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Abstract

This work explores features of the frequency distribution proba-
bility function for the preset word’s occurrence in a random string.
The recurrent formula that determines distribution function, which,
in turn, depends on the word and the string lengths, as well as on
the overlap coordinates, has been deduced based on the multitudes’
properties and is being presented herewith in the form previously un-
known. Asymptotic formulas have been drawn for minimum and max-
imum probabilities of the word’s just for once occurrence in a random
string. Critical distribution parameters have been determined: the
word’s critical length, whereby probability of its occurrence at least
once is close to 0.5, and the lengths’ critical interval, whereby proba-
bility of the word’s just for once occurrence shifts from the value close
to one, to the value close to zero. It has been shown, that in the long
string case the critical interval’s width does not depend on the lengths
of either word or string, and meanwhile the word’s critical length is
linearly dependent on the string length’s logarithm. Examples have
been offered for the frequency probability distribution tabulation in
different cases of overlaps and at different line lengths. The attached
C - language SW application allows tabulation of the frequency dis-
tribution function at any word and string lengths’ value.
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1 Introduction

The problem of calculating frequency probabilities’ distribution for the
word occurrence in a random string has a long history, which can be traced
back to the series of works: [1]-[6]. As is known, the function under scrutiny
depends on the lengths of both the word and the string, as well as on the
word overlaps’ vector. In the context of the existing problem of such overlaps’
accounting, major efforts had earlier been directed towards calculation of the
probabilities distribution function in question. Mathematical expectation
and variance of this function had been known as well [1]. In the meantime, the
function’s extreme properties and its dependence on the string - word length
ratio had not been studied until very recently. Such a research, however, has
been recently initiated in [7]. This work produced a recurrent formula for the
probability of the just for once word appearance in a random string. This
formula made it possible to lay down and prove the extreme properties of
the corresponding probability. The present article studies properties of the
frequency distribution probability function, hereinafter referred to as ptn(m),
where n and m are, respectively, lengths of the word and of the string, t -
frequency of the word occurrence in a random string. (Dependence on the
overlaps’ vector is not clearly shown).

Purposefulness of the present work is stemming from the following prelim-
inary qualitative evaluations, substantiated by further detailed investigation.
Apparently, at the preset string length n, there exists a certain (critical) word
length value mc, whereby probability that the word will never appear in the
string equals p0n(mc) ∼= 0.5 . It also stands to reason that at m ≥ mc the
frequency distribution function reaches maximum at t = 0. At a sufficiently
large word length, compared tomc, probability that the word will never occur
in the string is close to one (p0n(m) = 1− γ, γ ≪ 1 ). In this case ptn(m) ≪ 1
to all t ≥ 1. In the sector of words with lengths smaller than mc, maximum
value of the distribution function ptn(m) shifts towards larger values of t. At
a sufficiently small word length, probability that the word will never occur
in the string is small (p0n(m) = γ, γ ≪ 1). Provided relevant values of m
we shall have ptn(m) ≪ 1 to all t ≥ 1 again. It should be expected, that
at the preset string length and the predetermined γ parameter there exists
a certain word lengths’ interval, wherein the word occurrence probabilities
ptn(m) are not very small values (as compared to 0.5) to all t ≥ 1 . Evaluation
of this interval and study of the distribution’s behavior taking overlaps into
account is the principal objective of this research. In order to meet the tar-
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get we needed a new presentation for the recurrent function of the frequency
probabilities’ distribution for the word occurrence in a random string, first
obtained by Gentelman and Mullin [1] using the combinatorial enumeration
method [8]. The recurrent formula, obtained by Gentelman and Mullin , have
form, whereby it is impossible to identify structural generality of terms, tied
to the existence of overlaps. In the present work the recurrent formula for
the distribution of frequencies of the word occurrence in a random string has
been derived by the original method, exclusively based on the set operations’
properties (Section 2). The recurrent formula thus obtained has a crucially
new form, wherein all terms, tied to the overlaps, have a common structure
for all overlap positions. From the recurrent formula explicit asymptotic for-
mulas have been derived for the extreme values of the analyzed probability
in case of at least one occurrence of the word in a random string (Section
3). In turn, perception of the extreme points makes it possible to calculate
the critical word lengths’ interval, wherein probabilities ptn(m) are not small
to all t ≥ 1 (Section 4). Section 5 offers examples of tabulation of the fre-
quency distribution probability function of the word occurrence inside the
critical lengths’ interval depending on the word length, overlap coordinates
and string length. The Appendix contains a C - language SW application
that allows tabulation of the frequency distribution function at any string -
word length ratio.

