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ABSTRACT  

    The paper analyzes the operation of a defense logistics system. In more detail , the 

examined  system  consists  of a one warehouse, the first supply echelon and four 

battlefields, the second supply echelon, which face four corresponding  demand rates. 

Characterized as a divergent dynamic supply network, the system is analyzed by modeling it 

as markovian process with discrete space. Major outputs of the modeling process are the 

evaluation of the performance measures of Work In Process (WIP) , Fill Rate (FR)  and the 

presentation of the behavior of the performance measures in relation with a number of 

variables such as safety stock (s) , replenishment rates (μ) and demand rates (λ)  

Key words: Two-echelon defence supply network, divergent system, Markov analysis, 
performance measures  

1.INTRODUCTION  

This paper deals with the analytical modelling of a dynamic supply system with two stages 

(warehouse, customers) . The operation of every system is depended by the system’s 

strucure, system’s behavior and system’s interconnectivity. The system’s strucure is a 

divergent one (the final  stages are connected with a warehouse). System’s behavior 

involves inputs, processing and outputs of  military material,  information, or data. The 

replenishment times  between the members are random and follow a Coxian-2 phase type 

distribution. Further, the customers face a demand distributed according to Poisson 

distribution and the warehouse is never starved.  

Based on the above information, the performance of this supply chain system is explored . 

The system is modelled as continuous time Markov process with discrete space.  The 

structure of the transition matrices of these specific systems is examined and a 

computational algorithm is developed to generate it for different values of system 

characteristics.  The proposed algorithm allows the calculation of performance measures 

from the derivation of the steady state probabilities 

Included among the metrics of performance of the system are metrics of special interest 

from the view point of achieving customer service targets, viz., fill rates, cycle times. These 

performance measures as well as the average inventory (WIP) of the military supply chain 

are examined as a function of system characteristics i.e. number of battlefields (R)  and 

replenishment time characteristics  μi1, μi2, di1,di2,d1,d2 i=1,2 and demand characteristics λi.  



  The authors aim to provide a modelling process for the analysis of defence supply systems 

which are characterized of high variability.Further, a computational process for stochastic 

models is presented. Last but not least,  a number of managerial insights concerning defence  

supply operation  are stressed.  

  The outline of our paper is as follows : in the second part the relating literature is 

presented. In the third part and the fourth part, the system and the model  are  presented  

correspondingly whereas in the fifth  part the behaviour of the performance measures is 

offered.  

2. LITERATURE REVIEW  

The literature on the split out inventory models is categorized  in two categories a) Pure split 

out inventory models and b) Applied in defense operations split out inventory models  

2.1.Pure split out inventory models 

Anderson and Melchiors (Anderson & Melchiors,2001) examine an inventory system with 

one distribution center and multiple retailers with independent Poisson demands ,(S, S-1) 

base stock policy, lost sales and deterministic lead times . Moutqatipkul and Yerandee 

(Moutqatipkul & Yerandee,2008)  deal with a supply network with one distribution center 

multiple retailers and (S,s) periodic review inventory policies. Axsater (2003)  deals with a 

two echelon inventory system with a central warehouse and a number of retailers following 

a continuous review installation stock (R,Q) policies. Axsater et al  (2004)  consider a 1-

warehouse and N-retailer inventory system. They also develop a heuristic method to 

optimize policy parameters. Ahire and Schimdt (Ahire & Schimdt,1996)  analyze a Mixed 

Continuous Periodic One –Warehouse N- retailers inventory system . They solve an 

analytical approximate model to predict system performance under different operating 

conditions. Jokar and Zangeneh (2006)  consider a one- warehouse several retailers supply 

network and a heuristic for finding cost – effective bas stock policies . Marklund (2002) 

introduces a new replenishment policy of a inventory system consisting of one warehouse 

and an arbitrary number of of non identical retailers . Further, a technique for the exact 

evaluation of the expected inventory holding and backorder costs of the system is presented 

. Rifai and Rossetti  (Rifai & Rossetti  2007)  analyze an inventory system of one warehouse 

and N identical retailers and implement the reorder point , the order quantity (R.Q) 

inventory policy. They develop an iterative heuristic optimization algorithm in order to 

minimize the total annual inventory investment subjected to average annual ordering 

frequency and expected number of backorder constraints . Last but not least, Thangam and 

