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Abstract 

Primary income data yields the most exact estimates of the Gini coefficient. Using 
Lorenz curves, the Gini coefficient is defined as the ratio of the area between the 
diagonal and the Lorenz curve and the area of the whole triangle under the 
diagonal. Various attempts have been made to obtain accurate estimates. The 
trapezium rule is simple, but yields a positive bias for the area under the Lorenz 
curve and, consequently, a negative bias for the Gini coefficient. Simpson´s rule is 
better fitted to the Lorenz curve, but this rule demands an even number of 
subintervals of the same length. Lagrange polynomials of second degree can be 
considered as a generalisation of Simpson´s rule because they do not demand 
equidistant points. If the subintervals are of the same length, the Lagrange 
polynomial method is identical with Simpson´s rule. In this study, we compare 
different methods. When we apply Simpson´s rule, we mainly consider Lorenz 
curves with deciles. In addition, we use the trapezium rule, Lagrange polynomials 
and generalizations of Golden´s method (2008). No method is uniformly optimal, 
but the trapezium rule is almost always inferior and Simpson´s rule is superior. 
Golden´s method is usually of medium quality. 
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1  Introduction  
Primary income data yields the most accurate estimates of the Gini 

coefficient. However, the estimation must often be based on tables with grouped 
data or on Lorenz curves. The Lorenz curves are usually defined for five quintiles 
or for 10 deciles. If one uses the Lorenz curve, the Gini coefficient is defined as 
the ratio of the area between the diagonal and the Lorenz curve and the area of the 
whole triangle under the diagonal. For five quintiles, the trapezium rule is the 
most commonly used method. However, this rule yields positive bias for the 
estimate of the area under the Lorenz curve for every trapezium and, consequently, 
the rule causes negative bias for the Gini coefficient. Simpson´s rule is better fitted 
to the Lorenz curve, but demands an even number of subintervals of the same 
length. This means, for example, that Lorenz curves with 10 deciles are suitable. 
One has three L values for each doubled subinterval. The area under this part of 
the Lorenz curve is estimated so that the Lorenz curve is approximated by a 
parabola obtaining the same L values. Simpson´s rule obviously yields exact 
results for quadratic curves but, in general, this also holds for cubic curves. 
Lagrange polynomials of the second degree can be considered as a generalisation 
of Simpson´s rule and do not demand subintervals of equal length, but the number 
of subintervals should still be even. The polynomials obtained have to be 
integrated in order to yield approximate areas and Gini coefficients. If the 
subintervals are of the same length, the Lagrange polynomial method is identical 
with Simpson´s rule. 

Various attempts have been made to produce more exact estimates. Gastwirth 
(1972) introduced interval estimates of the Gini coefficient in order to measure the 
accuracy of the estimates. Needleman´s study (1978) starts from the trapezium 
estimate of the Gini coefficient GL. He then introduces an improved upper 
estimate GU. His final estimate follows the “two-thirds rule” that is 

3

G2

3

G
G UL  .  

McDonald and Ransom (1981) considered the Γ density, applied Monte Carlo 
methods and introduced lower and upper bounds of the Gini estimates.  

Golden (2008) showed how a quick approximation of the Gini coefficient can 
be calculated empirically, using numerical data in cumulative income quintiles. In 
this study, we intend to compare different methods. When we apply Simpson´s 
rule, we consider Lorenz curves with deciles. In addition, we use Lagrange 
polynomials and generalizations of Golden´s method. 
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2  Methods 
There are several different situations and, consequently, alternative analyses 

of Gini coefficients have to be performed. When Lorenz curves are considered, the 
simplest situation is that they are defined for five quintiles or for 10 deciles. In the 
first case, the most commonly used method is the trapezium rule. For Simpson´s 
rule, the number of subintervals should be even and the intervals should have the 
same length. Consequently, the comparison of different rules can be performed for 
Lorenz curves with deciles. 

Assume a Lorenz curve )( pL  with deciles. Let the observed values of the 

cumulative Lorenz curve be ip  and iL  for 1010i ...,,, . Note that 10ipi / , 

( 1010i ...,,, ), that 0L0   and that 1L10  . According to the trapezium rule, 

the estimated area under the Lorenz curve is  

                       i1i

9

0i
i1i ppLLI  


½

~
        (1) 

and the estimated Gini coefficient, TG  is I21
~ . Every trapezium yields a 

positive bias to the estimated area, as can be seen in Figure 1. Since the biases 
obtained add and no elimination of biases can be performed, the estimated Gini 
coefficient always has a negative bias.  