2 Recurrent formula for distribution of

the frequencies’ probabilities for the

word occurrence in a random string

2.1 Notation and method

Let there be a set of alphabet symbols, hereinafter referred to as W ,
wherein the number of symbols equals | W |= k ≥ 2. Let there be given:
random sequence Rn, which length is n symbols of the above mentioned
alphabet, and the m-long preset sequence D. For convenience, we shall here-
inafter refer to sequences D and Rn as the word and the string, respectively.
Let us proceed from the model of equiprobable distribution of all alphabet
symbols in the string Rn. Our objective is to find a probability that word
D will occur in the string Rn t times exactly. Let us examine a set of kn
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different sequences Rn. We shall denote this set as Rn. We shall index the
symbol positions in strings Rn right to left. We shall consider all strings of
the set Rn equiprobable. Let us denote as Rt

n a subset of the set Rn, in
which word D occurs exactly t times. Each of the words D may begin in
any position of the string Rn - from n to m. A set, where word D occurs not
more than t times, we shall denote as R0:t

n . The string that belongs to set
Rt

n shall be denoted as Rt
n. The number of sequences in sets Rt

n and R0:t
n we

shall denote as St
n and S0:t

n , respectively. We shall also denote as Dt
n a subset

of the set Rt
n, in which there appears word D, that begins from the left end

of the string Rn, i. e. that occupies positions from n to n −m. (It should
be noted that D0

n = ∅). To solve the problem we shall utilize the following
idea, that leads to drawing out of the recursive formula for St

n. Set R0:t
n may

be tied to the set R0:t
n−1 in the following way. Let us attach to every string

of the set R0:t
n−1 - from the left, one by one - all elements of the alphabet in

question. We shall have a set hereinafter referred to as WR0:t
n−1. Apparently,

in this set WR0:t
n−1 there are strings that have t+1 words D. In these strings,

words D, having appeared in transit from R0:t
n−1 to WR0:t

n−1, begin with the
nth symbol of the string Rn . In order to receive set R0:t

n from the set WR0:t
n−1

we need to delete from the latter all strings of the set Dt+1
n . Consequently,

taking into account that Dt+1
n ⊆ WR0:t

n−1 , we may write down the following
formula:

|R0:t
n | = |WR0:t

n−1| − |Dt+1
n |. (2.1)

Formula (2.1) allows us to work out an equation, connecting St
n with St−1

n ,
St
n−m and St

n−si
, where si - lengths of periods in the word D , detailed

identification of which can be find in the following section.

2.2 Description of overlaps in the word D

Property of theD’s overlap represents a certain type of the shift symmetry
(see [2], [3], [9]). Let us write D down as follows: D = a1a2 . . . am, where
aj represents characters of the given alphabet. Under the string D we shall
write down an identical string, shifted to the right by si characters.

a1a2 . . . asiasi+1 . . . am

a1 . . . am−si . . . am

Provided all symbols in the top and bottom strings, located one under the
other, coincide, we say there is an overlap in position si + 1.
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Definition. Word D involves an overlap position with the coordinate
si + 1, provided there exists such a si in the range of 1 ≤ si ≤ m − 1, for
which

a1a2 . . . am−si = asi+1asi+2 . . . am. (2.2)

Index i in (2.2) enumerate all overlaps in the word D from left to right. Word
a1a2 . . . asi is being usually referred to as the D period. Length of the period
equals si . Henceforth, we shall assume that word D may have l nontrivial
overlaps that correspond to the value of i in the range of 1 ≤ i ≤ l. The
value s0 = 0 shall correspond to the trivial overlap of the word with itself.
In [1] and [9] overlaps are being described by means of the overlap binary

vector Q⃗. For 0 ≤ si ≤ m − 1, the following vector Q⃗ - overlap coordinates
si + 1 relation exists: {

Qj = 1, j = m− si,
Qj = 0, j ̸= m− si.

(2.3)

2.3 Auxiliary recursion formula for S0:t
n

Lemma 1 . Let sequence D have l ≥ 1 overlap areas. Overlap positions’
coordinates are designated as follows:

s1 + 1, s2 + 1, . . . , sl + 1,

where 1 ≤ sl ≤ m− 1. Then, there exists the following formula that defines
S0:t
n :

S0
n = kn, 0 ≤ n ≤ m− 1, (2.4)

S0:t
n = kS0:t

n−1 +
l∑

i=1

(kSt
n−si−1 − St

n−si
)− St

n−m, n ≥ m. (2.5)

Proof. Formula (2.4) is obvious. Considering that |WR0:t
n−1| = kS0:t

n−1, in
order to prove the ratio (2.5) by virtue of the formula (2.1) it would suffice
to show that:

St
n−m −

l∑
i=1

(kSt
n−si−1 − St

n−si
) = |Dt+1

n |. (2.6)

Let us consider set Rt
n−si

, presenting it as follows:

Rt
n−si

= Dt
n−si

∪ Gt
n−si

, (2.7)

where Gt
n−si

is the n − si long strings that have t words D, but lack words
D, beginning from the left end of the string. It is evident, that:

Dt
n−si

∩ Gt
n−si

= ∅. (2.8)
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Now, let us consider set WRt
n−si−1, that may be presented as follows:

WRt
n−si−1 = Dt+1

n−si
∪ Gt

n−si
, (2.9)

Dt+1
n−si

∩ Gt
n−si

= ∅. (2.10)

Ratios (2.7)-(2.10) will give us

|WRt
n−si−1| − |Rt

n−si
| = |Dt+1

n−si
| − |Dt

n−si
|. (2.11)

In the particular case of t = 0, equation (2.11) describes the number of
strings with words D, that appeared in transit from R0

n−si−1 to WR0
n−si−1

[7]. Considering that |WRt
n−si−1| = kSt

n−si−1, |Rt
n−si

| = St
n−si

, from (2.11)
we have:

kSt
n−si−1 − St

n−si
= |Dt+1

n−si
| − |Dt

n−si
|. (2.12)

