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Abstract
In this research, we presents Homotopy Analysis Method to volterra integral equations of the second kind. The  method is an analytical method for solving linear and nonlinear equations. The Homotopy Analysis Method provides us with an infinite solution series which usually converges to the exact solution of considered equations. The method allows us to choose an initial guess where the considered equation is iteratively deforms starting with an initial guess to the exact solution. The method provides an auxiliary parameter h to analyze strongly linear and nonlinear problems. Application of the method to Volterra integral equations of the second kind is analyzed which gives a rapid convergence for the solutions.
Keywords: Homotopy Analysis Method; Volterra integral equations.
Introduction
In this thesis,we apply homotopy analysis method (HAM)which was proposed by
Liao in 1992. In this method, the solution is considered as the summation of an
infinite series, which usually converges rapidly to the exact solution. The HAM is
based on homotopy, a fundamental concept in topology and differential geometry.
Briey speaking, by means of the HAM one constructs a continuous mapping of
an initial guess approximation to the exact solution of considered equations. An
auxiliary linear operator is chosen to construct such kind of continuous mapping
and an auxiliary parameter is used to ensure the convergence of solution series.
The method enjoys great freedom in choosing initial approximation and auxiliary
linear operators. The approximations obtained by the HAM are uniformly valid
not only for small parameters, but also for very large parameters.In this paper, we
present an iterative scheme based on the HAM for the second kind of linear and 
non-linear  volterra integral equations.

y(x) = g(x) +                                                                                                     (1.1)
Where the upper limit may be either variable or fixed, ƛ is a complex number,
the kernel H(x,t) and g(x) are known functions, whereas y is to be determined.
2.1 Description of the method
Consider the following equation
                                                        N[y(x)]=0
		
Where N is an operator, y(x) is unknown function and x the independent vari-
able. Let y0(x) denote an initial guess of the exact solution y(x),h0 an auxiliary
parameter,H(x)≠0 an auxiliary function,and L an auxiliary linear operator with
the property L[r(x)]=0 when r(x)= 0. Then using q[0,1] as an embedding parameter,
 we construct such a homotopy

(1 - q)L[ɸ (x : q) – y0(x)] – qhH(x)N[ɸ(x : q)] = 0                                                (2.2)
It should be emphasized that we have great freedom to choose the initial guess
y0(x), the auxiliary linear operator L, the non-zero auxiliary parameter h, and the
auxiliary function H(x). We have the so-called zero-order deformation equation

(1-q)L[ɸ (x : q) – y0(x)] = qhH(x)N[ɸ (x : q)]:                                           (2.3)


When q=0, the zero-order deformation equation (2.3) becomes ɸ (x:0)= y0(x) And
when q=1, since h0 and H(x)0, the zero order deformation equation (2.2) is
equivalent to ɸ (x:1)= y(x) Thus according to (2.2) and (2.3) as the embedding
parameter increases from 0 to 1, ɸ (x:q) varies continuously from the initial ap-
proximation y0(x) to the exact solution y(x). such a kind of continuous variation
is called deformation in homotopy.
By Taylor's theorem, ɸ (x;q) can be expanded in a power series of q as follows
0(x)+n(x)qn                                                                                                                (2.4)
where
                            yn(x)=q=0                                                              (2.5)                   

If the initial guess y0(x), the auxiliary linear parameter L, the non-zero auxiliary
parameter h, and the auxiliary function H(x) are properly chosen so that the
power series (3.4) of (x:q) converges at q=1.Then,we have under these assumptions the solution series

                               y(x)=0(x)+n(x) 	                                  (2.6) 

where the vector is defined 

                           yn(x)=y0(x), y1(x), y2(x),… yn(x)                                             (2.7)

L[yn(x) - nyn-1(x)]=hH(x)Rn((x)) ,       yn(0)=0                                            (2.8)

Where

Rn((x)=q=0                                                                                                         (2.9)          

And

n

Note that the high-order deformation equation(2.8) is governing by the linear
operator L, and the term Rn((x)  can be expressed simply by (2.9) for any
nonlinear operator N. Therefore, yn(x) can be easily gained especially by means of
computational software such as MATLAB. The solution y(x) given by the above

approach is dependent of L,h,H(x) and y0(x). Thus, unlike all previous analytical
techniques, the convergence region and rate of solution series given by the above
approach might not be uniquely determined. If  n(x)   tends uniformly to
a limit as n→, this limit is the required solution (Vahdati, Zulkifly Abbas,
Ghasemi,2010).
              
