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Abstract

Financial institutions owners and regulators are concerned majorly

about risk analysis, Value-at-Risk (VaR) is one of the most popular

and common measures of risk used in finance, measures the down-side

risk and is determined for a given probability level. In this paper, we

consider the problem of estimating conditional Value-at-Risk via the

nonparametric method and have proposed a three-step nonparametric

estimator for conditional Value-at-Risk. The returns are assumed to

have a location-scale model where the function of the error innovations is

assumed unknown. The asymptotic properties of the proposed estimator

were established, a simulation study was also conducted to confirm the

properties. Application to real data was carried out, TOTAL stocks

quoted on the Nigerian Stock Exchange using daily closing prices for

covering the period between January 02, 2008 to December 29, 2017

trading days was used to illustrate the applicability of the estimator.
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1 Introduction

A major concern for financial institutions owners and regulators is the risk

analysis, Value-at-Risk (VaR) is one of the most popular and common measures

of risk used in finance [4]. It measures the down-side risk and is determined for

a given probability level τ . Typically, in measuring losses, VaR is the lowest

value which exceeds this level (the quantile of the loss distributions). [10] noted

that the volatility in the underlying financial variable and the exposure to this

source of risk are the two main drivers of the losses for a financial institution

and VaR is the appropriate method to infer the combined effect of the two

factors. For a comprehensive description of VaR and its applications in the

field of risk management, see [10].

VaR is a well-established risk management practice to measure the poten-

tial loss amount due to market risk employed in the financial industry for both

the internal control and regulatory reporting. It is a measure which quantifies

and controls the risk of a portfolio. Moreover, in many companies the prac-

tice is to manage the market risk with a short-term focus, which means that

long-term losses are prevented by avoiding losses from one day to the next.

On a strategic level, organizations manage market risk by defining and moni-

toring risk limits in order to reduce the excessive exposure to losses. Within

the framework of risk management, VaR is a key value for controlling and

complying with external regulations. It provides the basis for the internal risk

controlling models proposed by the Basel Committee on Banking Supervision.

In particular, financial institutions with activity in trading risky financial as-

sets are required to maintain internally a minimum level of safe capital to

counteract unforeseen risk. The level of this capital can be calculated as a

function of VaR. Basel II and III require a ten day holding period and a 99%

confidence interval. VaR is a statistical risk measure that indicates how much

a financial institution can lose on a financial asset (in terms of market value)

with a given probability and over a given time horizon. In other terms, is the

quantile of the conditional asset return distribution. The VaR measure has

the advantage of being a single estimate, which makes it accessible and easy
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to understand also by the less numerically literate management. It is now

obvious that to a risk manager, a good measure of market risk is more than

necessary.

There are several ways of calculating VaR for a financial asset, as an esti-

mator. In practice, the most traditional approaches to VaR computation are

the variance-covariance method, historical simulation, Monte Carlo simulation

and stresstesting. VaR practically the conditional quantile function concerned

with the tail behaviour of the conditional distribution function F (y|x). The

approaches for constructing quantile estimates namely: historical simulation,

which calculates empirical quantiles from past data; fully parametric models,

which describe the entire distribution of returns; EVT uses parametric models

only for the tails of the return distribution and quantile regression directly

models a specific quantile, and not the whole distribution. One of the most

established techniques in estimating the conditional quantile function is the

Quantile regression, the seminal work of [11] was a major step forward in es-

timating conditional quantiles [1]. Mostly in the existing risk management

literature, VaR estimation has been focused on parametric models and uncon-

ditional distributions. For example, one of the most commonly used parametric

method is the RiskMetrics model, due to [2] which assumes that returns of a

financial asset follow a multivariate normal distribution (the mean change in

the value of each variable is assumed to be zero and the variance is expressed

as an exponentially weighted moving average of historical squared returns).

But the main criticism to this approach is that it does not capture the fat

tails property of financial time series. A semiparametric approach is the con-

ditional autoregressive value-at-risk (CAViaR) model of [5], which estimates

VaR directly by quantile regression, but with no assumptions on distribution.