Let us present word D as a concatenation of words u0, u1, . . . , ul, where u0

is the beginning of the word D s1 characters long, u1 is the next s2 − s1
characters long word etc., the last word ul has length of m − sl. The first
character in each of the words ui for 1 ≤ i ≤ l matches the i - numbered
overlap position. As is known [2], |ui+1| ≤ |ui|. Because of overlaps, for each
of the 1 ≤ i ≤ l word D may also be presented in the following way:

D = gif
i, (2.13)

gi = uiui+1 . . . ul, (2.14)

where f i is the corresponding si - long suffix. Let F t,(i)
n−m for 1 ≤ i ≤ l denote

a subset of the set Rt
n−m, strings of which have prefix f i, but lack longer

prefixes f i+1, . . . f l. Let F t,(0)
n−m denote a subset of all strings of the set Rt

n−m,
having no of any f i prefix. (Provided strings Rt

n−m are sufficiently short, sets

F t,(i)
n−m for predetermined i and t will be empty.) Now let us consider strings

of the DF t,(i)
n−m type, where each of the strings in the set F t,(i)

n−m has word D
attached from the left. For example, let D = 1121122112112211211, where,
in accordance with the overlaps’ coordinates, we have: u0 = u1 = 1121122,
u2 = 112, u3 = u4 = 1. In this case, strings DF t,(i)

n−m have the following form:

DF t,(0)
n−m = 1121122112112211211...

DF t,(1)
n−m = 11211221̂121122112112211211...

DF t,(2)
n−m = 11211221̂1211221̂121122112112211211...

DF t,(3)
n−m = 112112211211221121̂121122112112211211...

DF t,(4)
n−m = 1121122112112211211̂121122112112211211...
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Selected here are beginnings of words D that appear because of overlaps.
Dots denote string continuation. For the set of strings DRt

n−m, in which
every string of the set Rt

n−m has word D attached from the left, we have:

DRt
n−m =

l⋃
i=0

DF t,(i)
n−m, (2.15)

at that for i ̸= j:
DF t,(i)

n−m ∩DF t,(j)
n−m = ∅. (2.16)

Having attached to each of the strings in the sets Dt+1
n−si and Dt

n−si
word

u0u1 . . . ui−1 and making use of the formulas (2.12) and (2.15), let us write
the left part of the equation (2.6) down as follows:

l∑
i=0

|DF t,(i)
n−m|+

l∑
i=1

(|u0u1 . . . ui−1Dt
n−si

| − |u0u1 . . . ui−1Dt+1
n−si

|). (2.17)

Let word D have r + 1 complete periods, that is for 0 ≤ i ≤ r we have
u0 = ui, whereas for i > r we have u0 > ui. Let us consider two cases.

a. Let 1 ≤ i ≤ r. Note that in this case due to overlaps, all strings in
the sets u0 . . . uiDt

n−si+1
and u0 . . . ui−1Dt+1

n−si have the same number of
D words and all of them begin with the word D. Then, starting from
position n−m, suffixes of strings u0 . . . uiDt

n−si+1
and u0 . . . ui−1Dt+1

n−si

may match; hence we have

u0 . . . uiDt
n−si+1

⊆ u0 . . . ui−1Dt+1
n−si

. (2.18)

Obviously the strings of set u0 . . . ui−1Dt+1
n−si\u0 . . . uiDt

n−si+1
have word

f i, that begins in position n − m, but lack longer words f i+1, . . . f l,
beginning in this position. Therefor, by definition of F t,(i)

n−m in this case
under review we have:

|u0 . . . ui−1Dt+1
n−si

| − |u0 . . . uiDt
n−si+1

| = |DF t,(i)
n−m|. (2.19)

b. Let r ≥ 0 and i > r, then, starting from position n − m, suffixes
of strings u0 . . . uiDt

n−si+1
and u0 . . . ui−1Dt+1

n−si cannot match. Indeed,
should we admit that suffixes match, it would appear that the minimal
period in the word D is less than u0. Hence, in this case we have:

u0 . . . uiDt
n−si+1

∩ u0 . . . ui−1Dt+1
n−si

= ∅. (2.20)
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Because of i > r, in the first D word of strings u0 . . . uiDt
n−si+1

word D
cannot begin in any of the overlap positions sj (1 ≤ j ≤ l). Therefore,
each of the strings in the set u0 . . . uiDt

n−si+1
has exactly t+1 words D.

