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Abstract

Alternatives to the Black-Scholes-Vasicek deflatotroduced in Hurlimann (2011) are

proposed. They are based on the multivariate Waargarwce-gamma process considered in
Wang (2009). As an application, closed form anefjtmultiple integral formulas for pricing the

European geometric basket option with a deflatedtivamiate exponential Wang variance-

gamma asset pricing model are derived.
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1. Introduction

The concept of state-price deflator or stochasscalint factor, which has been introduced by
Duffie (1992), p.23 and 97, is a convenient ingeatiof general financial pricing rules. It

contains information about the valuation of payrsent different states at different points in

time. The state-price deflator is a natural ext@msof the notion of state prices that were
introduced earlier and studied by Arrow (1951/58784, Debreu (1954), Negishi (1960) and
Ross (1978), a milestone in the history of asseiny (see Dimson and Mussavian (1999)).
Though general frameworks for deriving state-pdedlators exist (e.g. Milterssen and Persson
(1999) and Jeanblanc et al. (2009)), there are mahy papers, which propose explicit
expressions for them and their corresponding 8igtion functions.

We are interested in the construction of al&ves to the multivariate Black-Scholes-
Vasicek (BSV) deflator introduced in Hirlimann (2Q1(see also Hurlimann (2012a)). A
valuable and popular alternative choice to a logwabd distribution for asset pricing is an
exponential variance-gamma process. It has beeodinted in Madan and Seneta (1990) and
extensively used in financial applications (e.g.d¢lia and Milne (1991), Madan et al. (1998),
Madan (2001), Carr et al. (2002), Geman (2002)rdfio(2004), Fu et al. (2006), Stein et al.
(2007), Domenig and Vanini (2010), etc.). In thegant paper we report on state-price deflators
of multivariate normal variance-gamma type thatlzased on the multivariate Wang variance-
gamma (WVG) process introduced in Wang (2009).



For the interested reader we remark that theleHurlimann (2013a) contains an extension
of the Black-Scholes deflator to a more generatioerwith interest rates as additional source of
randomness. From a mathematical viewpoint it isinahtto investigate other generalizations,
namely the consideration of alternative asset ppicecesses for use in incomplete financial
markets. Indeed, let us assume that asset priced ad arbitrage. Then, there exists a unique
state-price deflator if, and only if, the market@nplete. Otherwise, if the market is incomplete,
several state-price deflators exist and pricingaisnore complex topic (e.g. Munk (2013),
Theorem 4.2). Therefore, the study of state-priefatbrs is motivated by one of the main
problems of Modern Finance, which consists to ustded the pricing and hedging or replication
of arbitrary portfolios in incomplete markets. Eviérihe portfolio is only made of derivatives
there is no widely accepted solution to this proble.g. Cherny and Madan (2006), Section 1).

A short account of the content follows. Settibrecalls the two main representations of the
variance-gamma process. Its generalization to thkivariate Wang variance-gamma (WVG)
process is introduced in Section 3. The constroaticthe multivariate WVG deflator is found in
Section 4. Section 5 extends the univariate nonaghnce-gamma process to its multivariate
context and Section 6 derives the correspondirtg-ptace deflator. As an application we derive
in Section 7 closed form analytical multiple intalgiormulas for pricing the European geometric
basket option with a deflated multivariate expors@/VG asset pricing model.

2. Theunivariate variance-gamma pr ocess

There are two different representations of theara@-gamma (VG) process. In the original first
representation, the variance-gamma process is damesi as a drifted Brownian motion time
changed by an independent gamma process. Viewetthe initial time O it is defined by

X, =006, +0W,, t>0, (2.1)

where W, is a standard Wiener process and the indepesdéotdinator G, ~T(v™'t,y™ )is

a gamma process with unit mean rate and variartee wa Since X, is a Lévy process, its
dynamics is determined by its distribution at umime. In fact, the random variable
X =X, ~VG(8,0%,v) follows a three parameter distribution with cuemil generating

function (cgf)

C, (u) =InE[expUX)] = v On{l-vQ&u+i0%?)}, ov>0-0<f<o. (2.2)

Of course, the cgf is only defined over an opeeridl (use (2.4)-(2.5) below). This formula is
obtained from the cgfC,(u) =-v*On(l-v W )of the gamma random variabl& =G, by

conditioning using thatX|G~ N(8G,0°G) is normally distributed. The increments of the

process follow a VG distribution, namelX,, - X, ~VG(&,0%,v/t), 0<s<t . The

symmetric cased =0 is used in the original asset and option priangdel by Madan and
Seneta (1990) and Madan and Milne (1991).



