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Abstract 
 
Alternatives to the Black-Scholes-Vasicek deflator introduced in Hürlimann (2011) are 
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1.   Introduction 
 
The concept of state-price deflator or stochastic discount factor, which has been introduced by 
Duffie (1992), p.23 and 97, is a convenient ingredient of general financial pricing rules. It 
contains information about the valuation of payments in different states at different points in 
time. The state-price deflator is a natural extension of the notion of state prices that were 
introduced earlier and studied by Arrow (1951/53/64/71), Debreu (1954), Negishi (1960) and 
Ross (1978), a milestone in the history of asset pricing (see Dimson and Mussavian (1999)). 
Though general frameworks for deriving state-price deflators exist (e.g. Milterssen and Persson 
(1999) and Jeanblanc et al. (2009)), there are not many papers, which propose explicit 
expressions for them and their corresponding distribution functions. 
     We are interested in the construction of alternatives to the multivariate Black-Scholes-
Vasicek (BSV) deflator introduced in Hürlimann (2011) (see also Hürlimann (2012a)). A 
valuable and popular alternative choice to a log-normal distribution for asset pricing is an 
exponential variance-gamma process. It has been introduced in Madan and Seneta (1990) and 
extensively used in financial applications (e.g. Madan and Milne (1991), Madan et al. (1998), 
Madan (2001), Carr et al. (2002), Geman (2002), Fiorani (2004), Fu et al. (2006), Stein et al. 
(2007), Domenig and Vanini (2010), etc.). In the present paper we report on state-price deflators 
of multivariate normal variance-gamma type that are based on the multivariate Wang variance-
gamma (WVG) process introduced in Wang (2009). 
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     For the interested reader we remark that the article Hürlimann (2013a) contains an extension 
of the Black-Scholes deflator to a more general version with interest rates as additional source of 
randomness. From a mathematical viewpoint it is natural to investigate other generalizations, 
namely the consideration of alternative asset price processes for use in incomplete financial 
markets. Indeed, let us assume that asset prices admit no arbitrage. Then, there exists a unique 
state-price deflator if, and only if, the market is complete. Otherwise, if the market is incomplete, 
several state-price deflators exist and pricing is a more complex topic (e.g. Munk (2013), 
Theorem 4.2). Therefore, the study of state-price deflators is motivated by one of the main 
problems of Modern Finance, which consists to understand the pricing and hedging or replication 
of arbitrary portfolios in incomplete markets. Even if the portfolio is only made of derivatives 
there is no widely accepted solution to this problem (e.g. Cherny and Madan (2006), Section 1). 
     A short account of the content follows. Section 2 recalls the two main representations of the 
variance-gamma process. Its generalization to the multivariate Wang variance-gamma (WVG) 
process is introduced in Section 3. The construction of the multivariate WVG deflator is found in 
Section 4. Section 5 extends the univariate normal variance-gamma process to its multivariate 
context and Section 6 derives the corresponding state-price deflator. As an application we derive 
in Section 7 closed form analytical multiple integral formulas for pricing the European geometric 
basket option with a deflated multivariate exponential WVG asset pricing model. 
 
 
2.  The univariate variance-gamma process 
 
There are two different representations of the variance-gamma (VG) process. In the original first 
representation, the variance-gamma process is considered as a drifted Brownian motion time 
changed by an independent gamma process. Viewed from the initial time 0 it is defined by 
 

,0, >⋅+⋅= tWGX
tGtt σθ      (2.1) 

 
where  tW   is a standard Wiener process and the independent subordinator  ),(~ 11 −−Γ νν tGt   is 

a gamma process with unit mean rate and variance rate  ν . Since  tX   is a Lévy process, its 

dynamics is determined by its distribution at unit time. In fact, the random variable  
),,(~ 2

1 νσθVGXX =   follows a three parameter distribution with cumulant generating 
function (cgf) 
 

∞<<∞−>+⋅−⋅−== − θνσσθνν ,0,)},(1ln{])exp([ln)( 22
2
11 uuuXEuCX . (2.2) 

 
Of course, the cgf is only defined over an open interval (use (2.4)-(2.5) below). This formula is 
obtained from the cgf  )1ln()( 1 uuCG ⋅−⋅−= − νν   of the gamma random variable  1GG =   by 

conditioning using that  ),(~ 2GGNGX σθ   is normally distributed. The increments of the 

process follow a VG distribution, namely tstttVGXX sst <≤−+ 0),/,,(~ 2 νσθ . The 

symmetric case  0=θ   is used in the original asset and option pricing model by Madan and 
Seneta (1990) and Madan and Milne (1991). 
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     In the second representation, the VG process is viewed as a bilateral gamma process (e.g. 
Carr et al. (2002), Küchler and Tappe (2008)) with the different parameterization 
 