It is challenging to find an adequate estimate for VaR which models and

incorporates the special characteristics of financial time series. The returns are

independent and identical distributed (iid) which means that the returns are

assumed to be uncorrelated over successive time intervals, this is the assump-

tion that is heavily relied up on in modeling VaR. [10] related this assumption

with the efficient markets concept, which states that the current price includes

all relevant information from the financial market (Efficient Market Hypoth-

esis (EMH)). He states that in this context the prices should be uncorrelated

and follow a random walk, as prices would only change as a result of news,
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which cannot be anticipated. However, in practice a series of statistical prop-

erties can be observed for financial returns, such as excess kurtosis (fat-tails),

time-varying volatility and volatility clustering, indicated by high autocorre-

lation of the returns (large changes tend to be followed by large changes and

small changes tend to be followed by small changes). Moreover, empirical

applications consistently show that nonlinearity and changing volatility are

very characteristic to financial time series. For instance, [3] showed that stock

returns are serially correlated over long time horizons and [8] consider the

changing volatility a stylized fact of stock market, when showing the positive

relation between expected market risk premiums and the predictable volatility

of stock returns. Hence, there is a necessity to find alternative models for

VaR prediction, which are not restricted to the independent and identically

distributed (iid) case and do not rely on the assumption that financial returns

are normally distributed [1].

Nonparametric modeling takes a step further and addresses part of this

challenges by constructing estimates without making assumptions on the form

of the financial return distribution and allow for more flexibility and nonlin-

earity.

The conditional quantile estimation which has recently grown rapidly, orig-

inates from the seminal work of [11] who introduced the approach in a paramet-

ric regression methodology. However, users may instead need nonparametric

estimates. For example, in cases where parametric quantile regression model

has been rejected by the data, this has led to a growing literature, [13].

Therefore, the focus of this paper is the problem of estimating Conditional

Value-at-Risk which admits a location-scale model with the error term assumed

to be unknown.

As [13] noted, that most nonparametric methods are based on kernel meth-

ods. Let X and Y be random variables having unknown conditional proba-

bility density functions (cpdf), f(y|x) and conditional cumulative distribution

function (CCDF), F (y|x) belonging to a smooth class of functions. Then the

estimators for f(y|x) and F (y|x) are:

f̂(y|x) =

∑n
i=1Kb(Xi, x)Kby(Yi, y)∑n

i=1Kb(Xi, x)
(1)
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and

F̂ (y|x) =

∑n
i=1Kb(Xi, x)Gby(Yi, y)∑n

i=1Kb(Xi, x)
(2)

where Kb(Xi, x) and Kby(Yi, y) are density kernels and Gby(Yi, y) is cumu-

lative distribution kernel.

A τ − th quantile associated with conditional distribution function F (y|x)

is defined by (τ ∈ (0, 1))

QY |X(τ |x) = inf{y : F (y|x) ≥ τ} = F−1(τ |x) (3)

Or equivalently F (QY |X(τ |x)|x) = τ

We can obtain the estimate of the conditional quantile function QY |X(τ |x)

by inverting F̂ (y|x) at τ . i.e

Q̂Y |X(τ |x) = inf{y : F̂ (y|x) ≥ τ} ≡ F̂−1(τ |x) (4)

2 Estimation of Conditional Value-at-Risk

We adopt the definitions of Conditional Value-at-Risk (CVaR) of [12]: Let

{Yt} denote a stochastic process representing the returns on a given stock,

portfolio or market index, where t ∈ Z indexes a discrete measure of time,

and F (y|x) denote the conditional distribution of Yt given Xt = x. The vector

Xt ∈ Rd normally includes lag returns {Yt}, 1 ≤ l ≤ p, for some p ∈ N, as

well as other relevant conditioning variables that reflect economic or market

conditions. Then, for τ ∈ (0, 1), CV aR(X)τ is defined to be the τ−quantile

associated with F (y|x).

Here, the estimation of CV aR(X)τ for processes Yt that admit a location-

scale representation given as

Yt = m(Xt) +
√
h(Xt)εt (5)

where m and h > 0 are unknown functions defined on the range of Xt , εt

is independent of Xt, and εt is an independent and identically distributed (iid)

innovation process with E(εt) = 0, Var(εt) = 1 and distribution function Fε,

this model was also used by [16].

From equation (5), this means that we can write the CCDF of y in terms

of the regression function and the CCDF of error term.
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CV aR(X)τ := QY |X(τ |x) = m(Xt) +
√
h(Xt)q(τ) (6)

where QY |X(τ |x) is the conditional τ−quantile associated with F (y|x) and

q(τ) is the τ−quantile associated with the error innovation Fε.