In the second representation, the VG processewed as a bilateral gamma process (e.g.
Carr et al. (2002), Kichler and Tappe (2008)) whin different parameterization

X, =, a B - B BP ~VG* (p1,a.8), p.a,8>0 (2.3)

where G ~T'(at]),i = 12are independent copies of standardized gamma mesesth scale

parameter 1. The equality in distribution of thenfalas (2.1) and (2.3) follows from the fact that
the cgf of the independent gamma distributed diffiee in (2.3) equals

Cy (U)=-ptOn@-(a™ - B u-(aB)™u?), -B<u<a. (2.4)

The two representations are linked by the one-®tmmsformation of parameters

v=p", 8=pla™-B"), og=y2ap)"p,
p=v? a?t=i(Jo)?+2vo?® +vh), B =1({(VO)*+2va? -ve).

The VG process has been extensively studied in Matlal. (1998). It is worthwhile to mention
that it is a special case of the CGMY model intrmetliby Carr et al. (2002).

(2.5)

3. The multivariate Wang variance-gamma pr ocess

Several multivariate versions of the VG processehla@en considered so far. Madan and Seneta
(21990) first introduced a multivariate symmetric fftocess by subordinating a multivariate
Brownian motion without drift by a common gamma qass. The asymmetric version of this
model has been developed in Cont and Tankov (2@0d) Luciano and Schoutens (2006).
Generalizing (2.1) these authors consider multatariévy processes with VG components of
the type

Xt(k) = 0k mz‘t +0, WVék)' K =1...n, (31)

where theW’s arecorrelatedstandard Wiener processes such ttW"dw"] = p, dt.

This simple model is easy to work with but has s@egous drawbacks. For example, linear
correlation cannot be fitted once the margins axedi Moreover, the choice of a single
parameterv causes great difficulty in the joint calibratiém option prices on the margins as
observed by Luciano and Semeraro (2007). To ovezdtwese deficiencies Semeraro (2008) and
Luciano and Semeraro (2007/10) consider multivargatbordination to multivariate Brownian
motions through the generalized specification

X =6, B +0, W, k=L1..n, (32)



where the W®'s areindependenstandard Wiener processes a@ =(G”,...G" isa
multivariate subordinator defined by

G =Y +a,Z,, (3.3)

with a, > 0, and independent gamma proces$¥ ~ T (¢,t,m ),Z, ~T(p,q . Toensure that
the margins (3.2) are VG processes one requirég3i8) is a gamma process. As observed by
Hitaj and Mercuri (2012) this is the case under twe alternative choices (i, = Othe

independent case or (i§, =q/m,_ with G* ~T((¢, + p)t,m, ). Wang (2009) notes that a

closed-form joint characteristic function, whichapé a critical role in option pricing and
parameter estimation, can only be found in the cadsedependent Brownian motions in (3.2). In
this situation the dependence is mainly due taltifepart, which might be too weak in financial
applications. For this reason, Wang (2009), Secfdh introduces a new multivariate VG
process with closed-form joint cgf, called hereaf&ang variance-gamm@VVG) process.

The modelling idea consists to decompose eankarginal VG  process

X" =G +o Wi, G ~T (v tv,"), k=1..,n, into two independent VG components

such that

X© =AY +YY, A9 26,56 +o, W, G -ty (3.4)

Y 20,0 HY + o 1w, HEO (- et -veh)

PAMTICK

where Y, Y AD are independent for, j =1,...,n,i # j, and the conditional random vector
process (A”,...,A”|G,) is multivariate Gaussian with mean vectgr, @ and variance-
covariance matrixQ , [@ given by

uo=(02,.0,2) QA:(@puaiaj). (3.5)
The parameters of the VG margins can be arbitrbuy, the parameters, which drive the
dependence structure, must satisfy the constngjrg max¢,,...,v,).

The decomposition of the marginal processés two components is motivated by the
following economic background. The dependent corepbn or systematic part

A =(A",..,A™) isinterpreted as a systematic factor, which gus¢he big co-movements of

individual assets, while théendependent part Y, = (Y,“,....Y,!") represents the individual

factors of each asset.
Since the margins are sums of independenepsas with known cgf’s, the joint cgf of this
process can be expressed in closed-form (the cas@ is Proposition 2.2 in Wang (2009)).



Theorem 3.1 (cgf of the multivariate WVG procgsdhe joint cgf of the multivariate WVG
process X, =(X®,...X"” )  with parameters 6,,0,,V,,k=1...n, p;,i,j=1..n ,

Vo 2 maxg,,...,v,), is determined byC, (u) =C, (u) + iCY(k) (u,) with
k=1
C,(u)=-v'tOn{1-0'u-4u'zu}, C () =-" -Vt On{l-v, [y, +100uS)},  (3.6)
and u=(u,...u,), 8=v,0u,=Vb,..v.8,) Z=v,@,= (Jvivj,oijaiaj).