3.0  HAM's solution to Volterra integral equations

Let consider the equation

h(t)u(t)=g(x)+                                                                             (3.10)	

where the solution to equation (3.10) of
Volterra integral equations of the second kind.


3.1 Volterra integral equations of the second kind

If h(t)=1 is substituted into equation(3.10),we have

U(t)=g(t)+           b                                                        (3.11)

We construct the zeroth-order deformation for this kind of integral equations as

(1-p)(u(t,p,h)-g(x))=hp(u(t,p,h)-g(t)-)                                    (3.12)

For p=0 and p=1,we have

u(t,0,h)=g(t)

u(t,1,h)=u(t)

For Maclaurin series of u(t,p,h) corresponding to p,we have

U(t,p,h)=u(t,0,h)+                                                                           (3.13)

Which

p=0                                                                                                                                    (3.14)

Substituting p=1 into (3.13) give

u(t)=g(t)+                                                                                             (3.15)

where we obtain the nth-order deformation equation

L[]=h                                                                      (3.16)

And the solution of the nth-order deformation equation for n1 yields

                                                                               (3.17)

And

                                         (3.18)


Choosing h = -1,the solution of the problem is similar to the Homotopy Perturbation Method, (Vahdati,et al,2010)



                                  Applying the HAM

In this section,we apply the HAM for solving Volterra integral
equations.

           
4.0  Volterra integral equation of the second kind

Let's consider the Volterra integral equation of the second kind, which reads

(x) = g(x) +(t)dt                                                                             (4.19)

where H(x,t) is the kernel of the integral equation

Example 1.Consider the following Volterra integral equation

(x) =x+ (t)dt                                                                                (4.20)      

To begin,we choose

To begin with,we choose


(x)= x                                                                                                             (4.21)

We choose the linear operator

L[ɸ(x,p)]= ɸ(x,p)                                                                                                  (4.22)        

Thus,we now define the nonlinear operator as


N[ɸ(x,p)]= ɸ(x,p)-x-                                                              (4.23)

where we construct the nth-order deformation equation

L[-]=h()                                                                                (4.24)

And

=x+dy                                   (4.25)

where the solution of the nth-order deformation equation(4.24)

=(x)+h[()]                                                                  (4.26)

Finally,we have

ɸ(x)=(x)+(x)                                                                                    (4.27)    

where




-h

 h

-h

 h

.
.
.
Hence

ɸ(x)=+++

       =x - h  + h - h + 

       If h= -1

       = x +   -  +  - 

      =                                                                                    (4.28)

Which is the exact solution of equation(4.20)

[image: ]
Figure 4:1 Example 1.Exact solution to equation (4.20)

The following algorithm produces figure 4.1 using the Matlab software.

function [x,sumc] = solplot1(x,n)
        sumc(1) = x;
    for i=1:n
        num = (-3)^i;
        den = factorial(2*i+1);
        rsult = num/den; rsult = rsult*x^(2*i+1);
        sumc(i+1) = sumc(i) + rsult;
    end
     plot(1:n+1,sumc)
     %plot(1:n,sumc(2:end))
end



Example 4.Consider the following Volterra integral equation

ɸ(x)=2x -                                                                                        (4.29)              

To solve equation (4.27),we choose

(x)=2x -                                                                                                         (4.30)

We choose the linear operator

L[ (x; p)] = (x; p)                                                                                               (4.31)