 

Trapezium

 

Figure 1: A sketch showing the bias in the trapezium rule 

 

Compared to the trapezium rule, Simpson´s rule gives more accurate 
approximations. As stressed above, Simpson´s rule demands two restrictions: the 
number of subintervals has to be even and the subintervals have to be of equal 
length. In order to obtain Simpson´s rule, the subintervals should be grouped two 
by two. Each doubled subinterval has three L values. The area under this part of 
the Lorenz curve is estimated such that a parabola obtaining the same L values 
approximates the Lorenz curve. Assuming 2n subintervals, the approximate area 
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formula for a doubled interval is  2i1iii LL4L
n3

1
I  ~

, the total sum is  

                         


 
4

0i
2i21i2i2 LL4L

n3

1
I
~

         (2) 

and I21GS

~ .  

Golden (2008) gave a detailed account of an alternative method based on Lorenz 
curves with quintiles. He considered p and L in percentages. The layout of the 
method is presented in Table 1. First he determined where the cumulative income 
shortfall is greatest and defined Z as the largest quintile point of the cumulative 
income shortfall from perfect equality divided by 100. In order to obtain the 
largest cumulative income shortfall he defined the transformed variable 

20LL 1ii  
~ . This transformation, 20LL 1ii  

~ , indicates a search for an 

interval at which iL  shifts from increases faster than ip  to slower increases. 

For low i´s, the transformed value ii LL ~
. Later, there is a first i value such that 

ii LL ~
. For this value, one finds an interval for which L is closely parallel with 

the diagonal, the greatest shortfall is obtained, and one defines 

100Li20q i /)
~

(  . The estimated Gini coefficient in percentages, GG , is 

)( q3q50GG  . When this method was applied to 621 income observations, 

Golden (2008) noted that his approach performed better than the trapezium rule, 
also stressing that his method could be applied to Lorenz curves with deciles. 
Following Golden (1980), the data is given in percentages. The transformed 

variable i20L
~

 is given in the text. 

 
Table 1: A layout of a Lorenz curve with deciles 

i 0 1 2 3 4 5 

ip  0 20 40 60 80 100 

iL  0L0   L20 40L L60 L80 100L100 

iL
~

 0L0 
~

 20L
~

 40L
~

60L
~

80L
~

100L
~

 

 

We try to generalize Golden´s method in the following way. If the Lorenz 

curves are given in deciles, then Golden´s transformation should be 10LL 1ii  
~

 

and if the ip ´s are not equidistant, then one has to define 1ii1ii ppLL  ~
. 

Following Golden´s rule, these processes have to continue until ii LL ~
. We then 

introduce 100Lpq ii /)
~

(   and )( q3q50GG  . 
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In many empirical situations, the income distribution )(xF  is given in grouped 
tables. If the mean of or total incomes in the groups are known, the cumulative 
distribution can be considered as a Lorenz curve, but the subintervals are usually 
not of constant length. The trapezium rule holds, but it still yields a positive bias 
for the area and negative bias for the Gini coefficient.  

An obviously better alternative is to approximate the Lorenz curve with 
Lagrange´s interpolation (Berrut & Trefethen, 2004). We apply the Lagrange 
interpolation of second degree, which is a generalization of Simpson´s rule. 
However, we have to assume an even number of subintervals. Now the Lagrange 
polynomial is 

1
2 1 2 2

2
0 2 2 1 2 2 2

2 2 2 2 1 2
2 1 2 2

2 1 2 2 2 1 2 2 2 2 1 2 2 2

( )( )
( )

( )( )
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( )( ) ( )( )
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
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 
 

     

  
   

   
      


(3)

 This approximate polynomial must be integrated in order to obtain an 
estimate of the area under the Lorenz curve. This attempt is a generalization of 
Simpson´s rule for cases with subintervals of varying lengths. 

The comparison between different estimation methods is in general difficult 
to perform. These difficulties are mainly caused by the fact that the true Gini 
coefficient is unknown, but sometimes, where more detailed studies have already 
resulted in very accurate estimates, the comparisons are possible. Some authors 
(e.g., Gastwirth, 1972; Mehran, 1975; McDonald & Ransom, 1981; Rigo, 1985; 
Giorgi & Pallini, 1987) have introduced interval estimates, but these are often 
rather broad and it is still difficult to identify the best method. Such comparison 
problems are eliminated if the numerical estimations are applied to theoretical 
distributions.  

Needleman ((1978) stated that as the Lorenz curve is convex, the trapezium 
approximation is always greater than the actual area under the curve, so that the 
estimate based on this approximation is always less than the actual value of the 
coefficient. Furthermore, he noted that most authors using the trapezium 
approximation indicate that they are aware of the bias involved, but either assume 
the error so small as to be insignificant, or else use a large number of intervals in 
the belief, usually justified, that the bias will then be negligible. Needleman´s own 
study started from the trapezium estimate of the Gini coefficient GL. He then 
introduced an improved upper estimate, GU. His final estimate follows the 

“two-thirds rule”, that is 
3

G2

3

G
G UL  . 