Proof. The dependence assumptions and (2.2) impliesthedt C, (u) =C, (u)+§n)CY(k) (u,)
k=1 't

with  Cq (u)=-! -y Htn{l-v, QEu, +Lo/u)} . Therefore, it suffices to verify the

formula for the cgf of the systematic part. Coradiilly on the common gamma subordinator
G, and using the fact that the conditional margimesrermally distributed as

AY[G, =6, %G, +0,,[2WY[G, ~ N(6, £, 07 .G,

one obtains the representation (3.6) from the ¥ahg calculation
C, (u) =InE[expl’ A)] =InE; [E[exp’ A)G]] = INE, [expt8'uG, +iu'ZuG,)]. ¢

Using a general result about subordinatioa a&vy process (e.g. Cont and Tankov (2004),
Theorfem 4.2), it is possible to obtain the Lévyasigre of the multivariate WVG process (see

Wang (2009), Section 2.2). The pairwise linear @ation between the marginX” and X!
is time-independent and given by

W Jvv;
T(Jlgigj+ v, Pyj0i0;

\/uief +0° q/vjef +07

p(Xf” XD ) - (3.7)

A derivation of (3.7) is found in Wang (2009), Posgiion 2.3. The following facts point out the
flexibility of the dependence structure:

(i) lim p(Xt“),Xt‘”)= 0 (asymptotically independent marginal VG processes

(i) v; =v,,v, =max¢,,v,), p; =1 (maximum dependence betweet" and X")
(i) v, =v, =v,, p; =1 (full comonotone dependence betwe’ and X”)



4. The multivariate Wang variance-gamma deflator

Consider the class of exponential WVG processegerGine current prices oh>  lisky assets
at initial time O their future prices at time>  @re described by exponential VG processes

S = s exp(, ~w)t+X¥), k=1..n, (4.1)

where y, represents the mean logarithmic rate of returthekk -th risky asset per time unit,
and the random vectorX, = (X”,..,.X” Yollows a multivariate WVG process. Using the
defining relationship  E[S¥]1=S exp(t ) at unit time, one sees that
@, =C, 4 (@) <0,k =1,...,n, where one assumes that the cgf Xf = X' exists over some

open interval, which contains one. Suppose thatrthiéivariate WVG deflator of dimension
has the same form as the price processes in (Bdr).some parametera and vector
B =(B,,....5,) (both to be determined) one sets for it (an Essthesformed measure)

D, =expat-B"X,), t>0. (4.2)
A simple cgf calculation shows that the definingrimgale conditions
E[D,]=¢", E[D,S¥]=SF, t>0 (4.3)

are equivalent with the system oh+ dquations in the2n+ Iunknowns a, 5., (use that
X, is a Lévy process, hencg, (u) =t[C, (u ):)

r-a+Cy(-B)=0, y -w -a+C,(B8Y)=0,

4.4
BY=(BY,...BY), B =0r B, jk=L..n 4

Inserting the first equation into the second oneklyg the necessary relationships
fh ~1 =@, +Cy (BY)~Cy (-B) =0, k=1..n. (4.5)

By Theorem 3.1 these equations are equivalent with
H—Tr—q + CA(IB(k)) —C (=B + CY(k) @-5) _CY(k) (-6) =0, k=1..n (4.6)

Since the system (4.4) has degrees of freedom, the unknown, can be chosen arbitrarily,
say
W =M T+ CY(k> (l_ﬁk) _CY(k) (_,Bk) = Cx(k) @, k=1..,n, (4.7)



which is interpreted as the (time-independ@fyG market price of the k -th risky assatith
the made restriction on the cgf, this value is gbkvénite. Inserted into (4.6) shows that the
parameter vectorS is determined by the equations

CA(BY)=C,(-B), k=L..n. (4.8)
We are ready to show the following WVG deflatorresgentation.

Theorem 4.1. (WVG deflator of dimensiom) Given are n> 1risky assets with exponential
VG real-world prices (4.1), where the random vegascess X, = (X”,..., X" ) follows a
multivariate WVG process. Then, the WVG deflataRj4s determined by

D, =expt-at-> BXY), t>0, with (4.9)
k=1
a=r+C,(-f), Boi=6,+G+y)o5, V= ]%( E_ipkj %' k=1..n (4.10)
Moreover, in the univariate case= dne hasy, =0.

Proof. The first equation in (4.4) yieldsa . Since C,(u)=-v,'0On{1-68'u-iu'su} by
Theorem 3.1, it follows that the conditions (4.8 aquivalent with the equations

.
HT’B(k) —%ﬂ(k) Z,B‘k) +9T'g_%ﬂTzﬂ: 0, k=1...n.