Uthayakumar (2008)   propose a split out supply network with independent retailers and a 

single supplier following a continuous review policy (R.Q). Based on the assumptions of 

1)Poisson demand at retailers  2)constant transportation times 3) partial backlogging they 

develop an approximate cost function to find potential reorder points  

2.2.Applied in defense operations split out inventory models 

The system that the applied models analyze is this of a split out supply network of repairable 

spare parts of fighting airplanes Besaler and Veinott  (Besaler & Veinott  1996)  analyze a 



network of a central warehouse and a number of  bases facing random demand. An ordering 

policy which minimizes expected costs is sought. Lau et al  (2006)  propose a Monte Carlo 

simulation model to study a multi –echelon repairable item inventory system .Muckstadt  

(1979)  develops a mathematical model for a system consisting of a group Air Forces bases 

and a central depot. The model determines the stock levels at each air base . Rappold and 

Roo (Rappold & Roo,2009) deal with a model corresponding to  joint problem of facility 

location, inventory allocation and capacity investment in a two echelon single item service 

parts supply chain  with stochastic demand .Gupta and Albright  (Gupta & Albright,1992)   

model a split out inventory system for the repairs of military spare parts. Owning to 

Markovian approach , they evaluate steady state operating characteristics of the inventory 

system .  

3. THE SYSTEM   

Supplying military units is a paramount task for any military administration: the quantity of 

supplies and their replenishment rate directly affects how effective a team is operating 

during a military operation. Replenishing the supplies efficiently is thus a very important 

factor of success in the field 

 

 

Fig. 1 the distribution system 
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In this study, major  aim is to evaluate how time variability in replenishing the supplies can 

affect military units during an operation  problem under consideration. A central 

replenishment source and K scattered military units -each facing different pressures is 

assumed . The central source has sufficient supplies to cover any demand of the supported 

units, which communicate with it when the fire power is critically limited.  

The normal time of replenishment varies, following an exponential distribution with a mean 

value μ1. Unpredictable events result in a delay of replenishment, which  then follows an 



exponential distribution with a mean value μ2. Thus,  the variability of  replenishment time 

can be expressed as a Coxian distribution with two phases (1st phase: normal replenishment, 

2st phase: replenishment facing difficulties). 

 

4.THE MODEL  

The two-echelon supply network  consists of R+1 members R retailers who receive orders 

from the external enviroment and one manufacturer that serves the retailers’  orders. 

Independent Poisson demands with mean rates λ1, λ2, λ3,…, λn .The retailer’s orders are 

replenished by the manufacturer, who is never starved. The replenishment time intervals 

are random variables with high variability which is enforced by unexpected events (such as 

enemy attacks, transportation breakdowns etc.). A fraction of the retailers’  orders dR1, (0≤ 

d1≤1) needs a random time to be served, exponentially distributed with rate μR1. The rest of 

the fraction, dR2, (0 ≤d2=1-d1≤1) faces an additional time of delay, also exponentially 

distributed with rate μR2. Thus, the total replenishment time follows the Coxian distribution 

with two phases (Coxian-2). Due to the fact that the retailer’s ordering is triggered by the 

reorder point s, it is assumed that there is never more than one order outstanding. After an 

order is placed, the retailer serves the external demand until its remaining inventory reaches 

zero or the outstanding order is arrived. When an order by manufacturer arrives, the retailer 

re-examines the inventory at hand to decide whether a new order needs to be triggered The 

retailers follow (s, S) inventory policy meaning that whenever the inventory drops below s 

the retailers order S-s quantity .  

4.1.The Modeling Process 

It is important to describe the ‘physics’ of the problem before we attempt to solve it. The 

modeler’s art is to incorporate in the solution as much of the ‘physics’ of the problem as 

possible. After the problem definition and the data collection the next step is to formulate a 

model that is an accurate representation of reality.  Then we can use the model to see which 

decisions produce the best outputs. The last step is to implement the model and update it 

over time.  