The problem of estimating m(.) in equation (6) is the same as Local Lin-

ear Regression (LLR), estimating the intercept α. Suppose that the second

derivative of m(.) exist in a small neighborhood of x, then

m(X) ≈ m(x) +m′(x)(X − x) ≡ α + β(X − x) (7)

Now, let us consider a sample {Xi, Yi}ni=1 and LLR: find α and β to mini-

mize

n∑
i=1

(Yi − α− β(Xi − x))2K1(
x−Xi

b1
) (8)

Let α̂ and β̂ be the solution to the Weighted Least Square (WLS) problem

in equation (8). Then the estimator of m(.) in (6) is equivalent to α̂, see [6]

and [16] for more details. Which is the first step in our estimation procedure.

The second step follows, for the estimation of h(.) in equation (6), the

estimator ĥ(x) is given below, a procedure for estimation of variance proposed

by [7]

ĥ(x) := Γ̂ (9)

where

(Γ̂, Γ̂1) = argmin
n∑
i=1

(ri − Γ− Γ1(Xi − x))2K2(
Xi − x
b2

) (10)

Now, with the estimator in equation (11), we have the sequence of squared

residuals {ri = {Yi − m̂(x)}2}ni=1. For more on this procedure see [7] and [16].

The estimators of mean and variance functions are then used to get a

sequence of Standardized Nonparametric Residuals (SNR) {ε̂i}ni=1, where;

ε̂i =


Yi − m̂(X)√

ĥ(X)
, if ĥ(X) > 0

0, if ĥ(X) ≤ 0

(11)
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In the third step, we use these SNR to obtain the cumulative conditional

density estimator of Fε, see our previous paper details [16].

With the estimators of the mean function m(.), the variance function h(.)

and the unknown error innovation, the three-step estimator for Conditional

Value-at-Risk (CVaR) is given as

ĈV aR(x)τ := Q̂Y |X(τ |x) = m̂(x) + ĥ1/2(x)q̂(τ) (12)

We will discussed the asymptotic properties of (12), the estimator of (6);

to do this we make the following assumptions in the next subsection.

2.1 Assumptions

A: Bandwidth

1. b −→ 0, as n −→∞

2. nb −→∞, as n −→∞

B: Kernel

1. K has compact support

2. K is symmetric

3. K is Lipschitz continuous

4. K is
∫∞
−∞K(u)du = 1 and

∫∞
−∞ uK(u)du = 0 with µ2(K) =

∫∞
−∞ u

2K(u)du

and R(K) =
∫∞
−∞K(u)2du being the second moment (Variance) and

Roughness of the kernel function respectively.

5. K is bounded and there is K̄ ∈ R, with K(u) ≤ K̄ < ∞ and K(u) ≥
0,∀u ∈ R

C: Conditional Distribution function

For fixed y ∈ R, ∃

1. F
′′
X(y) = ∂2FX(y)

∂X2 in a neighborhood of x.

2. We further assume that the derivatives of

fX(y) = ∂FX(y)
∂Y

F
(10)
X (y) = ∂FX(y)

∂X
and

F
(20)
X (y) = ∂2FX(y)

∂X2 exist in the neighborhood of (x, y)
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Definition: ( α−mixing or Strong mixing) Let F lk be the σ− algebra
of events generated by {Yt, k ≤ t ≤ l} for l > k. The α −mixing coefficient

introduced by Rosenblatt (1956) is defined as

α(k) = sup
A∈Fi

1,B∈F∞
i+k

|P(AB)− P(A)P(B)|.

The series is said to be α−mixing if

lim
k→∞

α(k) = 0.

The dependence described by the α −mixing is the weakest as it is implied

by other types of mixing.