A straightforward calculation shows that the lattelequivalent with the stated conditions for
B, k=1..,n, whereincasen= Dne hasy, =0 (empty sum).0

5. The normal variance-gamma process and its multivariate Wang ver sion

Recall the embedding of the VG process intoliieteral gammaBG) process defined by (e.g.
Kichler and Tappe (2008), Section 6)

X, =, 0" G" -p1GP ~BG(yd,a,0d,B8), y.a,0,B>0, (5.1)

where G® ~T(y@ land G® ~T (50 1) are independent standardized gamma processes with
scale parameter 1 and shape paramejéis respectively d [t . Clearly, the VG process (2.3) is
the special casey =0 = p of (5.1). For even greater flexibility it is na#ih to embed the BG
process into the six parametarmal bilateral gamm#&NBG) process defined by



X, =q $ M+ WV, +a” [Gt(l) _/8_1 [Gt(Z)

5.2
~ NBG(EO,¢2 0, yd,a,00,8), ¢=20,y,a,3,8>0 -0<&<w, 5.2)

with W, ~ N (0,t) a standard Wiener process”, G® as above and independent 8¢ . The
cgf of the NBG process is determined by

Cy (U)=E@M+3yY? AW - yROnL-a~u)-3AOn@+B), -B<u<a. (5.3)

A few words about this rich class of Lévy procesaesin order. The distribution of the NBG
random variable X = X, ~NBG(&,¢?,y,a,9,3 ) includes a number of important and

increasingly discussed families of distributionsgdHurlimann (2013b) for a discussion with
many references). Especially, it is worthwhile tention that theBrownian-Laplacemotion
considered in Reed (2007) is a re-parameterizadiithe normal variance-gammgNVG)
process obtained from (5.2) by setting=0 = p . In fact, the independent and stationary

increments X =, X, — X;,0<s<t ,of this process follow aeneralized normal Laplace
(GNL) distribution introduced in Reed (2006) andinked by

X=¢p+yOlpZ+a™GY -4 GP

(5.4)
~GNL( w2, p,a, B) = NVG(E [p,y? [p, p,a, B),

where Z,G®,G® are independent witiZz ~N  (0land G®,G® are standardized gamma
with scale parameter 1 and shape paramgtef~rom now on, the focus will be restricted to the

NVG process and its multivariate version.

The multivariatdVang normal variance-gamn{8/NVG) process is obtained from the WVG
process as the univariate NVG is obtained fromuthigariate VG process. For convenience, the
VG margins are described in terms of the originatameter set (6,,0,,v, ) instead of

(p,a.,6), k=1...n (parameter transformation (2.5)). The one-dimeraioincremental
margins of the WNVG process are described by carisis X® =Y® +z1  with VG
processesY," and independent Wiener procesg$8 such that

Yt(k) = Hth(k) + O'kW(;fli)) ) Zt(k) =&t +‘/Ikvvt(k), k=1..,n, (5.5)

with W™ ~N(Ot) a standard Wiener process. The dependence stuofuthe WNVG
process is inherited from the multivariate WVG mse Y, = (Y,*,....Y" ) defined in Section 3
and the multivariate Wiener proces, = (Z",...,Z2"  with mean vectoré = (¢,,....§, )and
covariance matrix\p = (,O-J-Nl/lil/lj). The joint cgf can be expressed in closed-form.



Theorem 5.1 (cgf of the multivariate WNVG procgs3he joint cgf of the multivariate WNVG
processX, = (X,... X" )with parameters, .4, ,6,,0,.V,,k=1...n, o', p,°i,j=1...n,

Vo 2 maxg,,...v,), is determined byC, (u) =& uli+3(u"Wu)d+C, (u)+ iCY(k) (u,) with
k=1
C,(u)=-v'tOn{1-0'u-$u'zu}), C () =-W" -Vt On{l-v, M8y, +100u)},  (5.6)

with &€= (&,..&), Y=(ofww,) 6=W6...16) z=(lvv pcoa,).

Proof. Since X, is the convolution ofY, and Z,, the representation (5.6) is the sum of the
joint cgf’s of a multivariate Wiener process and INVG process given in Theorem 34.

Important special cases of the WNVG process the multivariatenormal generalized
asymmetric LaplacNGAL) process (case, =V,,k=1...,n) and the multivariatenormal

asymmetric LaplacéNAL) process (case, =V, =1 k =1,...,n). The naming of the latter stems

from the fact that the VG margins, in this case abqu to
Y =6 EY +o W, B ~ Explt), k=1...,n , reduce to asymmetric or skew Laplace

rocesses. Therefore, the incremental margin€® = X® —x®  follow a normal
d s

t+s
asymmetric LaplacéNAL) distribution, also callechormal Laplace(NL) distribution by Reed
(2006) and Reed and Jorgensen (2004), of the form

X sz +y, [ +ak_l [E, _ﬁk_l [E, ~ NAL(fk’l//k'ak’lBk)’ (5.7)

with  Z~N(01) (standard normal), E, E, ~Exp(l) (standard exponential)(Z,E,,E,)
independent, and a,' =1(/6¢ +207 +6,), B =1 (6 +20% -6,),k=1,...,n (parameter

transformation (2.5)).

