(2.14)

One can classify fuzzy numbers with respect to the distribution of their
cardinality as follows (see [13]) : a fuzzy number N is called

(i) a fuzzy number with equally heavy tails if
∫ b

a
µN (x)dx =

∫ d

c
µN (x)dx

(ii) a fuzzy number with light tails if max{
∫ b

a
µN (x)dx,

∫ d

c
µN (x)dx} ≤

1
2

∫ d

a
µN (x)dx

(iii) a fuzzy number with a heavy left tail if
∫ b

a
µN (x)dx < 1

2

∫ d

a
µN (x)dx

(iv) a fuzzy number with a heavy right tail if
∫ d

c
µN (x)dx > 1

2

∫ d

a
µN (x)dx

Let us identify the fuzziness of MN by its membership grade µN (MN ).
We then have the following propositions (see [13]):

Proposition 2.11. If N is a fuzzy number with light tails then

MN =
b+ c

2
+

1

2
(

∫ d

c

µN (x)dx−
∫ b

a

µN (x)dx) (2.15)

and µN (MN ) = 1.

Proposition 2.12. Let N = ⟨a, b, c, d⟩n then

MN = a+ (
(b− a)n

2
(n+ 1)CardN)

1
n+1 (2.16)

if N has a heavy left tail, and

MN = d− (
(d− c)n

2
(n+ 1)CardN)

1
n+1 (2.17)
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if N has a heavy right tail.

Definition 2.13. The center of gravity gN of the support of a fuzzy number
N weighted by the membership grade is given by

gN =

∫ d

a
xµN (x)dx∫ d

a
µN (x)dx

(2.18)

Definition 2.14. The center of the core (the central modal value) MON of a
fuzzy number N is given by

MON =
b+ c

2
(2.19)

Remark 2.15. The value of MON does not take into account the shape of the
membership function of N. Fuzzy numbers with the same core have the same
center of core regardless of their tails. Therefore MON represents only the
crisp part of N. The value of gN takes into account the entire membership
function of N [13].

Definition 2.16. [13]
Let N be a fuzzy number. Let gN , MON and MN be the center of

gravity, the center of core and the median value of N, respectively. Then the
central value of N is given by

CN =
gN .µN (gN ) +MON .µN (MON ) +MN .µN (MN )

µN (gN ) + µN (MON ) + µN (MN )
(2.20)

Remark 2.17. The central value can be used as a crisp (i.e. classical) approx-
imation of a fuzzy number (see [13]).

3. Valuation of European call option with fuzzy volatility
depending on time

In this section, we consider the pricing option model

∂C(X, t)

∂t
+

1

2
X2σ2(t)

∂2C(X, t)

∂X2
+ rX

∂C(X, t)

∂X
− rC(X, t) = 0. (3.1)

with the payoff

C(X,T ) = max(X −K, 0) (3.2)

and the fuzzy local volatility function σ(t) defined on Ω = [0, T ]. All the other
parameters are supposed to be non fuzzy.

We always assume σ(t) ∈ Cλ, 0 < λ ≤ 1, i.e. the fuzzy local volatility is
Holder continuous in Ω with holder index λ and it satisfies for all (t, t0) ∈ Ω2

and inequality of the form

|σ(t)− σ(t0)| ≤ L|t− t0|
λ
2 . (3.3)

Moreover, we take the fuzzy local volatility function σ strictly positive and
bounded with 0 < σmin ≤ σ(t) ≤ σmax < ∞.
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Let us consider for all t ∈ Ω,

σ(t) = ⟨0, σmin, σmax, δ⟩n (n > 0) (3.4)

where δ = σmax + 10−n is a real such that σmax < δ.
The main results of this part are the following :

Theorem 3.1. The central value Cσ of σ is given by

Cσ =
(2n+ 1)(σmin + σmax) + δ

4(n+ 1)
(3.5)

Lemma 3.2. Let
C(X(t), t), the actual price at time t of a European call option with

exact fuzzy volatility depending on time σ(t), with maturity T on the asset,
with actual price X(t).

C̃(X(t), t), the actual price at time t of a European call option with
approximate fuzzy volatility (central value) Cσ , with maturity T on the asset,
with actual price X(t).