Besides, by virtue of the condition (2.20), we have:

|u0 . . . ui−1Dt+1
n−si

| = |DF t,(i)
n−m|. (2.21)

Now let us apply results of both a. and b. cases to the expression (2.17). By
virtue of the equations (2.19) and (2.21), identical summands in (2.17) are
reduced. As a result, the left part of the equation (2.6) preserves only terms
that describe the number of all possible strings, having exactly t + 1 words
D (these include all DF t,(0)

n−m and u0Dt
n−si

type strings). Consequently, the
equation (2.6) is valid. Provided no overlaps exist (l = 0), a corresponding
sum shall be eliminated from the equation (2.6). In this case, validity of
the equation (2.6) is clear. Therefore, Lemma 1 has been proven. In the
particular case of t = 0, we have the result earlier received in [7]:

S0
n = kn, 0 ≤ n ≤ m− 1, (2.22)

S0
n = kS0

n−1 +
l∑

i=1

(kS0
n−si−1 − S0

n−si
)− S0

n−m, n ≥ m. (2.23)

2.4 Recursion formula for ptn

Theorem 1 . Probability ptn that word D would occur in a random string
Rn exactly t times is being determined by the following recurrent formula:

ptn = ptn−1 +
l∑

i=1

k−si [ptn−si−1 − pt−1
n−si−1 − ptn−si

+ pt−1
n−si

]−

− k−m(ptn−m − pt−1
n−m). (2.24)

In the formula (2.24) t ≥ 1, n ≥ m. The boundary condition for the formula
(2.24) is the result for p0n, obtained in [7] also in the form of the recursion
formula, resultant from (2.23):

p0n = 1, 0 ≤ n ≤ m− 1. (2.25)

p0n = p0n−1 +
l∑

i=1

k−si(p0n−si−1 − p0n−si
)− k−mp0n−m, n ≥ m. (2.26)
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Proof. Let us write down formula (2.5) for S0:t−1
n .

S0:t−1
n = kS0:t−1

n−1 +
l∑

i=1

(kSt−1
n−si−1 − St−1

n−si
)− St−1

n−m, n ≥ m, t ≥ 1. (2.27)

Subtracting term by term (2.27) from (2.5), and taking into account that
S0:t
n − S0:t−1

n = St
n, we have:

St
n = kSt

n−1 +
l∑

i=1

[k(St
n−si−1 − St−1

n−si−1)− St
n−si

+ St−1
n−si

]−

− St
n−m + St−1

n−m. (2.28)

Having divided term by term formula (2.28) by kn, we shall obtain the re-
quired ratio (2.24). In contrast to the recurrent formula, obtained in [1],
equation (2.24) has a canonical form, in which the overlap positions’ coordi-
nates occur in the identical way.

3 Asymptotic for p0n in two extreme cases

3.1 Asymptotic for p0n in the case of zero overlaps

From the formula (2.23) in the case of zero overlaps we have:

S0
n = kn, 0 ≤ n ≤ m− 1, (3.1)

S0
n = kS0

n−1 − S0
n−m, n ≥ m. (3.2)

Equation (3.2) represents the order m recursion. As is known, given the
initial data (3.1), it is theoretically possible to define S0

n clearly. Solution
will be expressed through the roots of the characteristic equation, having the
following form for the recursion (3.2):

rm − krm−1 + 1 = 0. (3.3)

In case of m/km ≪ 1 we are interested in, the task of finding the clear
approximation for S0

n , being defined by equations (3.1) and (3.2), simplifies
essentially.

Theorem 2 . Let r be the real root of the characteristic equation (3.3), close
to k , so that the following inequality holds true:

(k − r)

r
≪ 1. (3.4)
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Let us define function Ŝ0
n in the following way:

Ŝ0
n = S0

n = kn, 0 ≤ n ≤ m− 1, (3.5)

Ŝ0
n = (km − 1)rn−m, n ≥ m. (3.6)

Then, function Ŝ0
n gives the asymptotic approximation S0

n on the small pa-
rameter m/km at n ≥ 2m and m ≥ 3. Correspondingly, provided the same
conditions, the asymptotic approximation for p0n has the following form:

p̂0n = (km − 1)
rn−m

kn
. (3.7)

At that, calculation error of S0
n by formula (3.6) is of the order kn(m/km)2 :

0 < S0
n − Ŝ0

n ≤
(
1 +

m(m− 3)

2

)
kn−2m. (3.8)

Let us note, that (3.6) exactly satisfies the recurrent formula (3.2), and be-
sides that

Ŝ0
m = S0

m = km − 1. (3.9)

Proof. To begin with, let us show there exists a sought-after root of the
characteristic polynomial and evaluate it approximately. Taking into account
condition m/km ≪ 1, we shall look for the relevant root of the equation (3.3)
in the following form:

r = (km −mα)
1
m . (3.10)

where α is the parameter subject to definition. Then, we shall find that α
satisfies to the following equation:

km −mα = k(km −mα)
m−1
m − 1. (3.11)

We shall write equation (3.11) down in the following way:

α = h(α), (3.12)

h(α) = α− (km −mα)
[(

1− mα

km

)− 1
m − 1

]
+ 1. (3.13)

In order to calculate parameter α in (3.12, 3.13), method of simple iterations
can be utilized. Performing analysis in (3.13) by the small parameter m/km,
it is easy to make sure that in zero order approximation α = 1. In the vicinity
of point α = 1 we have |h′

(α)| ∼= m/km ≪ 1 . Therefore, the iteration process
converges. At that, in expansion α on the small parameter, linear on m/km
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term remains unchanged in all iterations. To the accuracy of order m/km

terms we shall have:

α ∼= 1 +
m− 1

2km
, (3.14)

rm ∼= km −m
(
1 +

m− 1

2km

)
. (3.15)

Considering r and rm ties, that emerge from equation (3.3), we shall find as
follows:

r = k
(
1− 1

1 + rm

)
≈ k − 1

km−1
+

1−m

k2m−1
+ . . . . (3.16)

(Real root r of the characteristic equation may be calculated from (3.3) with
any required accuracy by means of the Newton’s method). Making use of

formulas (3.6) and (3.15), we shall obtain an expression for Ŝ0
2m:

Ŝ0
2m = (km − 1)rm ∼= (km − 1)

[
km −m

(
1 +

m− 1

2km

)]
. (3.17)

Omitting terms that are small by parameter m/km , we shall have:

Ŝ0
2m = k2m − (m+ 1)km − 0.5m(m− 3). (3.18)

Alternatively, from the recurrent equations (3.1) and (3.2) the accurate ex-
pression for S0

2m is readily available.