Since the Laplace and normal distributionsstitute Laplace’s first and second law of errors
(e.g. Kotz et al. (2001), Chap. 1), it is worthy ¢onsider convolutions of the two error
distributions for modelling purposes. A probabitisgenesis of (5.7) is found in Reed and
Jorgensen (2004). This distribution arises natyiélh Brownian motion dX = gy ldt+ g [dW

with initial state X{ ~ N(&,,¢?) is observed at an exponentially distributed randime T .

If the logarithmic price of a financial asset isased to follow a Brownian motion, then its
logarithmic price at théme of the first trad®n a fixed future date could be expected to foloow
distribution close to a normal Laplace (e.g. Re&@D6), p.5). Similarly, a standardized gamma
time changed Brownian motion with initial randomrmal state leads to a normal variance
gamma distribution. The empirical fitting capalid# of the normal Laplace have been tested in
several case studies. For example, Hurlimann (20%Bbws that an AR(1) process with NL
noise achieves a best goodness-of-fit for the Swmssumer price index among various
competing non-Gaussian noise specifications.
The joint cgf of the multivariate NAL processdetermined as follows.
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Corollary 5.1 (cgf of the multivariate NAL processThe joint cgf of the multivariate NAL
process X, = (X?,..,.X" )with parametersé, . ¢,.6,,0,,k=1..n, o', p/"i,j=1...n, is
determined by

Cy (u)=¢&Tul+3(uWu)d-tOn@-6"u-4u'zu), (5.8)

with &=(&,...&), ¥=(olvw,) 6=(6,..6,) ==(proa,).
Proof. This follows from Theorem 5.1 setting, =v, =L k=1...,n. ¢

The vector of incrementsX = (X ®,...,X™) ~ NAL(&,W,6,Z s the convolution of a normal
vector Z=(Z,....Z") ~ N(&, W) and an asymmetric Laplac¥ =(Y®,...Y™)~ AL(8,Z . )
The distribution of the latter vector has beenadtrced by Kozubowski and Podgorski (2000)
while its characteristic function appears in Kozwbki (1997) and Kozubowski and Panorska
(1999). It is studied in the book by Kotz et al0@2) (see also Kotz et al. (2003) and
Kozubowski et al. (2010)). Parameter estimatiomhef multivariateshifted asymmetric Laplace
(SAL) distribution é +Y ~ SAL(¢,8,% )is discussed in Visk (2009) and Hurlimann (2013c).

6. The multivariate Wang nor mal variance-gamma deflator

Consider nown > 1risky assets, whose real-world prices are desdrify exponential normal
VG processes of the type

S = s exp(, ~w)t+X¥), k=1..n, (6.1)

where y, represents the mean logarithmic rate of returthek -th risky asset per time unit,
and the random vectorX, =(X®,.... X  Yollows a multivariate WNVG process with cgf
(5.6). Clearly, one must havey, =C,, (@) <,k =1...,n, where one assumes that the cgf of

X® =x"  exists over some open interval, which contains. dduppose that th&/NVG
deflator of dimensionn has the same form as the price processes in f@L)some parameter
a and vector 8 =(f,,....5, Xboth to be determined) it is defined by the Ess¢ransform

D, =explat-pB"X,), t>0. (6.2)

The martingale conditions (4.3) lead to the sanstesy of n+ 1equations (4.4) in thén+ 1
unknowns a, ., &, , and (4.5) holds. By Theorem 5.1 the latter éguatare equivalent with

fe =T =+ &Y +3 BT WEY +Cu(BY)

6.3)
+£Tﬁ_%ﬂTwﬁ_CA(_ﬁ) +Cy(k) (1_ﬁk) _CY<k) (_ﬁk) =0, k=1...n
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Again, the unknown @, can be chosen arbitrarily. A convenient apprdprighoice, which
leads to a simple solution of the system (6.3)s@®18 to set fork =1,...,n:

W=t~ +E AT A-2B8)W, _Lz'kg W, +C 1= B)~C,(-B) =C,0 @), (6.4)

which is interpreted as the (time-independ&iVG market price of the k -th risky asd#fith
the made restriction on the cgf, this value is gbvanite. Inserted into (6.3) one sees that the
parameter vectorS is determined by the equations

Ca(BY)=C,(-B), k=L...n. (6.5)

To show this, one uses the relationships

FRY++E B8, 1A WBY L FWE=10-26)We~ T A%, K=l

i=li#k
We are ready to show the following WVG deflatorresgentations.