,0,,),,,(*~)2(1)1(1 >⋅⋅−⋅= −− βαρβαρβα tVGGGX ttdt   (2.3) 

 
where  ,2,1),1,(~)( =Γ itG i

t ρ are independent copies of standardized gamma processes with scale 

parameter 1. The equality in distribution of the formulas (2.1) and (2.3) follows from the fact that 
the cgf of the independent gamma distributed difference in (2.3) equals 
 

.),)()(1ln()( 2111 αβαββαρ <<−−−−⋅−= −−− uuutuC
tX   (2.4) 

 
The two representations are linked by the one-to-one transformation of parameters 
 

).2)((),2)((,

,)(2),(,

22
2
1122

2
111

1111

νθνσνθβνθνσνθανρ

ραβσβαρθρν

−+=++==

=−==
−−−

−−−−

  (2.5) 

 
The VG process has been extensively studied in Madan et al. (1998). It is worthwhile to mention 
that it is a special case of the CGMY model introduced by Carr et al. (2002). 
 
 
3.  The multivariate Wang variance-gamma process 
 
Several multivariate versions of the VG process have been considered so far. Madan and Seneta 
(1990) first introduced a multivariate symmetric VG process by subordinating a multivariate 
Brownian motion without drift by a common gamma process. The asymmetric version of this 
model has been developed in Cont and Tankov (2004) and Luciano and Schoutens (2006). 
Generalizing (2.1) these authors consider multivariate Lévy processes with VG components of 
the type 

,,...,1,)()( nkWGX k
Gktk

k
t t

=⋅+⋅= σθ    (3.1) 

 
where the  )(k

tW ’s  are correlated standard Wiener processes such that  dtdWdWE ij
j

t
i

t ρ=][ )()( . 

This simple model is easy to work with but has some serious drawbacks. For example, linear 
correlation cannot be fitted once the margins are fixed. Moreover, the choice of a single 
parameter  ν   causes great difficulty in the joint calibration to option prices on the margins as 
observed by Luciano and Semeraro (2007). To overcome these deficiencies Semeraro (2008) and 
Luciano and Semeraro (2007/10) consider multivariate subordination to multivariate Brownian 
motions through the generalized specification 
 

,,...,1,)()()(
)( nkWGX k

Gk
k

tk
k

t k
t

=⋅+⋅= σθ    (3.2) 
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where the  )(k
tW ’s  are independent standard Wiener processes and  ),...,( )()1( n

ttt GGG =   is a 

multivariate subordinator defined by 
 

,)()(
tk

k
t

k
t ZaYG +=      (3.3) 

 
with  ,0≥ka  and independent gamma processes  ),(~),,(~)( qpZmtY tkk

k
t ΓΓ l . To ensure that 

the margins (3.2) are VG processes one requires that (3.3) is a gamma process. As observed by 
Hitaj and Mercuri (2012) this is the case under the two alternative choices (i) 0=ka   the 

independent case or (ii) kk mqa /=   with  ),)((~)(
kk

k
t mtpG +Γ l . Wang (2009) notes that a 

closed-form joint characteristic function, which plays a critical role in option pricing and 
parameter estimation, can only be found in the case of independent Brownian motions in (3.2). In 
this situation the dependence is mainly due to the drift part, which might be too weak in financial 
applications. For this reason, Wang (2009), Section 2.2, introduces a new multivariate VG 
process with closed-form joint cgf, called hereafter Wang variance-gamma (WVG) process. 
     The modelling idea consists to decompose each marginal VG process  

,,...,1),,(~, 11)()()()(
)( nktGWGX kk

k
t

k

Gk
k

tk
k

t k
t

=Γ+= −− ννσθ  into two independent VG components 

such that 
 

( )
( ),)(,)(~,1)1(

,,~,,

1
0
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0

1)()()()(

1
0

1
0

)()()()()(

)(
00

00

−−−−

−−

−−Γ−+−=

Γ+=+=
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t
k

Hk
k

tk
k

t

t
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Gktk
k

t
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t
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tHWHY

tGWGAYAX

k
t

kk

t

kk

 (3.4) 

 
where  )()()( ,, i

t
j

t
i

t AYY   are independent for  jinji ≠= ,,...,1, , and the conditional random vector 

process  ),...,( )()1(
t

n
tt GAA   is multivariate Gaussian with mean vector  tA ⋅µ   and variance-

covariance matrix  tA ⋅Ω   given by 
 

( ) 




=Ω= jiijAnA

jin σσρθθµ ν
νν

ν
ν

ν
ν

000

1 ,,...,1 .    (3.5) 

 
The parameters of the VG margins can be arbitrary, but the parameters, which drive the 
dependence structure, must satisfy the constraint  ).,...,max( 10 nννν ≥  

     The decomposition of the marginal processes into two components is motivated by the 
following economic background. The dependent component or systematic part  