Lemma 1: (Serfling, 1980, [15])

Let F be a distribution function. The function F−1(τ), 0 < τ < 1, is

nondecreasing and left continuous, and satisfies

1. F−1(F (x)) ≤ x, −∞ < x <∞
and

2. F (F−1(τ)) ≥ τ , 0 < τ < 1

hence

3. F (x) ≥ τ ⇐⇒ x ≥ F−1(τ)

Lemma 2: [9] Let Y1, . . . , Yn be independent random variables satisfying

P(a ≤ Yi ≤ b) = 1, each i, where a < b. Then, for t > 0,

P
( n∑
i=1

Yi −
n∑
i=1

E[Yi] ≥ nt
)
≤ exp{− 2nt2

(a− b)2
} (13)

Theorem 1: (Borel-Cantelli Lemma, [14])

Let

A =
∞⋂
n=1

∞⋃
k=n

Ak

be terminal and Let A be the lim supAn (infinitely many of the An occur),

then

1. If
∑∞

i=1 P(An) <∞, then P(A) = 0
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2. Let {An} be a sequence of independent events with
∑∞

i=1 P(An) < ∞,

then P(A) = 1

Proof, see [14]

Theorem 2: [Convergence in probability sufficiently implies convergence

with probability 1 (wp1)]

If
∑∞

i=1 P
(∣∣Xn −X

∣∣ > ξ
)
<∞, ∀ξ > 0,

then

Xn
wp1−−→ X.

Proof Let ξ > 0, then

P
(∣∣Xn −X

∣∣ > ξ
)

= P
( ∞⋂
m=n

{
∣∣Xm −X

∣∣ > ξ}
)
, forsome m ≥ n

≤
∞∑
i=1

P
(∣∣Xm −X

∣∣ > ξ
)
−→ 0, as n −→∞; tail of a convergent series

(14)

The alternate condition for convergence wp1 follows.

3 Asymptotic Properties of the Estimator

In Theorem 1 of [7], under the assumptions of the aforementioned paper,

√
nb
[
ĥ(x)− h(x)−Bias(ĥ(x))

] d−→ N
(
0, f−1(x)h2(x)λ2(x)

∫
k2(u)du

)
(15)

where

λ2(x) = E
[
(ε2 − 1)2|X = x

]
, ε = Y−m(X)

h(X)
, µ2(k) =

∫
u2K(u)du and

Bias(ĥ(x)) = b2

2
µ2(k)h′′2(X) + o(b21 + b22)

This means that

ĥ(x)
d−→ h(X) (16)

with

E(ĥ(x)) = h(X)+ b2

2
µ2(k)h′′2(X) = Mh and V ar(ĥ(x)) = 1

nbf(x)
R(k)h2(x)λ2(x) =

Vh

Hence
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ĥ(x)∼N
(
Mh, Vh

)
(17)

Also in [6], we have that

m̂(x)
d−→ N

(
Mm̂, Vm̂

)
(18)

where

Mm̂ = m(x) + b2

2
m′′(x)

∫∞
−∞ u

2K(u)du = m(x) + b2

2
m′′(x)µ2(k),

Vm̂ = σ2(x)
nbf(x)

∫∞
−∞K

2(u)du = σ2(x)R(k)
nbf(x)

, and Bias(m̂(x)) = b2

2
m′′(x)µ2(k)

We want to show the mean and Variance of our estimator using Slutsky’s

theorem

G
d−→ h(X)q(τ)

where

G = ĥ(x)q̂(τ) and q̂(τ) > 0

Now
E[G] = E

[
ĥ(x)q̂(τ)

]
= q̂(τ)E

[
ĥ(x)

]
= q̂(τ)

[
h(X) +

b2

2
µ2(k)h′′2(X)

]
= h(X)q̂(τ) +

b2q̂(τ)

2
µ2(k)h′′2(X)

(19)

Therefore,

E[G] ≈ h(X)q(τ) +
b2q(τ)

2
µ2(k)h′′2(X)︸ ︷︷ ︸

= 0, Assumption A(1)

(20)

and

V ar[G] = V ar
[
ĥ(x)q̂(τ)

]
= q̂(τ)2V ar

[
ĥ(x)

]
= q̂(τ)2

[ 1

nbf(x)
R(k)h2(x)λ2(x)

]
=
q̂(τ)2R(k)h2(x)λ2(x)

nbf(x)

(21)
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V ar[G] ≈ q(τ)2R(k)h2(x)λ2(x)

nbf(x)︸ ︷︷ ︸
= 0, Assumption A(1)

(22)

Hence by Assumption A(1) and Slutsky’s theorem,

ĥ(x)q̂(τ)
d−→ h(X)q(τ) (23)

with mean and variance as given above.