Theorem 6.1. (WNVG deflator of dimensiom) Given are n> 1risky assets with exponential
normal VG real-world prices (6.1), where the randeector process X, = (X2,.., X" )
follows a multivariate WNVG process. Then, the WNJ&flator (6.2) is determined by

D, =expCat— ¥ B.XY), t>0, with (6.6)
k=1

a=r+Cy(-f), Boi=6.+G+y)oi, V= Zk ;_ipi\j/G%’ k=1..n. (6.7)
Ik

Moreover, in the univariate case= dne hasy, =0.

Proof. The proof of Theorem 4.1 appli&s.

Corollary 6.1. (NAL deflator of dimensionn) Given are n=> 1risky assets with exponential
normal asymmetric Laplace real-world prices (6.9here the random vector process

X, =(X?,...,X™) follows a multivariate NAL process with cgf (5.8Jhe NAL deflator is
determined by

D, =expt-at-> BXY), t>0, with 6.8)
k=1

a=r+C,(-B), Boi =6, +(G+y)oy, yk=j§k Spft ok k=L..n.  (6.9)

Proof. This follows from Theorem 6.1 replacing;® by p*. ¢
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7. Pricing geometric basket options with state-price deflators

In the literature one distinguishes between twaesypf basket options. Theithmetic basket
optionis defined on the weighted arithmetic averagesstaprices such that

§ =268, (7.1)

where the weights(c, )can be negative, and in this situation it inchidpread optionsThe
geometric basket optias defined on the weighted geometric average sdtgwices

S =nIs“1*, ¢ >0 Xc =1 (7.2)
k=1 k=1

Since distribution functions of weighted sums ofretated asset prices can usually not be
written in explicit closed form, the pricing of #imetic basket options is rather challenging.
Different and mostly approximate methods to privemt have been developed so far by many
authors including Turnbull and Wakeman (1991), Msley and Posner (1998), Krekel et al.
(2004), Carmona and Durrleman (2006), Borovka.€2807), Wu et al. (2009), Venkatramanan
and Alexander (2011), Alexander and Venkatramag@tZ), Brigo et al. (2013). The pricing of
the geometric basket option is more straightforward

We illustrate usefulness of the multivariatev®/ and WNVG deflators by pricing the
geometric basket options. The obtained explicithdital pricing formulas can be viewed as
multivariate generalizations of the Black-Scholesrfula.

Consider an European geometric basket calbioptith maturity dateT and exercise price
K in themultivariate WVG markewith n>1 risky assets that follow the price process (4.1)
and is subject to the WVG deflator (4.9)-(4.103.gtice at initial time O is given by

C=E[D, (S -K),]. (7.3)

A straightforward calculation, which takes into agnt the normalizing choice (4.7), shows that

D, S, = S, @xp{-C, (-BAT + 3¢, d, T+ ¥ (c, - B)XY),
k=1 k=1

7.4
d, =Cou (<8,) = Cyon = B). DK =Ke™ exp{-Cy (-A)T - A X1} "
By the representation (3.4) one has
X{9 =6, 4Gy + 0, LW +6, (L 2)HE + 0, [1- W)
with independent distributed gamma random variablesG; ~ I'(yOT,yO) and

HO ~T (v T ) Vo =Vt v =Vt —v;t. To evaluate (7.3) we condition (7.4) on the
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random vector U; = (G, ,H®,...,H!" ) whose density function is the product of gamma
densities of the form

fUT (XO’Xl """ Xn) = fGT (XO) |:|!2:|1 fH-f—k) (Xk) = kIElo[yk/r(yk )](ykxk)ykT_le_ykxk .

Proceeding this way rewrite (7.3) as multiple im&gC = e "7 jjC(w) f, (w)dw with

C(w) = EL(S, exp{Xe,d,T + 2(6, - BIX{"} ~Ke™ exp{-3. 5, =w. (7.5)

Each of the two conditional correlated normallytidsited sums in (7.5) is normally distributed,
and their joint distribution is bivariate normalhdrefore, the distribution of the conditional

random couple (3¢ d, T + 3 (c, —ﬂk)xﬁk),—iﬂkxﬁkﬂUT =w), with w=(W,,w,,...,w,), is
k=1 k=1 k=1

determined by the conditional means
E[YcdT +Y(c - BIXHU; =W =c"d T +w'm®, E[- z/zkx<k>|u =w]=w'm®,
k=1 k=1
c=(c,...c,), d=(d,..d), m?=mP m?..m"), m®=(m? m?,..m?),

M =3(6 -8G5, M =-2 A0 M =(6 -BIEA-5).
m® = =-B6,1-%), k=1..n.