S0
2m = k2m −mkm − km + 1. (3.19)

From (3.18) and (3.19) we have:

S0
2m − Ŝ0

2m
∼= 1 + 0.5m(m− 3) = δ. (3.20)

At m ≥ 3 we have δ > 0. To begin with, by the mathematical induction
method we shall prove that for m ≥ 3 the following holds true:

S0
n − Ŝ0

n ≥ S0
n−1 − Ŝ0

n−1 ≥ 0. (3.21)

For n ≤ m+ 1 conclusion (3.21) is valid, because

S0
n − Ŝ0

n = 0, n ≤ m, (3.22)

S0
m+1 − Ŝ0

m+1 = (km+1 − 2k)− (km − 1)r ∼=
m− 2

km−1
> 0. (3.23)
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Further, let us assume that (3.21) also holds true for n, n− 1, . . . ,m+2 and

prove its correctness for n + 1. As soon as both S0
n+1 and Ŝ0

n+1 satisfy the
recurrent equation (3.2), we have:

S0
n+1 − Ŝ0

n+1 = (k − 1)(S0
n − Ŝ0

n) + (S0
n − Ŝ0

n)− (S0
n+1−m − Ŝ0

n+1−m). (3.24)

From the inductive hypothesis (3.21) and definition (3.5), as well as taking

into account that k ≥ 2 andm ≥ 3, from (3.24) we get S0
n+1−Ŝ0

n+1 ≥ S0
n−Ŝ0

n,
that proves the required condition (3.21).

Now let us prove that at n ≥ 2m

S0
n − Ŝ0

n ≤ δkn−2m. (3.25)

At n = 2m, as it follows from (3.20), the conclusion is valid. Now let us
assume conclusion (3.25) holds true for n, n− 1, . . . , 2m+1. Then, for n+1,
taking into account both (3.21) and (3.25), just as required, we get:

S0
n+1 − Ŝ0

n+1 = k(S0
n − Ŝ0

n)− (S0
n+1−m − Ŝ0

n+1−m) ≤ δkn+1−2m. (3.26)

Therefore, the Theorem 2 has been proven. For probability we have the
asymptotic formula (3.7). At that, calculation error by formula (3.7) does
not exceed the shown value:

δk−2m = (1 + 0.5m(m− 3))k−2m. (3.27)

Formula (3.7) offers sufficiently accurate results already at m = 5. For
example, with k = 2, n = 50,m = 5 by the recursion formula (2.26) at zero
overlaps we get p0n = 0.186, whereas by formula (3.7), in which root r had

been found by the Newton’s method, we shall have p̂0n = 0.184. Calculation
error does not exceed expression (3.27):

p0n − p̂0n = 2 · 10−3 < δ · 2−10 = 5.6 · 10−3

3.2 Asymptotic for p0n in case of maximum number of
overlaps

At the maximum number of overlaps we have si = i for all 1 ≤ i ≤ m−1.
In this case, from (2.23) we get:

S0
n = (k − 1)

m∑
i=1

S0
n−i, n ≥ m. (3.28)
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p0n = (k − 1)
m∑
i=1

p0n−i

ki
, n ≥ m. (3.29)

Characteristic equation, that corresponds to the recursion equation (3.28),
have the following form:

rm+1 = krm − k + 1. (3.30)

Theorem 3 . Let r be the real root of the characteristic equation (3.30),
close to k according to inequality (3.4). Then, at the maximum number of

overlaps, function Ŝ0
n defined by formulas (3.5) and (3.6), gives an asymptotic

approximation for S0
n on the small parameter m/km ≪ 1 at n ≥ 2m and

m > (k + 1)/(k − 1). For the probability calculation error on the asymptotic
formula (3.7), we have the evaluation as follows:

0 < p0n − p̂0n ≤ βk−2m, (3.31)

where at large m we have β ∼ m2.