),...,( )()1( n
ttt AAA =   is interpreted as a systematic factor, which governs the big co-movements of 

individual assets, while the independent part  ),...,( )()1( n
ttt YYY =   represents the individual 

factors of each asset. 
     Since the margins are sums of independent processes with known cgf’s, the joint cgf of this 
process can be expressed in closed-form (the case  2=n  is Proposition 2.2 in Wang (2009)). 
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Theorem 3.1 (cgf of the multivariate WVG process). The joint cgf of the multivariate WVG 
process  ),...,( )()1( n

ttt XXX =   with parameters ,,...,1,,,,...,1,,, njink ijkkk == ρνσθ  

),,...,max( 10 nννν ≥  is determined by  ∑+=
=

n

k
kYAX uCuCuC k

ttt
1

)()()( )(   with 

 
)},(1ln{)()(},1ln{)( 22

2
11

0
1

2
11

0 )( kkkkkkkY

TT
A uutuCuuutuC k

tt
σθνννθν +⋅−⋅−−=Σ−−⋅−= −−−    (3.6) 

 

and  ( ) ( )jiijjiAnnAnuuu σσρνννθνθνµνθ =Ω⋅=Σ=⋅== 01101 ,,...,),,...,( . 

 

Proof. The dependence assumptions and (2.2) implies first that  ∑+=
=

n

k
kYAX uCuCuC k

ttt
1

)()()( )(   

with  )}(1ln{)()( 22
2
11

0
1

)( kkkkkkkY
uutuC k

t
σθννν +⋅−⋅−−= −− . Therefore, it suffices to verify the 

formula for the cgf of the systematic part. Conditionally on the common gamma subordinator  

tG   and using the fact that the conditional margins are normally distributed as 

 

),,(~
0000

2)()(
tktkt

k
Gktkt

k
t GGNGWGGA kk

t

kk

ν
ν

ν
ν

ν
ν

ν
ν σθσθ +=  

 
one obtains the representation (3.6) from the following calculation 
 

)].[exp(Eln]])exp([E[Eln])exp([ln)( 2
1

GG tt t
T

t
T

tt
T

t
T

A uGuuGGAuAuEuC
t

Σ+=== νθ   ◊ 

 
     Using a general result about subordination of a Lévy process (e.g. Cont and Tankov (2004), 
Theorfem 4.2), it is possible to obtain the Lévy measure of the multivariate WVG process (see 
Wang (2009), Section 2.2). The pairwise linear correlation between the margins  )(i

tX   and  )( j
tX   

is time-independent and given by 
 

( ) .,
2222

)()( 00

jjjiii

jiijjij
t

i
t

jiji

XX
σθνσθν

σσρθθ
ρ ν

νν
ν
νν

+⋅+

+
=     (3.7) 

 
A derivation of (3.7) is found in Wang (2009), Proposition 2.3. The following facts point out the 
flexibility of the dependence structure: 
 

(i) ( ) 0,lim )()(

0

=
∞→

j
t

i
t XXρ

ν
  (asymptotically independent marginal VG processes) 

(ii)  1),,max(, 0 === ijjiji ρννννν   (maximum dependence between  )(i
tX   and  )( j

tX ) 

(iii) 1,0 === ijji ρννν   (full comonotone dependence between  )(i
tX   and  )( j

tX ) 
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4. The multivariate Wang variance-gamma deflator 
 
Consider the class of exponential WVG processes. Given the current prices of  1≥n   risky assets 
at initial time 0 their future prices at time  0>t   are described by exponential VG processes 
 

nkXtSS k
tkk

kk
t ,...,1),)exp(( )()(

0
)( =+−= ωµ ,        (4.1) 

 
where  kµ   represents the mean logarithmic rate of return of the k -th risky asset per time unit, 

and the random vector  ),...,( )()1( n
ttt XXX =   follows a multivariate WVG process. Using the 

defining relationship  )exp(][ )(
0

)( tSSE k
kk

t µ=   at unit time, one sees that  

nkC kXk ,...,1,)1()( =∞<=ω , where one assumes that the cgf of  )(
1

)( kk XX =   exists over some 

open interval, which contains one. Suppose that the multivariate WVG deflator of dimension  n   
has the same form as the price processes in (4.1). For some parameter  α   and vector  

),...,( 1 nβββ =  (both to be determined) one sets for it (an Esscher transformed measure) 

 
.0),exp( >−−= tXtD t

T
t βα     (4.2) 

 
A simple cgf calculation shows that the defining martingale conditions 
 

,0,][,][ )(
0

)( >== − tSSDEeDE kk
tt

rt
t    (4.3) 

 
are equivalent with the system of   1+n   equations in the  12 +n   unknowns  kk ωβα ,,  (use that  

tX   is a Lévy process, hence  )()( uCtuC XXt
⋅= ): 

 

.,...,1,,),,...,(

,0)(,0)(
)()()(

1
)(

)(

nkj

CCr

j
k
j

k
j

k
n

kk

k
XkkX

=−==

=+−−=−+−

βδββββ
βαωµβα

  (4.4) 

 
Inserting the first equation into the second ones yields the necessary relationships 
 