(7.6)

the conditional variances

Var[ickdmi(ck ~BIXOU; =W =w's®, s® =([sP]3[sP],...[sP]3),
k=1

9 =3 P (e - B)oi(c - B)a;, [sP1F=-1)(6 - B) or. k=1...n,
R (7.7)
Var[—ZﬂkXT‘k’IUT =w=w's?, s?=([s?1%[s?]%,... [sP]%),

[s7]° = Z,O.J ij 0.0,0,, [sP]?=@1-%)Bio¢ k=1...n,

I]—

and the conditional covariance

CoY e d T + 3 (6, =~ BIXT =L XUy = w] = 05,757,

psls? = 3 P (8 ~c)a, B0,

i,j=1

(7.8)
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Now, let ®(x) denotes the standard normal distributigr(x) =1-®(x) its survival function,
and ¢(x) = ®'(x) its density. The bivariate standard normal dgnsitefined and denoted by

1 1
P,(X Y, p) = —zexp{——z(xz —2pxy+ yz)} :
J2m(L- p?) 2(1-p%)
From (7.5) and the definitions (7.6)-(7.8) one aida

C(W) - °J? °J?(SoechmWTm(l)ﬁ/WTs(l)x _ Ke_rTJrWTm(Z)”WTS(Z)y)Jr¢2(X, y: ,O)dxdy (79)

—00 —00

The expression in the bracket of (7.9) is non-negairovided x = x(y ) with

_In(K/s) = (r+c'd)T N w' (m® —m®) N Vw's®?

Jw's® Jw's® Jw's®

x(y)

Since @,(x,Y; ) = #(Y)@(x— py) 11— p?)I/1- p* a separation of the double integral
yields C(w) = TJ(y,W)¢(y)dy with the inner integral

J(y, W) - (1/ }1_p2) DOJ?{ SbechEII+WTm(1)+ w's®x _ Ke—rT+WTm(2)+\ WTS(Z)y}¢((X_W)/ ll_pZ)dX. (710)

x(y)

A straightforward application of Lemma Al.1 in tAppendix 1 yields

J(y, W) — SoechEHWTm(l)+pvas(1)y+%(l—p2)wTs(1)q)(pyl__x(z,) + [(1_ pz)WTS(l))
V1-p

—Ke™T +w'm® +y/w's@ yq)(/y—x(y))
J1-p2 7

To simplify notation rewrite the arguments withiretnormal distribution functions as

AY=X(y) +./ 1- 2 WTS(l) —a+e py—_x(y):b+8 with

g2 (THcd)T -In(K/S) +w' (m? -m® + (1~ p°)s?)
V- ptw's® |
p= (T+eTd)T ~In(K/) +w/ (m®-m®) ~__ pIW's® —w's? ' '
\/(1_102)WTS(1) \/(1_102)WTS(1)
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Furthermore, one has
() =6 gy - pVW's?), e g(y) =€ gy —VwTs®).
Now, using twice the Lemma Al.2 of the Appendixrie @btains

— cTdm+w’ (m® +1sW) o arepw s®y o —T+w’ (M +1s@) L piofyTs@
C(w) =Se P ) Ke *e )

Based on the above expressions for the coefficienbse one obtains further

_ cTdm+w' (mY+1s®) (r+c"d)T=In(K / Sp)+w" (mD-m@)+Q2 (w)
C(w) =Se 2 d( aw) =)

—T+w (Mm@ +15(2 T | T (m®-—m2y-02
—Ke 1T+w! (m® +1f )(.D((r+c AT |n(|</s))$(v\\:v)(m m®)) Qz(w))' (7.]_]_)

Q2 (w) =w's® - VWP IVS®, k=12, Q(W)=4/Q2(W) + Q2(w).

Summarizing, we have shown the following main resul

Theorem 7.1 (Geometric basket multivariate WVG market call aptformulg Given is the
multivariate exponential WVG process (4.1) subjectne WVG deflator (4.9)-(4.10). Then, in
the above notations, one has

C=E[D, (S, —K),] =& > T @5e” " W, (a,(w),b(w)) - Ke™™ W, (a,(w),b,(w)}, (7.12)
W, (a(w),bw)) = [[je* d(bw)) f, (w)dw,

) (7.13)
a, (W) — WT (m(k) +%S(k)), bk(W) - (r+ch)T—|n(|</SJ)Jr\/\/;((TV()”—m<2))+(—1)k 102 (w) , K = 12.