The proof is similar to the zero overlaps case. We shall cite it in the abridged
version. We shall be looking for the real root of equation (3.30), close to k,
same as earlier in the form of (3.10). We shall have:

rm ∼= km −m+
m

k
−

m(1 +m)
(
1− 1

k

)2
2km

, (3.32)

r ∼= k − k − 1

km
− m(k − 1)2

k2m+1
(3.33)

Omitting terms of a higher order of smallness than m/km, from (3.6) and

(3.32) we shall obtain an expression for Ŝ0
2m :

Ŝ0
2m

∼= (km − 1)
[
km −m+

m

k
−

m(1 +m)
(
1− 1

k

)2
2km

]
(3.34)

The exact expression for S0
2m has the following form:

S0
2m = k2m − (m+ 1)km +mkm−1. (3.35)

Omitting terms that are small by parameter m/km, we shall have:

S0
2m − Ŝ0

2m
∼=

m(1 +m)
(
1− 1

k

)2
2

−m+
m

k
= β. (3.36)
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By virtue of condition m > (k + 1)/(k − 1), in (3.36) we have β > 0. Also,
at these values of m, the next difference is positive:

S0
m+1 − Ŝ0

m+1 = km+1 − 2k + 1− (km − 1)r ∼=
k − 1

km+1
(m(k − 1)− k). (3.37)

Further, carrying out stages of the proof, found in section 3.1, we make sure

that at n ≥ m we have S0
n − Ŝ0

n > 0 ; then we prove that at n ≥ 2m the
following inequality takes place:

S0
2m − Ŝ0

2m ≤ βkn−2m. (3.38)

From (3.38) instantly follows conclusion (3.31). As an example, we hereby
offer calculations for m = 8, n = 100, k = 2:

p0n = 0.829792, p̂0n = 0.829725, p0n − p̂0n ≈ 5 · 10−5,

β · 2−16 = 5 · 2−16 = 7.6 · 10−5.

4 Word - string lengths’ critical ratio

We shall call ratio between lengths of the word m and the string n crit-
ical, provided length of the string for the given γ ≪ 1 is within mϵ[m1,m2]
interval, where

p0n(m1 − 1) < γ, p0n(m1) ≥ γ, (4.1)

p0n(m2) ≤ 1− γ, p0n(m2 + 1) > 1− γ. (4.2)

We shall determine the critical length of the word mc for the given n from
the formula below:

p0n(mc) < 0.5, p0n(mc + 1) > 0.5. (4.3)

As soon as probability p0n depends on overlaps, we shall evaluate critical inter-
vals in two extreme cases. The first corresponds to zero overlaps, whereas the
second one - to their maximum number. In both cases, as has been demon-
strated in [7], we have minimum and maximum p0n values, respectively. Union
of relevant critical intervals will give us evaluation of the critical interval in
the general case. The critical ratio of m and n lengths may be recognized
by tabulation of the recurrently found function p0n. Nevertheless, asymptotic
expressions for p0n, received as above at m/km ≪ 1, simplify detection of the
critical interval and the critical length for the word D.

14



4.1 String length as the p0n probability function

Let us express n through p0n at n ≫ m and m/km ≪ 1. From the
asymptotic formula (3.7), taking into account that k − r ≪ k, we shall get:

n ∼=
k

r − k
ln p0n. (4.4)

4.2 Critical parameters in the zero overlaps case

Being confined in asymptotic expression (3.16) by the first two terms and
inserting r into (4.4), we shall get relation between p0n, m and n:

p0n
∼= e−

n
km . (4.5)

m ∼=
1

ln k

( n

− ln p0n

)
. (4.6)

From (4.6) and definitions (4.1),(4.2) we shell get:

a ≤ m1 < a+ 1, b− 1 < m2 ≤ b, (4.7)

a =
1

ln k
ln
( n

− ln γ

)
, b =

1

ln k
ln
( n

− ln(1− γ)

)
. (4.8)

Consequently for the critical interval we have:

[m1,m2] = [⌈a⌉, ⌊b⌋] (4.9)

For the critical interval length we shall have evaluation as follows:

⌈b− a⌉ =
⌈ 1

ln k
ln
( ln γ

ln(1− γ)

)⌉
. (4.10)

For the critical word length from (4.3) and 4.6 we get:

mc =
⌊ 1

ln k
ln
( n

ln 2

)⌋
. (4.11)

4.3 Critical parameters at maximum
number of overlaps

Being confined in asymptotic expression (3.33) by the first two terms and
inserting r into (4.4), we shall get expression for p0n through m and n:

p0n
∼= e−

n(k−1)

km+1 . (4.12)
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From the expression (4.12) and definitions (4.1), (4.2) we get:

g − 1 ≤ m1 < g, h− 2 < m2 ≤ h− 1, (4.13)

g =
1

ln k
ln
(n(k − 1)

− ln γ

)
, h =

1

ln k
ln
( n(k − 1)

− ln(1− γ)

)
. (4.14)

Consequently for critical interval we have:

[m1,m2] = [⌈g − 1⌉, ⌊h− 1⌋] (4.15)

For length of critical interval we shell have next evaluation:

⌈h− g⌉ =
⌈ 1

ln k
ln
( ln γ

ln(1− γ)

)⌉
. (4.16)

In this way, the critical interval length is independent of n and remains iden-
tical in both extreme cases (4.10) and (4.16) having been studied. However,
boundaries of the critical interval fundamentally depend on both n and the
overlaps’ nature. For the critical word length at maximum number of over-
laps we receive from (4.3):

mc =
⌊ 1

ln k
ln
(n(k − 1)

ln 2

)
− 1

⌋
. (4.17)

4.4 Expansion of the critical interval in the case of an
arbitrary number of overlaps

In the general case, at arbitrary number of overlaps, it would be natural
to expand the critical interval [m1,m2] by union of relevant intervals (4.4),
(3.37). We shall have:

[m1,m2] = [⌈g − 1⌉, ⌊b⌋] (4.18)

5 Distribution of probabilities in the

vicinity of critical ratio

By calculating the critical interval through formulas (4.18), (4.14) and
(4.8), as well as by using recurrent formulas (3.2) and (3.29), one might easily
tabulate dependence p0n(m) for any n value. As an example, such dependence
is presented for n = 100 and n = 104 in Tables 1 and 2. In order to tabulate
distribution of probabilities ptn (2.26), one should determine the interval that
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corresponds to the critical intervals’ union both in case of zero overlaps and
in case of their maximum number. Table 3 shows relevant calculations for
high-symmetry binary words (k = 2, n = 100, γ = 0.01) . Table 4 shows
distribution of probabilities for words with different periods in the immediate
vicinity of the critical word - string lengths’ ratio (k = 4, n = 106,mc = 10).

6 Conclusion

New derivation of the recurrent formula for ptn(m) and elaboration of
the extreme p0n(m) properties substantially add to the already known results
on the problem under scrutiny. As a result of this research, the problem of
calculation of the frequency distribution for the word occurrence in a random
string becomes simple and accessible for the general user.

Table 1: Probability that the word will never appear in the binary n = 100
long string, depending on the word length m in case of maximum number
of overlaps (mc = 6) and in case of their nonexistence (mc = 7 ). Given
γ = 0.01. In case of zero overlaps [m1,m2] = [5, 13], in case of their maximum
number [m1,m2] = [4, 12].

m p0100 p0100
Maximum overlaps Zero overlaps

3 0.0003 0.0000
4 0.0273 0.0003
5 0.1899 0.0294
6 0.4539 0.1969
7 0.6825 0.4615
8 0.8298 0.6880
9 0.9124 0.8331
10 0.9559 0.9142
11 0.9780 0.9568
12 0.9891 0.9784
13 0.9946 0.9893
14 0.9973 0.9947
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Table 2: Probability that the word will never appear in the binary n = 10000
long string, depending on the word length m in case of maximum number
of overlaps ( mc = 12, [m1,m2] = [11, 18] ) and in case of their nonexistence
(mc = 13, [m1,m2] = [12, 19], γ = 0.01).

m p010000 p010000
Maximum overlaps Zero overlaps

10 0.0074 5.28 · 10−5

11 0.0867 0.0074
12 0.2948 0.0867
13 0.5436 0.2949
14 0.7372 0.5433
15 0.8586 0.7372
16 0.9266 0.8586
17 0.9626 0.9266
18 0.9811 0.9626
19 0.9905 0.9811
20 0.9905

Table 3: Distribution of probabilities pt100 for periodic binary words (k = 2),
in which the number of ones and zeroes differs by one at most. Critical
interval is [m1,m2] = [4, 13].

D/t 1010 10101 101010 10101010 101010101 1010101010101
0 0.0029 0.0785 0.2985 0.7551 0.8716 0.9919
1 0.0162 0.1677 0.2924 0.1638 0.0915 0.0061
2 0.0461 0.2076 0.2000 0.0553 0.0265 0.0015
3 0.0889 0.1917 0.1124 0.0179 0.0075 0.0004
4 0.1305 0.1458 0.0554 0.0056 0.0021 0.0001
5 0.1552 0.0959 0.0248 0.0017 0.0006 0.0000
6 0.1556 0.0563 0.0103 0.0005 0.0002 0.0000
7 0.1352 0.0300 0.0040 0.0001 0.0000 0.0000
8 0.1037 0.0148 0.0015 0.0000 0.0000 0.0000
9 0.0713 0.0068 0.0005 0.0000 0.0000 0.0000
10 0.0444 0.0029 0.0002 0.0000 0.0000 0.0000
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Table 4: Distribution of probabilities pt106 for words with different periods at
the critical word - string lengths’ ratio (k = 4, n = 106,mc = 10).

D/t 1111111111 1212121212 1243312433 1243312433 1111111112
0 0.4891 0.4090 0.3868 0.3857 0.3853
1 0.2624 0.3428 0.3660 0.3671 0.3675
2 0.1360 0.1651 0.1746 0.1751 0.1752
3 0.0642 0.0594 0.0560 0.0558 0.0557
4 0.0284 0.0177 0.0136 0.0134 0.0133
5 0.0120 0.0046 0.0027 0.0026 0.0025
6 0.0049 0.0011 0.0004 0.0004 0.0004
7 0.0019 0.0002 0.0001 0.0001 0.0001
8 0.0007 0.0000 0.0000 0.0000 0.0000
9 0.0003 0.0000 0.0000 0.0000 0.0000
10 0.0001 0.0000 0.0000 0.0000 0.0000