Hence,

Q̂ = m̂(x) + ĥ(x)q̂(τ)

= m̂(x) +G

= H +G

(24)

Where Q̂ = Q̂Y |X(τ/x)

Now,

E[Q̂] = E[H +G]

= E[H] + E[G]

=
[
m(x) +

b2

2
m′′(x)µ2(k)

]
+ q̂(τ)

[
h(X) +

b2

2
µ2(k)h′′2(X)

]
= m(x) +

b2

2
m′′(x)µ2(k) + q̂(τ)h(X) +

b2q̂(τ)

2
µ2(k)h′′2(X)

= m(x) + h(X)q̂(τ) +
b2

2
µ2(k)

[
m′′(x) + h′′2(X)q̂(τ)

]
≈ m(x) + h(X)q(τ) +

b2

2
µ2(k)

[
m′′(x) + h′′2(X)q(τ)

]︸ ︷︷ ︸
=Bias

(25)

So that,

Bias(Q̂) ≈ b2

2
µ2(k)

[
m′′(x) + h′′2(X)q(τ)

]
(26)

and
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V ar(Q̂) = V ar(H +G)

= V ar(H) + V ar(G) + 2Cov(H,G), Cov(H,G) = 0

=
σ2(x)R(k)

nbf(x)
+
q̂(τ)2R(k)h2(x)λ2(x)

nbf(x)

=
R(k)

nbf(x)

[
σ2(x) + q̂(τ)2h2(x)λ2(x)

]
≈ R(k)

nbf(x)

[
σ2(x) + q(τ)2h2(x)λ2(x)

]
(27)

=⇒ Q̂
d−→ Q,

with mean and variance given above (using Slutsky’s theorem and that by

assumption A(1), (26) and (27) tends to 0).

Where

ĈV aR(x)τ := Q̂Y |X(τ |x) = m̂(x) + ĥ1/2(x)q̂(τ) (28)

Hence, (28) which is also (12), is the estimator for CV aR(X)τ .

3.1 Consistency

For simplicity of notation defined;

Q̂ := Q̂Y |X(τ |x) = ĈV aR(x)τ (29)

Next, consider the following theorem with Assumption B holding

Theorem 3

Let for ξ > 0 and 0 < τ < 1, Fx(Q− ξ) ≤ τ ≤ Fx(Q+ ξ), then

Q̂
wp1−−→ Q (30)

Proof: Let ξ > 0. By definition and uniqueness condition, we have that

Fx(Q− ξ) < τ < Fx(Q+ ξ)

It can be easily verified that

Fn(Q− ξ) wp1−−→ Fx(Q− ξ)
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and

Fn(Q+ ξ)
wp1−−→ Fx(Q+ ξ)

this is convergence with probability 1 (wp1).

Hence,

P
(
Fm(Q− ξ) < τ < Fm(Q+ ξ)

)
−→ 1 ∀m≥n as n −→∞

Now, using Lemma 1(3), we have that

P
(

(Q− ξ) < Q̂m < (Q+ ξ)
)
−→ 1 ∀m≥n as n −→∞

Thus

P
(

sup
m≥n

∣∣∣Q̂m −Q
∣∣∣ > ξ

)
−→ 0 ∀m≥n as n −→∞ (31)

Hence, Q̂ is strongly consistent for the estimation of Q.

Theorem 4

Let the conditions of Theorem 1 be satisfied and let for ξ > 0 and 0 < τ < 1,

Fx(Q− ξ) < τ < Fx(Q+ ξ) and also assume that nb2 −→∞, as n −→∞ then

Q̂
p−→ Q (32)

also, if we let
n∑
i=1

e−2ξnb
2

<∞ hold

then,

Q̂
a.e−→ Q (33)

Proof:

Let ξ > 0, then it holds that

P
(∣∣∣Q̂−Q∣∣∣ > ξ

)
= P

(
Q̂ > Q+ ξ

)
+ P

(
Q̂ < Q− ξ

)
= T1 + T2

We used Lemma 1 to evaluate T1 and T2, and hence applied Lemma 2 on the

results:
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T1 = P
(
Q̂ > Q+ ξ

)
= P

(
τ > Fn,x(Q+ ξ)

)
= P

(
1− τ > 1− Fn,x(Q+ ξ)

)
= P

(∑n
i=1 1(Yi < Q+ ξ)K

(x−Xi

b

)
∑n

i=1K
(x−Xi

b

) −

∑n
i=1 E

[
1(Yi < Q+ ξ)