.,...,1,0)()( )( nkCCr X
k

Xkk ==−−+−− ββωµ    (4.5) 

 
By Theorem 3.1 these equations are equivalent with 
 

.,...,1,0)()1()()( )()(
)( nkCCCCr kYkYA

k
Akk kk ==−−−+−−+−− ββββωµ  (4.6) 

 
Since the system (4.4) has  n   degrees of freedom, the unknown  kω   can be chosen arbitrarily, 

say 
nkCCCr kkk XkYkYkk ,...,1),1()()1( )()()( ==−−−+−= ββµω ,  (4.7) 
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which is interpreted as the (time-independent) WVG market price of the k -th risky asset. With 
the made restriction on the cgf, this value is always finite. Inserted into (4.6) shows that the 
parameter vector  β   is determined by the equations 
 

.,...,1),()( )( nkCC A
k

A =−= ββ     (4.8) 
 
We are ready to show the following WVG deflator representation. 
 
Theorem 4.1. (WVG deflator of dimension  n ) Given are  1≥n   risky assets with exponential 
VG real-world prices (4.1), where the random vector process  ),...,( )()1( n

ttt XXX =   follows a 

multivariate WVG process. Then, the WVG deflator (4.2) is determined by 
 

,0),exp( )(

1
>∑−−=

=
tXtD k

t

n

k
kt βα    with    (4.9) 

.,...,1,,)(),( 2
2
12 nkCr

kj
kjkkkkkkX k

j

k

j =∑=++=−+=
≠

σ
σ

ν
ν ργσγθσββα     (4.10) 

 
Moreover, in the univariate case  1=n   one has  01 =γ . 
 
Proof. The first equation in (4.4) yields  α . Since  }1ln{)( 2

11
0 uuuuC TT

A Σ−−⋅−= − θν   by 

Theorem 3.1, it follows that the conditions (4.8) are equivalent with the equations 
 

nkTTkTkkT ,...,1,02
1)()(

2
1)( ==Σ−+Σ− βββθβββθ . 

 
A straightforward calculation shows that the latter is equivalent with the stated conditions for  

nkk ,..,1, =β , where in case  1=n   one has  01 =γ   (empty sum).  ◊ 

 
 
5.  The normal variance-gamma process and its multivariate Wang version 
 
Recall the embedding of the VG process into the bilateral gamma (BG) process defined by (e.g. 
Küchler and Tappe (2008), Section 6) 
 

,0,,,),,,,(~)2(1)1(1 >⋅⋅⋅−⋅= −− βδαγβδαγβα ttBGGGX ttdt   (5.1) 

 
where  )1,(~)1( tGt ⋅Γ γ  and  )1,(~)1( tGt ⋅Γ δ  are independent standardized gamma processes with 

scale parameter 1 and shape parameters  t⋅γ   respectively  t⋅δ . Clearly, the VG process (2.3) is 
the special case  ρδγ ==   of (5.1). For even greater flexibility it is natural to embed the BG 
process into the six parameter normal bilateral gamma (NBG) process defined by 
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,,0,,,,0),,,,,,(~ 2

)2(1)1(1

∞<<∞−>≥⋅⋅⋅⋅

⋅−⋅+⋅+⋅= −−

ξβδαγψβδαγψξ
βαψξ

ttttNBG

GGWtX tttdt   (5.2) 

 
with  ),0(~ tNWt   a standard Wiener process, )1()1( , tt GG   as above and independent of  tW . The 

cgf of the NBG process is determined by 
 

.),1ln()1ln()( 1122
2
1 αββδαγψξ <<−+⋅⋅−−⋅⋅−⋅⋅+⋅⋅= −− uututututuC

tX       (5.3) 

 
A few words about this rich class of Lévy processes are in order. The distribution of the NBG 
random variable  ),,,,,(~ 2

1 βδαγψξNBGXX =   includes a number of important and 
increasingly discussed families of distributions (see Hürlimann (2013b) for a discussion with 
many references). Especially, it is worthwhile to mention that the Brownian-Laplace motion 
considered in Reed (2007) is a re-parameterization of the normal variance-gamma (NVG) 
process obtained from (5.2) by setting  ρδγ == . In fact, the independent and stationary 

increments  ,0, tsXXX sstd <≤−= +  of this process follow a generalized normal Laplace 

(GNL) distribution introduced in Reed (2006) and defined by 
 

),,,,,(),,,,(~ 22

)2(1)1(1

βαρρψρξβαρψξ
βαρψρξ

⋅⋅=

⋅−⋅+⋅⋅+⋅= −−

NVGGNL

GGZX
   (5.4) 

 
where  )2()1( ,, GGZ   are independent with  )1,0(~ NZ , and  )2()1( , GG   are standardized gamma 
with scale parameter 1 and shape parameter  ρ . From now on, the focus will be restricted to the 
NVG process and its multivariate version. 
     The multivariate Wang normal variance-gamma (WNVG) process is obtained from the WVG 
process as the univariate NVG is obtained from the univariate VG process. For convenience, the 
VG margins are described in terms of the original parameter set  ),,( kkk νσθ   instead of  

nkkkk ,...,1),,,( =βαρ  (parameter transformation (2.5)). The one-dimensional incremental 

margins of the WNVG process are described by convolutions  )()()( k
t

k
t

k
t ZYX +=   with VG 

processes  )(k
tY   and independent Wiener processes )(k

tZ   such that 

 