Thus, we now define the nonlinear operator as

N[ (x; p)] = (x; p) - 2x +                                                              (4.32)
And we construct the nth-order deformation equation

L[-]=h()                                                                                        (4.33)

And

=x +                                                  (4.34)        

where the solution of the nth-order deformation equation(4.33)

=(x)+h[()]                                                                           (4.35)

Finally,we have

ɸ(x)=(x)+(x)                                                                                             (4.36)

where


(x)= 2x -
(x)= -)

(x)= )

(x)= )
(x)= )
.
.
.
Hence

ɸ(x) =+++
 = 2x - + h -) +  +  ) +  )
If h= -1
      =2x - - +  
      =  = 2x - 2                                                                                (4.37)
         
Which is the exact solution to equation (4.29) ,(Issaka,2016)

Example 3.Let consider the following Volterra equation

ɸ(x)= x                                                                                            (4.38)

To solve equation(4.38),we choose


                                                                                                           (4.39)

We choose the linear operator

L[ɸ (x; p)] = ɸ(x; p)                                                                                              (4.40)

Thus,we now define the nonlinear operator as

N[ (x; p)] = (x; p) - x                                                                   (4.41)

And we construct the nth-order deformation equation

L[-]=h()                                                                                    (4.42)      

And

= x                                                      (4.43)                         

where the solution of the nth-order deformation equation (4.42)

=(x)+h[()]                                                                       (4.44)

Finally,we have

ɸ(x)=(x)+(x)                                                                                         (4.45)      

where















                               

Hence

ɸ(x) =+++

       = x +    +…

If h= -1

       = x +    +…
       = (x)                                                                                                (4.46)    

Which is the exact solution to equation(4.38)

[image: ]
Figure 4.2: Example 3.Exact solution to equation (4.38)

The following algorithm produces figure 4.2 using the Matlab software.


function [x,sumc] = solplot4(x,n) 
    sumc(1) = x; m=1;
    for i=1:n
        m = 2*m+1;
        num = 1;
        den = factorial(m);
        rsult = (num*x^m)/den;
        sumc(i+1) = sumc(i) + rsult;
    end
     plot(1:n,sumc(2:end))  
end



Example 6. Let consider the Volterra integral equations

ɸ(x)= x                                                                                              (4.47)                    

To solve equation(4.39),we choose

                                                                                                               (4.48)

We choose the linear operator

L[ɸ (x; p)] = ɸ(x; p)                                                                                                  (4.49)

Thus,we now define the nonlinear operator as

N[ (x; p)] = (x; p) - x                                                                   (4.50) 

And we construct the nth-order deformation equation

L[-]=h()                                                                                      (4.51)     

And

= x                                                      (4.52)     

where the solution of the nth-order deformation equation (4.51)

=(x)+h[()]                                                                        (4.53)

Finally,we have

ɸ(x)=(x)+(x)                                                                                           (4.54)

where



(x) = 

(x) = 

(x) = 

.
.
.
Hence

ɸ(x) =+++

       = x +  +  + 

If  h= - 1

= x +  +  + 

Which is the exact solution to equation(4.47).

[image: ]
Figure 4.3: Example 4.Exact solution to equation (4.47),(Issaka,2016)

The following algorithm produces figure 4.3 using the Matlab software.

function [x,sumc] = solplot5(x,n)
    sumc(1) = x; m=sqrt(2);
    for i=1:n
        m = m^2 + 1;
        num = x^m;
        den = 2*m;
        rsult = (-1)^(i+1) * (num/den);
        sumc(i+1) = sumc(i) + rsult;
    end
     plot(1:n,sumc(2:end))
end

% % Script to run
Solplot1(0.5,100)

Solplot2(1,100)

Solplot3(1,100)

\end{verbatim}



                                                              Conclusion
 Volterra integral equation of the second kind has been solved successfully by Homotopy analysis method (HAM).The convergence control parameter h is introduced and it greatly influences the convergence of the solution series and the convergence rate. This paper analytically showed that the HAM is a powerful method for solving Volterra integral equations.
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