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Abstract 

Power method (PM) polynomials have been used for simulating non-normal 
distributions in a variety of settings such as toxicology research, price risk, business-
cycle features, microarray analysis, computer adaptive testing, and structural 
equation modeling. A majority of these applications are based on the method of 
matching product moments (e.g., skew and kurtosis). However, estimators of skew 
and kurtosis can be (a) substantially biased, (b) highly dispersed, or (c) influenced 
by outliers. To address this limitation, two families of double-uniform-PM and 
double-triangular-PM distributions are characterized through the method of 𝐿𝐿 -
moments using a doubling technique. The 𝐿𝐿-moment based procedure is contrasted 
with the method of product moments in the contexts of fitting real data and 
estimation of parameters. A methodology for simulating correlated double-uniform-
PM and double-triangular-PM distributions with specified values of 𝐿𝐿-skew, 𝐿𝐿-
kurtosis, and 𝐿𝐿-correlation is also demonstrated. Monte Carlo simulation results 
indicate that the L-moment-based estimators of 𝐿𝐿 -skew, 𝐿𝐿 -kurtosis, and 𝐿𝐿 -
correlation are superior to their product moment-based counterparts.  
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2               Simulating uniform- and triangular-based double power… 

1  Introduction  

Fleishman’s [1] power method (PM) polynomial is defined as  
 

𝑝𝑝(𝑋𝑋) = 𝑐𝑐0 + 𝑐𝑐1𝑋𝑋 + 𝑐𝑐2𝑋𝑋 + 𝑐𝑐3𝑋𝑋3, 
 

(1) 
 

where 𝑋𝑋 is a standard normal random variable with probability density function 
(pdf) and cumulative distribution function (cdf) given respectively as 𝜙𝜙(𝑥𝑥) =

�√2𝜋𝜋�
−1
𝑒𝑒−𝑥𝑥2 2⁄  and Φ(𝑥𝑥) = ∫ 𝜙𝜙(𝑥𝑥)𝑑𝑑𝑑𝑑𝑥𝑥

−∞ . Headrick [2] has extended the third-
order PM to fifth-order PM polynomial transformation for generating univariate and 
multivariate non-normal distributions (see also [3]). 

The PM polynomial in (1) has been widely used in a variety of applied 
mathematics fields (especially, in the contexts of statistical modeling and 
simulation). Some of the examples of such applications are: Asset pricing theory 
[4], multivariate analysis [5], business-cycle features [6], microarray analysis [7], 
price risk [8], analysis of covariance (ANCOVA) [9, 10], analysis of variance 
(ANOVA) [11-13], regression analysis [14], nonparametric statistics [15], item 
response theory [16], toxicology research [17], structural equation modeling [18], 
correlation studies [19], Monte Carlo simulation studies [20, 21], and 𝐿𝐿-moment-
based characterizations [22-24].  

The logistic-, uniform-, and triangular- based PM polynomials have been 
developed and studied by Hodis and Headrick [25] and Hodis [26] with the purpose 
of extending the range of possible values of skew and kurtosis associated with a 
non-normal distribution (see also [23]). In order to produce a valid non-normal 
distribution, the PM polynomial in (1) has to be a strictly increasing monotone 
function. This requirement implies that an inverse function (𝑝𝑝−1) exists. As such, 
the parametric forms of cdf and pdf associated with (1) can be expressed as [3] (see 
also [27]) 
 

𝐹𝐹�𝑝𝑝(𝑥𝑥)� = 𝐹𝐹�𝑝𝑝(𝑥𝑥),Φ(𝑥𝑥)� 
 

(2) 

𝑓𝑓�𝑝𝑝(𝑥𝑥)� = 𝑓𝑓(𝑝𝑝(𝑥𝑥),𝜙𝜙(𝑥𝑥) 𝑝𝑝′(𝑥𝑥)⁄ ) (3) 
 

One of the limitations associated with the product-moment based PM 
polynomials is that the non-normal distributions with values of skew and (or) 
kurtosis that lie in the upper right region of the skew-kurtosis boundary graph (e.g., 
[23, pages 2165-2168]) can be excessively leptokurtic and therefore may not be 
representative of real world data. To illustrate this limitation in the context of this 
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study, Figure 1 shows pdfs of uniform-based PM polynomial with skew (𝛾𝛾3) of 
1.3 and kurtosis (𝛾𝛾4) of 1.25 (Panel A) and triangular-based PM polynomial with 
skew (𝛾𝛾3) of 2.3 and kurtosis (𝛾𝛾4) of 6.9 (Panel B). Fig. 1 (Panels A and B) 
illustrates the excessive leptokurtic behavior of some of the uniform- and triangular-
based PM distributions. 