Modeling involves  

• abstraction,  

• simplification, and  

• formalization, in light of particular methods and assumptions, in order to 

better understand a particular part or feature of the world, and to potentially 

intervene. 
We based our modeling on Markov stochastic processes, which allowed us to evaluate 

different scenarios, each with certain parameters in place, such as: 

1. spot of replenishment of each team si, where i = 1, 2, 3,…, K  
2. quantity of supplies qi each unit demands  
3. mean time value of normal replenishment μi1  
4. mean time value of delayed replenishment μi2  
5. probability of unpredictable events  occurring di  



6. rate of consumption λi for the team  
 

 

 

4.2.Assumptions of the model 

The two-echelon supply chain consists of i+1 members, i nodes who react with the external 

enviroment and one Distribution center (DC) that serves the military units’  orders 

Independent Poisson demands with mean rates λ1, λ2, λ3,…, λn at 1st echelon 

The node’s orders are replenished by the DC, who is never starved. The replenishment time 

intervals are random variables with high variability which is enforced by unexpected events 

(such as enemy attacks, transportation breakdowns etc.). A fraction of the nodes’  orders di1, 

(0≤ di1 ≤ 1) needs a random time to be served, exponentially distributed with rate μi1. The 

rest of the fraction, di2, (0 ≤ di2 =1- di1 ≤ 1) faces an additional time of delay, also 

exponentially distributed with rate μi2. Thus, the total replenishment time follows the Coxian 

distribution with two phases (Coxian-2). Due to the fact that the node’s ordering is triggered 

by the reorder point s, it is assumed that there is never more than one order outstanding. 

After an order is placed, the military unit serves the external demand until its remaining 

inventory reaches zero or the outstanding order is arrived.  

When an order by DC arrives, the node re-examines the inventory at hand to decide 

whether a new order needs to be triggered The nodes follow (s, S) inventory policy meaning 

that whenever the inventory drops below s the node order a S-s quantity .     

 

Fig. 2 : A graphical representation  of Coxian distribution 

 

4.3.Notation  



λR : external demand rate at the retailer R  

μR1 : mean replenishment rate from the manufacturer to the retailer during the first 

phase  

μR2 : mean replenishment rate from the manufacturer to the retailer during the second 

phase  

dR1: probability that the order will arrive having only one phase of delay, which is the 

usual case  

dR2: probability that the order will arrive having two phases of delay, which happens 

more rarely  

SR: order-up-to level at the retailer R  

sR: re-order point at the retailer R  

qr=S-s: size of the order placed by the retailer to the manufacturer.  

I Rt: inventory at hand at retailer at time t.  

Cp: product price per unit  

: holding cost at the retailer per unit  

: shortage cost at the retailer per unit  

FRR: fill rate at the retailer R  

WIPR: average inventory at the retailer R, on transport or in the system  

THRR: average output rate of the retailer R  

4.4.Markovian modelization 

We model the inventory system as a continuous time Markov process with finite number of 

states . The state of the system is defined by the  R vector (pRt, IRt) with 0 ≤  It ≤ s or by the 

number It  for s < It ≤ S where:  

I Rt: retailer’s inventory level (on hand) at time t, 0 ≤  It ≤ S and  

 p Rt : the number of phase of replenishment process, at time t,  p=1,2 for 0 ≤  It  ≤ s  

p=1,2,…,k if Coxian distribution with k phases is adopted  

    4.4.1. State Transitions  

Occurrence of an external demand at time t: the state of the retailer R It jumps from n to n-

1. The probability of exactly one customer arriving in a small interval Δt is λ·Δt, while the 

probability of more than one customers arriving is considered as 0(Δt) and hence it is 

disregarded.  



Shipment arrival at the retailer   R at time t that has faced only one phase of delay: It  

increases by an amount q. The probability of a shipment arriving at the retailer with one 

phase of delay in the interval Δt is d1·μ1·Δt.  

Shipment arrival at the retailer  R at time t faces an additional (2nd) phase of delay: It  

remains stable.The probability that a shipment will pass to the 2nd phase in the interval 

Δt is d2·μ1·Δt.  