If n > 0 is close to 0 then

C(X(t), t) = C̃(X(t), t) (3.6)

Proof. of theorem 3.1
Taking account of (2.6), (2.7) and (2.8), the membership of σ is given

by

µN (x) =


( x
σmin

)n when x ∈ [0, σmin)

1 when x ∈ [σmin, σmax]
( δ−x
δ−σmax

)n when x ∈ (σmax, δ]

0 otherwise,

(3.7)

A simple integral calculus makes it possible to see that σ is a fuzzy num-
ber with light tails. Consequently, taking into account proposition 2.11, it is
deduced that the median value of σ is:

Mσ =
n(σmin + σmax) + δ

2(n+ 1)
(3.8)

and that µσ(Mσ) = 1.
A simple calculation allows the taking into account of (2.18) to have the

center of gravity

gσ =
n(n+ 1)(σ2

max − σ2
min) + 2δ2 + 2δnσmax

2(n+ 2)[δ + n(σmax − σmin)]
> δ (3.9)

and consequently µσ(gσ) = 0.
Taking into account (2.19), the central modal value of σ is given by

MOσ =
σmin + σmax

2
(3.10)

and consequently µσ(MOσ) = 1.
(3.8), (3.9) and (3.10) as well as the values of µσ(Mσ), µσ(gσ), µσ(MOσ)

carried to (2.20) allow us to have the result. �
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Proof. of lemma 3.2

Let us pose S(T ) =
∫ τ

0
σ2(u)du and S̃(T ) =

∫ τ

0
C2

σ(u)du where τ = T−t
with 0 ≤ t ≤ T .

Taking into account (1.6), (1.7) and (1.7), it is enough to show that

S(T ) = S̃(T ).
when n is close to 0, a simple calculation makes it possible to have

S̃(T ) =
1

16
(σmin + σmax + δ)2τ. (3.11)

(3.11) joints to the fact that 0 < σmin ≤ σ(t) ≤ σmax < δ leads to:

1

4
σ2
maxτ ≤ S̃(T ) ≤ (σmin + σmax + δ)2τ. (3.12)

In the same way, a simple calculation of framing leads to

−(σmin + σmax + δ)2τ ≤ σ2
minτ ≤ S(T ) ≤ σ2

max (3.13)

By adding member with member the framings with S(T ) and −S̃(T ),
one obtains the result. �

4. Case study

In this section, we proceed to a case study in order to show the application
of the approach presented in the preceding section. For that, we compare
the results obtained in calculations of the prices of options for exact function
volatility given to those where the function volatility in question is replaced
by its central value.

Provided the local volatility function σ(t) (0 ≤ t ≤ T ), it is well known
(see [8], [16]) that the fair price C(X, t) of European call can be obtained by

C(X, t) = X(0)N(d1)−Ke−rτN(d2) (4.1)

where τ = T − t

d1 =
lnX(0)

K + rτ + 1
2

∫ τ

0
σ2(u)du√∫ τ

0
σ2(u)du

, (4.2)

d2 = d1 −

√∫ τ

0

σ2(u)du, (4.3)

and

N(z) =
1√
2π

∫ z

−∞
e−

x2

2 dx (4.4)

is the standard normal distribution function.
For our case of study, we use the same function volatility and the same

data as in [16]. We consider as an exact volatility the function

σ(t) = (t− 0.5)2 + 0.1 (0 ≤ t ≤ 1) (4.5)

Furthermore, we set for the actual asset price X(0) = 0.6, the exercise
price K = 0.5 for the interest rate r = 0.05.
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We thus have σmin = min0≤t≤1 σ(t) = 0.1 , σmax = max0≤t≤1 σ(t) =
0.35 and the membership of σ(t) (0 ≤ t ≤ 1) is given by (see (3.7))

µN (x) =


(10x)n when x ∈ [0, 0.1)
1 when x ∈ [0.1, 0.35]
( δ−x
δ−0.035 )

n when x ∈ (0.035, δ]

0 otherwise,

(4.6)

The figure 1 presents the curve of the price given by (4.1) of the option
for the exact value (4.5) of the function volatility and the curves of the prices
given by (4.1) of the option for different value from n when this volatility
(4.5) is replaced by its central value (3.5). One notes thus that the two curves
converge when n is taken to be very small i.e. close to 0.
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Figure 1. Comparative curves of the prices of options with
central value and exact volatility
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