,,...,1,
~

, )()()()()(
)( nkWtZWGY k

tkk
k

t
k

Gk
k

tk
k

t k
t

=+=+= ψξσθ   (5.5) 

 

with  ),0(~
~ )( tNW k

t   a standard Wiener process. The dependence structure of the WNVG 

process is inherited from the multivariate WVG process  ),...,( )()1( n
ttt YYY =   defined in Section 3 

and the multivariate Wiener process  ),...,( )()1( n
ttt ZZZ =   with mean vector  ),...,( 1 nξξξ =   and 

covariance matrix  ( )ji
N
ij ψψρ=Ψ . The joint cgf can be expressed in closed-form. 
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Theorem 5.1 (cgf of the multivariate WNVG process). The joint cgf of the multivariate WNVG 
process ),...,( )()1( n

ttt XXX =  with parameters ,,...,1,,,,...,1,,,,, njink VG
ij

N
ijkkkkk == ρρνσθψξ  

),,...,max( 10 nννν ≥  is determined by  ∑++⋅Ψ+⋅=
=

n

k
kYA

TT
X uCuCtuutuuC k

ttt
1

2
1 )()()()( )(ξ   with 

 
)},(1ln{)()(},1ln{)( 22

2
11

0
1

2
11

0 )( kkkkkkkY

TT
A uutuCuuutuC k

tt
σθνννθν +⋅−⋅−−=Σ−−⋅−= −−−    (5.6) 

 

with  ( ) ( ) ( )ji
VG
ijjinnji

N
ijn σσρννθνθνθψψρξξξ =Σ==Ψ= ,,...,,),,...,( 111 . 

 
Proof. Since  tX   is the convolution of  tY   and  tZ , the representation (5.6) is the sum of the 

joint cgf’s of a multivariate Wiener process and the WVG process given in Theorem 3.1.  ◊ 

 
     Important special cases of the WNVG process are the multivariate normal generalized 
asymmetric Laplace (NGAL) process (case nkk ,...,1,0 ==νν ) and the multivariate normal 

asymmetric Laplace (NAL) process (case nkk ,...,1,10 ===νν ). The naming of the latter stems 

from the fact that the VG margins, in this case equal to  
nktExpEWEY k

t
k

Ek
k

tk
k

t k
t

,...,1),(~, )()()()(
)( =+= σθ , reduce to asymmetric or skew Laplace 

processes. Therefore, the incremental margins  )()()( k
s

k
std

k XXX −= +   follow a normal 

asymmetric Laplace (NAL) distribution, also called normal Laplace (NL) distribution by Reed 
(2006) and Reed and Jorgensen (2004), of the form 
 

( )kkkkkkkk
k NALEEZX βαψξβαψξ ,,,~2

1
1

1)( ⋅−⋅+⋅+= −− ,      (5.7) 

 
with  )1,0(~ NZ  (standard normal),  ( )1~, 21 ExpEE  (standard exponential), ( )21,, EEZ   

independent, and  nkkkkkkkkk ,...,1),2(),2( 22
2
1122

2
11 =−+=++= −− θσθβθσθα  (parameter 

transformation (2.5)). 
     Since the Laplace and normal distributions constitute Laplace’s first and second law of errors 
(e.g. Kotz et al. (2001), Chap. 1), it is worthy to consider convolutions of the two error 
distributions for modelling purposes. A probabilistic genesis of (5.7) is found in Reed and 
Jorgensen (2004). This distribution arises naturally if a Brownian motion  dWdtdX ⋅+⋅= σµ   

with initial state  ( )2)(
0 ,~ kk

k NX ψξ   is observed at an exponentially distributed random time  T . 

If the logarithmic price of a financial asset is assumed to follow a Brownian motion, then its 
logarithmic price at the time of the first trade on a fixed future date could be expected to follow a 
distribution close to a normal Laplace (e.g. Reed (2006), p.5). Similarly, a standardized gamma 
time changed Brownian motion with initial random normal state leads to a normal variance 
gamma distribution. The empirical fitting capabilities of the normal Laplace have been tested in 
several case studies. For example, Hürlimann (2012b) shows that an AR(1) process with NL 
noise achieves a best goodness-of-fit for the Swiss consumer price index among various 
competing non-Gaussian noise specifications. 
     The joint cgf of the multivariate NAL process is determined as follows. 
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Corollary 5.1 (cgf of the multivariate NAL process). The joint cgf of the multivariate NAL 
process ),...,( )()1( n

ttt XXX =  with parameters ,,...,1,,,,...,1,,,, njink AL
ij

N
ijkkkk == ρρσθψξ  is 

determined by 
)1ln()()( 2

1
2
1 uuuttuutuuC TTTT

Xt
Σ−−⋅−⋅Ψ+⋅= θξ ,   (5.8) 

 
with  ( ) ( ) ( )ji

AL
ijnji

N
ijn σσρθθθψψρξξξ =Σ==Ψ= ,,...,,),,...,( 11 . 