]
K
(x−Xi

b

)
∑n

i=1K
(x−Xi

b

) >

1− τ −
(

1− Fn,x(Q+ ξ)− o(b)
))

= P
( n∑
i=1

Vi −
n∑
i=1

E[Vi] > n
[ 1

n

(
Fn,x(Q+ ξ)

)
− τ + o(b)

])
= P

( n∑
i=1

Vi −
n∑
i=1

E[Vi] > η1

)
where η1 = (Fn,x(Q+ ξ)− τ + o(b)

and Vi =

∑n
i=1 1(Yi < Q+ ξ)K

(x−Xi

b

)
∑n

i=1K
(x−Xi

b

)
=⇒ T1 = P

(
Q̂ > Vτ + ξ

)
≤ e−2nb

2η21

Similarly,

T2 = P
(
Q̂ < Q− ξ

)
= P

(
τ < Fn,x(Q− ξ)

)
= P

( n∑
i=1

wi −
n∑
i=1

E[wi] > η2

)
=⇒ T2 = P

(
Q̂ < Q− ξ

)
≤ e−2nb

2η22 , as n −→∞
Therefore, putting η3 = min{η1, η2} we have that

P
(∣∣∣Q̂−Q∣∣∣ > ξ

)
≤ e−2nb

2η23

which completes the proof.

Hence, Q̂
(

= Q̂Y |X(τ/x)
)

converges in probability to Q
(

= QY |X(τ/x)
)

.
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Thus,

P
(∣∣∣Q̂−Q∣∣∣ > ξ

)
−→ 0

exponentially fast, which implies that Q̂ converges completely to Q (Theorem

2).

Furthermore, using the second part of Theorem 1;
∑∞

n=m e
−2γmb2 , for γ > 0

as n −→∞, we see that Q̂ converges almost everywhere to Q.

i.e

Q̂
a.e−→ Q

Then by central limit theorem, the asymptotic normal distribution for the

three-step LLR in (12) is given as

√
nb
(
Q̂−Q−Bias(Q̂)

)
d−→ N

(
0, V ar(Q̂)

)
(34)

with mean, bias, and variance given in (25), (26), and (27) respectively.

4 Smoothing Parameter (Bandwidth) Selec-

tion

In Nonparametric methods, the choice of an optimal smoothing parameter can

not be over emphasized. We choose the smoothing parameter that minimizes

the Asymptotic Mean Square Error (AMSE) below:

AMSE(Q̂) = E
[
(Q̂−Q)2

]
= E

[(
Q̂− E[Q̂] +Bias(Q̂)

)2]
= E

[(
Q̂− E[Q̂]

)2]
+Bias(Q̂)× E

[
Q̂− E[Q̂]

]
+Bias2(Q̂)

= V ar(Q̂) +Bias2(Q̂)

=
R(k)

nbf(x)

[
σ2(x) + q̂(τ)2h2(x)λ2(x)

]
+

[
b2

2
µ2(k)

[
m′′(x) + q̂(τ)h′′2(x)

]]2
=

R(k)

nbf(x)

[
σ2(x) + q̂(τ)2h2(x)λ2(x)

]
+
b4

4
µ2
2(k)

[
m′′(x) + q̂(τ)h′′2(x)

]2
≈ R(k)

nbf(x)

[
σ2(x) + q(τ)2h2(x)λ2(x)

]
+
b4

4
µ2
2(k)

[
m′′(x) + q(τ)h′′2(x)

]2
(35)
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Therefore,

bopt = argmin
b>0

AMSE(Q̂)

and hence,

d

db
AMSE(Q̂) = 0

which gives

bopt =

{
R(k)

[
σ2(x) + q(τ)2h2(x)λ2(x)

]
µ2
2(k)f(x)

[
m′′(x) + q(τ)h′′2(X)

]2
} 1

5

× n−
1
5 (36)

5 Results

5.1 Simulation Study

we conducted a simulation study to examine the performance of our estimator

in (12) and (28), considering the following data generating location-scale model

Yt = m(Yt−1) + h(t)1/2εt, t = 1, 2, ..., n (37)

where

m(Yt−1) = sin(0.5Yt−1), εt ∼ t(ν = 3), h(t) = hi(Yt−1) + θh(Yt−1),

i = 1, 2

and

h1(Yt−1) = 1 + 0.01Y 2
t−1 + 0.5sin(Yt−1), h1(Yt−1) = 1− 0.9exp

(
− 2Y 2

t−1
)