7 Appendix. C-language application to

calculate distribution of probabilities ptn

The software provided herewith prompts for the alphabet size k, length of
a random string n, parameter γ, that determines the critical interval, max-
imum frequency t and word D. Following input of n and γ , application
informs of the critical interval boundaries. It is natural to input the word,
length of which is within the critical interval. Otherwise, the calculation
result for t ≥ 1 will be a column of zeros or extremely small numbers. It
shall be emphasise that critical interval is reliable only if n ≫ 1, n > 2m and
m/km ≪ 1. Otherwise, ignore critical interval message. Maximum length of
the input word is 40 symbols. This length, provided alphabet length k = 2 ,
corresponds to the string’s critical length of 7.6 · 1011 symbols.
1 #include < stdio.h >
2 #include < string.h >
3 #include < conio.h >
4 #include < malloc.h >
5 #include < math.h >
6 // Function to calculate the integer power of k:
7 int kpower(int x, int y)
8 { int z, y;
10 z = 1;
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11 if(y >= 1)
12 {
13 for(i = 1; i <= y; i++)
14 {
15 z = z ∗ x;
16 };
17 }
18 return(z);
19 }
20 intmain()
21 {
22 int n, k, i, j, j1, j2,m,m1,m2, t, tmax,mmax, si,NumOverl, OverlapK[40];
23 doubleGamma;
24 float g, b;
25 double S;
26 double ∗ ∗p t;
27 /*Word[40] -We look for the overlaps’ coordinates in this word.
28 Its length does not exceed 40 symbols.
29 j-projected overlaps’ coordinate;
30 m - word length;
31 k - alphabet size;
32 NumOverl - Number of nontrivial overlaps.
33 OverlapK[40]-array, where we write the overlaps’ coordinates to;
34 n - random string length.*/
35 charWord[40];
36 printf(”Enter alphabet size\n”);
37 scanf s(”%d”,&k);
38 printf(”Enter randomstring size\n”);
39 scanf s(”%d”,&n);
40 printf(”Enter small parameter describing proximity of probability to one\n”);
41 scanf s(”%lf”,&Gamma);//Calculation of critical interval boundaries:
42 g = ((log(n ∗ (1.0− k)/log(Gamma)))/log(k))− 1.0;
43 b = (log(−n/log(1.0−Gamma)))/log(k);
44 g = ceil(g); b = floor(b);
45 printf(”Critical interval boundaries : \n”);
46 printf(”m1 = %.0f,m2 = %.0f\n”, g, b);
47 mmax = b;
48 printf(”Entermaximumfrequency\n”);
49 scanf s(”%d”,&tmax);
50 getchar();
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51 printf(”EnterWord\n”);
52 gets(Word);
53 m = strlen(Word); //We get length of word.
54 p t = (double ∗ ∗)malloc(mmax ∗ sizeof(double∗));
55 NumOverl = 0; //Initialization of the variable describing the number of
overlaps.
56 //We check if any overlaps in j position exist.
57 for(j = 0; j <= m− 1; j ++)
58 {
59 for(i = 0;Word[i] == Word[i+ j]&&i+ j <= m− 1; i++)
60 {
61 if (i + j == m - 1)
62 {
63 //We write overlaps’ coordinates to the OverlapK array:
64 OverlapK[NumOverl] = j;
65 //We increase array index by 1 to write the next overlap coordinate:
66 NumOverl ++;
67 };
68 }
69 }
70 //Upon loop exit NumOverl variable equals the number of overlaps.
71 //Calculation of P t

n on the recurrent formula:
72 for(j = 0; j <= m; j ++)
73 { //Here, j variable is the gradually growing string length.
74 p t[j] = (double∗)malloc(tmax ∗ sizeof(double));
75 for(t = 0; t <= tmax; t++)
76 {
77 if (t == 0) {
78 p t[j][t] = 1.;
79 }
80 else { p t[j][t] = 0.; }
81 }
82 }
83 for(j = m; j <= n; j ++)
84 {
85 for(t = 0; t <= tmax; t++)
86 {
87 j1 = m;
88 p t[j1][t] = 0.;
89 for(i = 1; i <= NumOverl − 1; i++)
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90 {
91 si = OverlapK[i];
92 if(t == 0){
93 p t[j1][t] = p t[j1][t] + (p t[j1− si− 1][t]− p t[j1− si][t])/kpower(k, si);
94 }
95 else {
96 p t[j1][t] = p t[j1][t] + (p t[j1− si− 1][t]− p t[j1− si− 1][t− 1]−
97 p t[j1− si][t] + p t[j1− si][t− 1])/kpower(k, si);
98 }
99 } //Adding first and last term of the recurrent formula for ptn:
100 if(t == 0){
101 p t[j1][t] = p t[j1− 1][t] + p t[j1][t]− (p t[j1−m][t])/kpower(k,m);
102 }
103 else{
104 p t[j1][t] = p t[j1][t] + p t[j1− 1][t] + (p t[j1−m][t− 1]−
105 p t[j1−m][t])/kpower(k,m);
106 }
107 }
108 if(j < n){
109 for(t = 0; t <= tmax; t++)
110 {
111 for(j2 = 1; j2 <= m; j2 + +)
112 {
113 p t[j2− 1][t] = p t[j2][t];
114 }//Probability calculation results for lengths from n-m+1 to n
115 }//are stored in the array cells from 0 to m-1
116 }
117 }
118 for(t = 0; t <= tmax; t++){ //Distribution function print out
119 printf(”t = %d, p t = %f\n”, t, p t[m][t]);
120 }
121 S = 0; //Check. Probabilities’ sum should equal one.
122 for(t = 0; t <= tmax; t++)
123 {
124 S = S + p t[m][t];
125 }
126 printf(”S = %f”, S);
127 free(p t); }
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