 
Proof. This follows from Theorem 5.1 setting  nkk ,...,1,10 ===νν . ◊ 

 
The vector of increments  ),,,(~),...,( )()1( ΣΨ= θξNALXXX n   is the convolution of a normal 

vector  ),(~),...,( )()1( Ψ= ξNZZZ n   and an asymmetric Laplace  ),(~),...,( )()1( Σ= θALYYY n . 
The distribution of the latter vector has been introduced by Kozubowski and Podgorski (2000) 
while its characteristic function appears in Kozubowski (1997) and Kozubowski and Panorska 
(1999). It is studied in the book by Kotz et al. (2001) (see also Kotz et al. (2003) and 
Kozubowski et al. (2010)). Parameter estimation of the multivariate shifted asymmetric Laplace 
(SAL) distribution  ),,(~ Σ+ θξξ SALY  is discussed in Visk (2009) and Hürlimann (2013c). 
 
 
6.  The multivariate Wang normal variance-gamma deflator 
 
Consider now  1≥n   risky assets, whose real-world prices are described by exponential normal 
VG processes of the type 
 

nkXtSS k
tkk

kk
t ,...,1),)exp(( )()(

0
)( =+−= ωµ ,        (6.1) 

 
where  kµ   represents the mean logarithmic rate of return of the k -th risky asset per time unit, 

and the random vector  ),...,( )()1( n
ttt XXX =   follows a multivariate WNVG process with cgf 

(5.6). Clearly, one must have  nkC kXk ,...,1,)1()( =∞<=ω , where one assumes that the cgf of  
)(

1
)( kk XX =   exists over some open interval, which contains one. Suppose that the WNVG 

deflator of dimension  n   has the same form as the price processes in (6.1). For some parameter  
α   and vector  ),...,( 1 nβββ =  (both to be determined) it is defined by the Esscher transform 

 
.0),exp( >−−= tXtD t

T
t βα     (6.2) 

 
The martingale conditions (4.3) lead to the same system of   1+n   equations (4.4) in the  12 +n   
unknowns  kk ωβα ,, , and (4.5) holds. By Theorem 5.1 the latter equations are equivalent with 

 

.,...,1,0)()1()(

)(

)()(2
1

)()()(
2
1)(

nkCCC

Cr

kYkYA
TT

k
A

kTkkT
kk

kk ==−−−+−−Ψ−+

+Ψ++−−

ββββββξ
ββββξωµ

 (6.3) 
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Again, the unknown  kω   can be chosen arbitrarily. A convenient appropriate choice, which 

leads to a simple solution of the system (6.3), consists to set for  nk ,...,1= : 
 

),1()()1()21( )()()(

,1
2
1

kkk XkYkY

n

kii
ikikkkkkk CCCr =−−−+∑ Ψ−Ψ−++−=

≠=
ββββξµω      (6.4) 

 
which is interpreted as the (time-independent) WNVG market price of the k -th risky asset. With 
the made restriction on the cgf, this value is always finite. Inserted into (6.3) one sees that the 
parameter vector  β   is determined by the equations 
 

.,...,1),()( )( nkCC A
k

A =−= ββ     (6.5) 
 
To show this, one uses the relationships 
 

.,...,1,)21(,
,1

2
1

2
1)()(

2
1)( nk

n

kii
ikikkk

TkTk
k

TkT =∑ Ψ−Ψ−=Ψ−Ψ=++
≠=
ββββββξβξβξ  

 
We are ready to show the following WVG deflator representations. 
 
Theorem 6.1. (WNVG deflator of dimension  n ) Given are  1≥n   risky assets with exponential 
normal VG real-world prices (6.1), where the random vector process  ),...,( )()1( n

ttt XXX =   

follows a multivariate WNVG process. Then, the WNVG deflator (6.2) is determined by 
 

,0),exp( )(

1
>∑−−=

=
tXtD k

t

n

k
kt βα    with    (6.6) 

.,...,1,,)(),( 2
2
12 nkCr

kj

VG
ijkkkkkkX k

j

k

j =∑=++=−+=
≠

σ
σ

ν
ν ργσγθσββα     (6.7) 

 
Moreover, in the univariate case  1=n   one has  01 =γ . 
 