Remarks 7.1. A similar option pricing formula can be derivedr fthe multivariate WNVG
marketwith n>1 risky assets defined in Section 6 with WNVG ditd6.6)-(6.7). The cgf in
(7.12) must be replaced by the cgf (5.8). Sincé)(& replaced by (6.4) the quantitie, in

(7.4) must be replaced byd, =C . (=5) ~Cw @~ B) — & —3A-28) P + ':§¢'k8i Wi

Moreover, X is replaced by the equation (5.5), that¥s¥ + &t +@ WX, so that (7.6)-(7.8)
must be replaced accordingly (details are leftht® teader). In the univariate case= tle
WVG process reduces to the VG process, and theidimaénsional pricing formulas (7.12)-
(7.13) reduce to the one-dimensional formulas (A425) in Hurlimann (2014b). The
numerical evaluation of the multiple integrals lo¢ tform (7.13) can be performed using number
theoretic methods (e.g. Niederreiter (1972), Fo@d&82), Fang and Wang (1994), etc.). Another
possibility is the use of the fast Fourier transfo(FFT) to evaluate densities with known
characteristic functions (e.g. Hurlimann (2014appéndix 1). The standard FFT of, as a

product of n+1 gamma densities results in a grid & = 2™9 points, where N =29 s
the number of points required for the FFT of eae@mugpa density. This approach has the
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advantage to be applied for other subordinatora th@ gamma distribution like an inverse
Gaussian or a classical tempered stable distributi¢hen compared to the simpler multivariate
NVM mixture models proposed in Hurlimann (2014b)hieh result in a one-dimensional
geometric basket option pricing formula, the présenltivariate extension is computationally
more complex. For example, choosirgg= 1@ FFT calculation results in more than 1 billion

points for evaluation of the pricing formula fobaariate model.

At this point some important connections witte standard no-arbitrage framework of
Mathematical Finance must be mentioned (e.g. Wehhet al. (2010), Section 2.5, and Withrich
and Merz (2013), Chap. 2). By the Fundamental Téraoof Asset Pricing, the assumption of
no-arbitrage (weak form of efficient market hypatisg is equivalent with the existence of an
equivalent martingale measure for deflated pricegsses. In complete markets, the equivalent
martingale measure is unique, perfect replicatiocoatingent claims holds, and straightforward
pricing applies. In incomplete markets, an economaxel is required to decide upon which
equivalent martingale measure is appropriate. Netv,P denotes the real-world measure and
P an equivalent martingale measure. Then, one itharevork under P, where the prices
processes are deflated with a state-price defl@ernatively, one can work undeP” by
discounting the prices processes with the bank uatcaumeraire. Working with financial
instruments only, one often works undeP” . But, if additionally insurance liabilities are
considered, one works undd? (see Wiithrich et al. (2010), Remark 2.13). A récem-trivial
example is pricing of the “guaranteed maximum idla death benefit (GMIDB) option”
(equation (5.4) in Hurlimann (2012a)). Theorem demonstrates the practicability of the state-
price deflator approach for exponential WVG priceogesses as applied to the European
geometric basket call option. The conditions undbich the WVG and WNVG multivariate
markets are complete and arbitrage-free, that ésetlexists a unique equivalent martingale
measure and prices are uniquely defined (whethdemurP” or under P with state-price
deflator), remain to be find. This is a non-triviabblem that has been tackled so far only for the
multivariate Black-Scholes model (see Dhaene €R28l12)).

Finally, as a mode of conclusion, let us nentihat other multivariate versions of the VG
process and generalizations can be found in thentdierature (e.g. Ishwaran and Zarepour
(2009), Kaishev (2010), Guillaume (2011/12) and f&42012)). The construction of state-price
deflators and their use in actuarial science amahte for these and other multivariate processes
is an interesting topic for future research.

Appendix 1. integral identities of normal type
The crucial identities used in the derivation oedlem 7.1 are stated and proved separately.

LemmaAll For anyreal numberd,c,uz and o > 0 one has the identity

o e B((x - ) o)dx = ¥ ED( /”’; 4 baj . (AL.1)
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Proof. Consider first the casg: = 0,0 = . Erom the relatione”™@(x) = e%bqu(x— b) one gets
[e™ mp(dx=e” O] g(t)dt = e w(b-c).
c c-b

Using this one obtains by a change of variables

o ] P((x - 1) )dx = ( of)(fb“b“ B(t)dt =¥ ma[ ”0__ " ba} L0
c c-u)l o

LemmaAl2. For anyreal numbers,b,# and o > 0 one has the identity

o Ofd(a+bX)@((x - 1)/ o)dx = cp(Lb”J . (A1.2)

V1+b?c?

Proof. Consider the function& (2) = [®(z+X)$(X)dx, G,(2) = | D(a+ 2)#(x)dx. One
notes thatF (0) = ofCD(x)¢>(x)dx:% and F'(2) = of¢(z+x)¢)(x)dx=@¢)(ﬁ), from which it

follows that F(a) = F (0) +?F'(z)dz: CD(%). On the other hand, one h@g (1) = F(a) = CD(%)
0

and G,(2) = zDT¢(a+ zx)¢(x)dx:(1+z—§)3,2¢(ﬁ), henceG,(b) =G, @ +lj)G'(z)dz= P(=).

1+b?

It follows that o™ Dojoq)(a+ bX)@((x - 1)/ 0)dx =G, (bT) = q)( a+byu J o
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