Shipment arrival at the retailer  R at time t that has faced two phases of delay: It 

increases by an amount q. The probability of a shipment arriving at the retailer in the 

interval Δt is μ2·Δt. 

The total number of states, i.e. the dimension of the transportation matrix, is given 2(sr+1) x 

aR-1   + (Sr-sr) aR-1  where    aR-1  the states for R-1 retailers  

4.4.2. Structure of Transition Matrix  

The structure of the transition matrix is affected by the retailers replenishment policy: up-to-

order level SR and reorder point sR. This matrix is a tri-diagonal matrix and consists of three 

sets of sub-matrices:  

1. the set of sub-matrices in the main diagonal, denoted by Dκ, 

2. the set of sub-matrices under the main diagonal, denoted by Lκ and 

3. the set of sub-matrices above the main diagonal, denoted by Uκ 
 

4.4.3. Dimensions and number of submatrices 

Submatrices D  

sR  +1 submatrices with dimensions  kR  a R-1  x kR  a R-1  

SR – sR submatrices with dimensions a R-1  x a R-1  

Submatrices A 

sR  submatrices with dimensions  kR  x a R-1 

1 submatrix with dimensions kR   a R-1 x a R-1   

Submatrices K  

sR  submatrices with dimensions  kR  a R-1  x kR  a R-1     

1 submatrix with dimensions a R-1  x kR   a R-1  

SR – sR with dimensions a R-1 x a R-1  



 

Fig. 3 Structure of  Transition Matrix 

 

5. NUMERICAL RESULTS  

5.1. Fill rate of each military unit  and time rates (military unit 1) 

 

For each battle point  (we assume R=4) we point out the impact on fillrate of each military 

unit (fll rate local)  replenishment time rates (μ1,μ2) have. Ιt is  profound that as time rates  

increase  fill rate also increase. Fill Rate reaches the maximum of about 1 (less than 100 

5.2. Fiil rate of each military unit  and time rates (military unit 2) 



 

5.3. Fiil rate of each military unit  and time rates (military unit 3) 

 

5.4.  Fiil rate of each military unit  and time rates (military unit 4) 



 

 

 

 

 

5.5.  Fiil rate of each military unit  and external demand rate(λ) military unit 1 

 



5.6.  Fiil rate of each military unit and external demand rate(λ) military unit 2 

We have same behaviour as in the  case  of military unit 1  with the minimum value of  about  

20%  

 

5.7. Fiil rate of each military unit and external demand rate(λ) military unit 3 

We have same behaviour as in the  case  of military unit 1  with the minimum value of  about 

20 %  

 

 



5.8. Fill rate of each military unit and external demand rate(λ) military unit 4 

We have same behaviour as in the  case  of military unit 1  with the minimum value of  about  

20%  

 

 

5.9.  Fill rate of each military unit  and safety stock (s)- military unit 1 

stock (s)  for each  military unit  and fill rate of each military unit (we assume R=4). As safety 

stock increases from 1 to 5 fill rate increases from more than 35% to  about 65% 

 

5.10. Fill rate of each military unit  and safety stock (s)- military unit 2 

We have same behavior as in the case  of military  unit 1 . The fiil rate increases from 37% to 

41%  as safety stock increases from 1 to 5  



 

5.11. Fill rate of each military unit  and safety stock (s)- military unit 3 

We have same behavior as in the case  of military  unit 1. The fiil rate increases from 37% to 

41%  as safety stock increases from 1 to  5  

 

 

5.12. Fill rate of each military unit  and safety stock (s)- military unit 4 

We have same behavior as in the case  of military  unit 1. The fiil rate increases from 37% to 

41%  as safety stock increases from 1 to  5  



 

CONCLUSIONS  

Concluding, a number of relations between the operating variables is stressed. First, the fill 

rate of each military unit increases as mean replenishment time rates (μ1,μ2) increases. In 

contrast the fill rate of each military unit decreases as mean demand rate increase. Last but 

not least, the fill rate of each military unit increases as safety stock (s) increases. For further 

research , it is proposed the development of a model with more than one distribution 

centers and a number of suppliers procured the distribution centers.    
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