Proof. The proof of Theorem 4.1 applies. ◊ 

 
Corollary 6.1. (NAL deflator of dimension  n ) Given are  1≥n   risky assets with exponential 
normal asymmetric Laplace real-world prices (6.1), where the random vector process  

),...,( )()1( n
ttt XXX =   follows a multivariate NAL process with cgf (5.8). The NAL deflator is 

determined by  

,0),exp( )(

1
>∑−−=

=
tXtD k

t

n

k
kt βα    with    (6.8) 

.,...,1,,)(),( 2
2
12 nkCr

kj

AL
ijkkkkkkX k

j

k

j =∑=++=−+=
≠

σ
σ

ν
ν ργσγθσββα  (6.9) 

 
Proof. This follows from Theorem 6.1 replacing  VG

ijρ   by  AL
ijρ . ◊ 
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7.  Pricing geometric basket options with state-price deflators 
 
In the literature one distinguishes between two types of basket options. The arithmetic basket 
option is defined on the weighted arithmetic average of asset prices such that 
 

∑=
=

n

k

k
tkt ScS

1

)( ,      (7.1) 

 
where the weights  )( kc   can be negative, and in this situation it includes spread options. The 

geometric basket option is defined on the weighted geometric average of asset prices 
 

1,0,][
11

c)( k =∑>∏=
==

n

k
kk

n

k

k
tt ccSS .   (7.2) 

 
Since distribution functions of weighted sums of correlated asset prices can usually not be 
written in explicit closed form, the pricing of arithmetic basket options is rather challenging. 
Different and mostly approximate methods to price them have been developed so far by many 
authors including Turnbull and Wakeman (1991), Milevsky and Posner (1998), Krekel et al. 
(2004), Carmona and Durrleman (2006), Borovka et al. (2007), Wu et al. (2009), Venkatramanan 
and Alexander (2011), Alexander and Venkatramanan (2012), Brigo et al. (2013). The pricing of 
the geometric basket option is more straightforward. 
     We illustrate usefulness of the multivariate WVG and WNVG deflators by pricing the 
geometric basket options. The obtained explicit analytical pricing formulas can be viewed as 
multivariate generalizations of the Black-Scholes formula. 
     Consider an European geometric basket call option with maturity date  T   and exercise price  
K   in the multivariate WVG market with  1≥n   risky assets that follow the price process (4.1) 
and is subject to the WVG deflator (4.9)-(4.10). Its price at initial time 0 is given by 
 

])([ +−= KSDEC TT .    (7.3) 
 
A straightforward calculation, which takes into account the normalizing choice (4.7), shows that 
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1
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n

k
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XcTdcTCSSD

kk ββββ

ββ
 (7.4) 

 
By the representation (3.4) one has 
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0000
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k

Tk
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GkTk
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T k
T

kk

T
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ν
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ν
ν σθσθ −+−++= , 

 
with independent distributed gamma random variables  ( )00 ,~ γγ TGT Γ   and 

( ) 1
0

11
00

)( ,,,(~ −−− −==Γ ννγνγγγ kkkk
k

T TH . To evaluate (7.3) we condition (7.4) on the 
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random vector  ),...,,( )()1( n
TTTT HHGU =   whose density function is the product of gamma 

densities of the form 
 

∏ Γ=∏⋅=
=

−−

=

n

k

xT
kkk

n

k
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kkk
k

TTT
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0

1
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γγγγγ . 

 
Proceeding this way rewrite (7.3) as multiple integral  ∫∫∫⋅= −− dwwfwCeC

T

X
U

TC )()()( β   with 
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Each of the two conditional correlated normally distributed sums in (7.5) is normally distributed, 
and their joint distribution is bivariate normal. Therefore, the distribution of the conditional 

random couple  ),)((
1

)(

1
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1
wUXXcTdc T

n

k

k
Tk

n

k

k
Tkk

n

k
kk =∑−∑ −+∑

===
ββ , with  ),...,,( 10 nwwww = , is 

determined by the conditional means 
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the conditional variances 
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     (7.7) 

 
and the conditional covariance 
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Now, let  )(xΦ   denotes the standard normal distribution, )(1)( xx Φ−=Φ   its survival function, 
and  )(')( xx Φ=ϕ   its density. The bivariate standard normal density is defined and denoted by 
 

( )








+−
−

−
−

= 22
222 2
)1(2

1
exp

)1(2

1
);,( yxyxyx ρ

ρρπ
ρϕ . 

 
From (7.5) and the definitions (7.6)-(7.8) one obtains 
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The expression in the bracket of (7.9) is non-negative provided  )(yxx ≥   with 
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Since  22
2 1/)1/)(()();,( ρρρϕϕρϕ −−−= yxyyx   a separation of the double integral 

yields  ∫=
∞

∞−
dyywyJwC )(),()( ϕ   with the inner integral 
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A straightforward application of Lemma A1.1 in the Appendix 1 yields 
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To simplify notation rewrite the arguments within the normal distribution functions as 
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Furthermore, one has 
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Now, using twice the Lemma A1.2 of the Appendix 1 one obtains 
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Based on the above expressions for the coefficients  eba ,,   one obtains further 
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  (7.11) 

 
Summarizing, we have shown the following main result. 
 