Yt and h(t) are set to zero (0) initially, then Yt is generated recursively

from (37) above. To reduce the effect of the choice of our initial values on the

samples, the first 1000 observations are discarded, the above data generating

process was also considered by [12] and used by [16].
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Simulated Daily Returns plot
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Figure 1: Plot of the simulated returns showing its evolution.
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Figure 2: Plot of the mean m(.) function and the predicted mean function of

the simulated returns.
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Figure 3: Graph of the variance h(.) function and the predicted mean function

of the simulated returns.
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CVaR for Simulated Daily Returns
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Figure 4: Graph showing the 95% Conditional Value-at-Risk for the simulated

returns.

5.2 Application to financial market data

To see how the proposed three-step nonparametric estimate for CVaR performs

on a real data set, the closing prices for the period between January 02, 2008

to December 29, 2017 trading days of TOTAL company quotd on the Nigerian

Stock Exchange was used, which gave 2 475 observations. Thel daily closing

prices series {Pt} where used to obtain the log returns as defined below

yt = lnPt − lnPt−1 = ln

(
Pt
Pt−1

)
(38)

Where {Pt} is the the asset closing price on day t and ln is the natural

logarithmic function.
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Evolution of TOTAL's Daily Log Difference Returns plot
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Figure 5: Graph showing the evolution of TOTAL’s daily log difference of

returns.
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Figure 6: Graph showing the nonparametric mean m(.) function and the pre-

dicted nonparametric mean m(.) function of TOTAL’s daily log difference of

returns.
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Figure 7: Graph showing the nonparametric variance h(.) function and the

predicted nonparametric variance h(.) function of TOTAL’s daily log difference

of returns.
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CVaR for TOTAL's daily Log Difference returns Data
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Figure 8: Graph showing the 95% Conditional Value-at-Risk for TOTAL’s

daily log difference of returns.

6 Discussion

We have presented in Figure 1 the evolution of the simulated returns, charac-

terized by high volatility which is known of financial time series dat. Using

the same simulated returns, in Figures 2 and 3, we presented the smoothed

estimation of the mean function m(.) and the variance h(.) function by LLR

as proposed by [6] and [7] respectively. Hence, the 95% Conditional Value-at-

Risk is shown in Figure 4 for the daily simulated returns data. The three-step

nonparametric estimator for CVaR was applied to real data from the Nigerian

Stock Exchange; Figure 5 showed the time series plot of the TOTAL’s daily

returns for the period under consideration, in Figures 6 and 7 we have shown

graphically the smooth estimation of the mean function m(.) and the variance

h(.) function using LLR as mentioned earlier on, and Figure 8 presented the

95% Conditional Value-at-Risk for the TOTAL data. The three-step estimator



25

Table 1: Conditional Value-at-Risk Results at different quantiles

Tau q tau CVaR se CVaR

0.9 0.8889 0.0189 0.0131

0.91 1.0858 0.0231 0.0131

0.92 1.3023 0.0277 0.0131

0.93 1.516 0.0323 0.0131

0.94 1.7187 0.0366 0.0131

0.95 1.8593 0.0396 0.0131

0.96 2.0915 0.0446 0.0131

0.97 2.2931 0.0489 0.0131

0.98 2.492 0.0531 0.0131

0.99 2.7399 0.0584 0.0131

is consistent as given in Theorem 3, converges almost everywhere to the true

as shown in Theorem 4, and is asymptotically normal.

The results of Conditional Value-at-Risk at different quantiles can be seen

as shown in Table 1 above, it can be observed that CVaR increases as the

quantile increased while their standard error remained unchanged.

7 Conclusions

A Three-Step Nonparametric Estimator for Conditional Value-at-Risk is pro-

posed in this paper, we assumed that the returns on a portfolio or investment

admit the location-scale model with heteroscedasticity. The distribution of the

innovation was considered unknown. We examined the asymptotic properties

of the estimator, the three-step estimator is consistent, converges almost ev-

erywhere to the true, and is asymptotically normal. A Simulation study was

conducted and application to real data was also done.
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