McDonald and Ransom (1981) introduced lower and upper bounds of the 
Gini estimates. In order to estimate the bounds of the Gini coefficient estimates, 
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they considered the Γ density, that is, 
)(

)(


 




 y1ey
yg  with corresponding 




)(

½)(

1
G




  and  /  and applied Monte Carlo methods.  

In order to perform comparisons between the estimated and theoretical Gini 
coefficients we analyze classes of theoretical Lorenz curves with varying Gini 
coefficients. In this study we compare Gini estimates for the Pareto distributions. 
We define the Pareto distribution as  x1xF )( , where 1x   and 1 . 

The frequency function is 1xxf  )( , the mean is 
1



 , the quantiles are 


 1

p p1

1
x













 , the Lorenz curve   
 1

p11pL


)(  and the Gini coefficient 

12

1
G





. If we consider 0551 ..  , then the Gini coefficient satisfies the 

inequalities 5000G1110 ..  .  

 
 
3  Results  
Tepping data. Gastwirth (1972) presents interval estimations of the Gini 
coefficient. The exact Gini estimate on Current Population Surveys (CPS) income 
data for 1968 was computed by Tepping, his result being 0.4014. Gastwirth´s 
Table 2 shows Tepping´s data grouped into a 10 subgroup Lorenz curve. He 
compares his Gini interval estimates with Tepping´s finding. Gastwirth (1972) 
considers a minimum of restrictive conditions, obtaining the interval 

40830G38830 ..  . Mehran (1975) suggests an alternative estimation method, 
obtaining the interval estimate 40870G38830 ..  . The grouping limits in Table 
2 are not equidistant and one cannot apply Simpson´s rule. Applying the 
trapezium rule yields 0.3883 and the negative bias is apparent. The Lagrange rule 
yields 0.4033 and the modification of the Golden´s rule yields the rather 
inaccurate estimate 0.3740.  

Lorenzen data. Lorenzen (1980) presents information about the total distribution 
of income for households in Germany in 1973 in his Tabelle 2. The Gini 
coefficient calculated by Lorenzen is based on data pooled in his Tabelle 3, which 
yielded 0.30. Using Lorenzen´s Tabelle 3, we perform a comparison of the 
estimates obtained based on the trapezium rule and the Lagrange rule. The 
available empirical data cannot yield a comparison of the accuracy of the two 
methods. The estimated Gini coefficient according to the trapezium rule shows 
negative biases compared to Lorenzen´s result, being 0.2920. The Lagrange 
interpolation yields the estimate 0.3486 and the modified Golden method 0.3002.  
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In order to analyse the accuracy of the different methods, we include some 
theoretical studies in this study. For the Pareto distributions presented above, we 
consider 005501 ..  , that is, 50000G11110 ..  . This G interval 
corresponds to the most common Gini coefficients. The results appear in Table 2 
and Figure 2. Note that Simpson´s and Golden´s rules yield similar accuracy, but 
the trapezium rule shows the largest errors for all levels of Gini coefficients. This 
theoretical study indicates that Golden´s rule is not uniformly better than the 
trapezium rule. 

 
Table 2: The estimation of the Gini coefficient in per cent applied to the Lorenz 
curve for the Pareto distributions. The estimated Gini coefficients according to the 
trapezium rule are inaccurate and show negative biases. Simpson´s and Golden´s 
rules yield similar accuracy, but Golden´s is best for large Gini values. 
 

  Estimates   Error  
G Trapezium Simpson Golden Trapezium Simpson Golden 

11.11 10.858 11.044 11.104 -0.253 -0.067 -0.008 
12.50 12.206 12.419 12.529 -0.294 -0.081 0.029 
14.29 13.935 14.185 14.370 -0.350 -0.101 0.084 
16.67 16.235 16.535 16.833 -0.431 -0.132 0.166 
20.00 19.442 19.816 20.291 -0.558 -0.184 0.291 
25.00 24.223 24.717 25.476 -0.777 -0.283 0.476 
33.33 32.102 32.820 34.026 -1.232 -0.513 0.693 
50.00 47.481 48.730 50.317 -2.519 -1.270 0.317 
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Figure 2: Estimation errors in the Gini coefficients estimated by the trapezium, 
Simpson´s, and Golden´s rules.  



38                                             Estimation of Gini coefficients  
 

 

Note that Simpson´s and Golden´s rules yield similar accuracy, but the trapezium 
rule shows the largest errors. 
 

 

5  Discussion 
This study indicates that the biased trapezium rule is almost always inferior 

and shows negative biases. No method however is uniformly optimal. Note that 
Simpson´s and Golden´s rules yield similar accuracy. Golden´s method is usually 
of medium quality, but its accuracy fluctuates.  
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