Theorem 7.1 (Geometric basket multivariate WVG market call option formula) Given is the 
multivariate exponential WVG process (4.1) subject to the WVG deflator (4.9)-(4.10). Then, in 
the above notations, one has 
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Remarks 7.1. A similar option pricing formula can be derived for the multivariate WNVG 
market with  1≥n   risky assets defined in Section 6 with WNVG deflator (6.6)-(6.7). The cgf in 
(7.12) must be replaced by the cgf (5.8). Since (4.7) is replaced by (6.4) the quantities  kd   in 

(7.4) must be replaced by ∑ Ψ+Ψ−−−−−−=
≠=

n

kii
ikikkkkkYkYk kk CCd

,1
2
1 )21()1()( )()( ββξββ . 

Moreover, )(k
TX   is replaced by the equation (5.5), that is  )()( ~ k

tkk
k

T WtX ψξ ++ , so that (7.6)-(7.8) 

must be replaced accordingly (details are left to the reader). In the univariate case  1=n   the 
WVG process reduces to the VG process, and the multidimensional pricing formulas (7.12)-
(7.13) reduce to the one-dimensional formulas (4.12)-(4.15) in Hürlimann (2014b). The 
numerical evaluation of the multiple integrals of the form (7.13) can be performed using number 
theoretic methods (e.g. Niederreiter (1972), Foglia (1982), Fang and Wang (1994), etc.). Another 
possibility is the use of the fast Fourier transform (FFT) to evaluate densities with known 
characteristic functions (e.g. Hürlimann (2014a), Appendix 1). The standard FFT of  

TUf   as a 

product of  1+n   gamma densities results in a grid of  qnnN )1(1 2 ++ =   points, where  qN 2=   is 
the number of points required for the FFT of each gamma density. This approach has the 
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advantage to be applied for other subordinators than the gamma distribution like an inverse 
Gaussian or a classical tempered stable distribution. When compared to the simpler multivariate 
NVM mixture models proposed in Hürlimann (2014b), which result in a one-dimensional 
geometric basket option pricing formula, the present multivariate extension is computationally 
more complex. For example, choosing  10=q   in FFT calculation results in more than 1 billion 
points for evaluation of the pricing formula for a bivariate model. 
 
     At this point some important connections with the standard no-arbitrage framework of 
Mathematical Finance must be mentioned (e.g. Wüthrich et al. (2010), Section 2.5, and Wüthrich 
and Merz (2013), Chap. 2). By the Fundamental Theorem of Asset Pricing, the assumption of 
no-arbitrage (weak form of efficient market hypothesis) is equivalent with the existence of an 
equivalent martingale measure for deflated price processes. In complete markets, the equivalent 
martingale measure is unique, perfect replication of contingent claims holds, and straightforward 
pricing applies. In incomplete markets, an economic model is required to decide upon which 
equivalent martingale measure is appropriate. Now, let  P   denotes the real-world measure and  

*P   an equivalent martingale measure. Then, one can either work under  P , where the prices 
processes are deflated with a state-price deflator. Alternatively, one can work under  *P   by 
discounting the prices processes with the bank account numeraire. Working with financial 
instruments only, one often works under  *P . But, if additionally insurance liabilities are 
considered, one works under  P  (see Wüthrich et al. (2010), Remark 2.13). A recent non-trivial 
example is pricing of the “guaranteed maximum inflation death benefit (GMIDB) option” 
(equation (5.4) in Hürlimann (2012a)). Theorem 7.1 demonstrates the practicability of the state-
price deflator approach for exponential WVG price processes as applied to the European 
geometric basket call option. The conditions under which the WVG and WNVG multivariate 
markets are complete and arbitrage-free, that is there exists a unique equivalent martingale 
measure and prices are uniquely defined (whether under  *P   or under  P   with state-price 
deflator), remain to be find. This is a non-trivial problem that has been tackled so far only for the 
multivariate Black-Scholes model (see Dhaene et al. (2012)). 
     Finally, as a mode of conclusion, let us mention that other multivariate versions of the VG 
process and generalizations can be found in the recent literature (e.g. Ishwaran and Zarepour 
(2009), Kaishev (2010), Guillaume (2011/12) and Marfè (2012)). The construction of state-price 
deflators and their use in actuarial science and finance for these and other multivariate processes 
is an interesting topic for future research. 
 
 
Appendix 1:  integral identities of normal type 
 
The crucial identities used in the derivation of Theorem 7.1 are stated and proved separately. 
 
Lemma A1.1.  For any real numbers  µ,,cb   and  0>σ   one has the identity 
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Proof.  Consider first the case  1,0 == σµ . From the relation  )()(
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Using this one obtains by a change of variables 
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Lemma A1.2.  For any real numbers  µ,,ba   and  0>σ   one has the identity 
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