 

𝑐𝑐0 = −0.372054, 𝑐𝑐1 = 0.164150,  
 𝑐𝑐2 = 0.710570,  and 𝑐𝑐3 = 1.119402 

 

𝑐𝑐0 = −0.344536, 𝑐𝑐1 = 0.164747,  
 𝑐𝑐2 = 0.329008,  and 𝑐𝑐3 = 0.256520 

A B 
Figure 1. The pdfs of uniform-based third-order PM distribution with skew = 1.3 and 
kurtosis = 1.25 (Panel A) and triangular-based third-order PM distribution with skew = 2.3 
and kurtosis = 6.9 (Panel B). The values of coefficients 𝑐𝑐𝑖𝑖=0,1,2,3 for the two pdfs (Panels 
A and B) were determined by solving the systems of equations (13)—(16) from Hodis et 
al. ([23], p. 2164) after replacing the associated moments from corresponding 
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(−�𝜋𝜋 2⁄ ,�𝜋𝜋 2⁄ ) and 𝑇𝑇𝑇𝑇𝑇𝑇(−√2𝜋𝜋,√2𝜋𝜋) distributions.  

 

In order to obviate the above limitation, the main purpose of this study is to 
characterize two families of uniform- and triangular-based double PM distributions 
using a doubling technique introduced by Morgenthaler and Tukey [28]. 
Specifically, the two families of double-uniform-PM and double-triangular-PM 
distributions can be derived using special cases of PM polynomials in (1) and a 
doubling technique [24, 28] as:    

𝑝𝑝(𝑈𝑈) = �𝑈𝑈 + 𝐶𝐶ℒ 𝑈𝑈3,
𝑈𝑈 + 𝐶𝐶ℛ 𝑈𝑈3,

    for 𝑈𝑈 ≤ 0
    for 𝑈𝑈 ≥ 0

 
(4) 

 
 

𝑝𝑝(𝑇𝑇) = �𝑇𝑇 + 𝐶𝐶ℒ 𝑇𝑇3,
𝑇𝑇 + 𝐶𝐶ℛ 𝑇𝑇3,

    for 𝑇𝑇 ≤ 0
    for 𝑇𝑇 ≥ 0

 
(5) 

where the random variables 𝑈𝑈 and 𝑇𝑇 in (4) and (5) are drawn from symmetric 
uniform 𝑈𝑈~𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(−�𝜋𝜋 2⁄ ,�𝜋𝜋 2⁄ )  and triangular  𝑇𝑇~𝑇𝑇𝑇𝑇𝑇𝑇(−√2𝜋𝜋,√2𝜋𝜋) 
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distributions, respectively. These specific forms of uniform and triangular 
distributions are used so that the maximum height of pdfs associated with the 
double-uniform-PM and double-triangular-PM distributions in (4) and (5) is equal 
to the maximum height �1/√2𝜋𝜋� of standard normal pdf.  

To demonstrate, given in Figure 2 are the pdfs of double-uniform-PM with 
skew  (𝛾𝛾3) of 1.3 and kurtosis (𝛾𝛾4) of 1.25 (Panel A) and double-triangular-PM 
with 𝛾𝛾3 of 2.3 and 𝛾𝛾4 of 6.9 (Panel B). Inspection of Fig. 2 (Panels A and B) 
indicates that the double-uniform-PM and double-triangular-PM distributions are 
less leptokurtic and more suitable for fitting real-world data compared to the 
traditional third-order PM distributions in Fig. 1 (Panels A and B). Note that the 
values of 𝛾𝛾3 and 𝛾𝛾4 for the two distributions in Fig. 2 (Panels A and B) are equal 
to those associated with the two distributions in Fig. 1 (Panels A and B). The solved 
values of 𝐶𝐶ℒ and 𝐶𝐶ℛ for the two distributions in Fig. 2 are obtained by solving 
systems of equations (9)—(10) and (14)—(15), respectively.  

 
𝐶𝐶ℒ = 1.419686, 𝐶𝐶ℛ = 5.267159 

 
𝐶𝐶ℒ = 0.187949, 𝐶𝐶ℛ = 1.216440 

A B 
Figure 2. The pdfs of double-uniform-PM distribution with skew = 1.3 and kurtosis = 1.25 
(Panel A) and double-triangular-PM distribution with skew = 2.3 and kurtosis = 6.9 (Panel 
B). The values of coefficients 𝐶𝐶ℒ  and 𝐶𝐶ℛ  for the two pdfs (Panels A and B) were 
determined by solving the systems of equations (9)—(10) and (14)—(15), respectively. 
Note that the values of skew and kurtosis for these two distributions are equal to those 
associated with two distributions in Fig. 1 (Panels A and B). 

 
 

The product moment-based PM polynomials have their own disadvantages 
insofar as the estimates of skew and kurtosis associated with non-normal 
distributions can be (a) substantially biased, (b) highly dispersed, or (c) influenced 
by outliers [22-24, 29-32], and thus may not be good representatives of the true 
parameters. To illustrate this limitation, provided in Table 1 are the values of 
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parameters and sample estimates of skew (𝛾𝛾3)  and kurtosis (𝛾𝛾4)  for the 
distributions in Fig. 2 (Panels A and B). Inspection of Table 1 indicates that the 
bootstrap estimates (𝛾𝛾�3 and 𝛾𝛾�4) of skew (𝛾𝛾3) and kurtosis (𝛾𝛾4) are substantially 
attenuated below and above their corresponding parameter values. Additionally, 
there is greater bias and dispersion in the estimates associated with distribution with 
greater departure from normality. Specifically, for the distribution in Fig. 2B (for 
the sample size 𝑛𝑛 = 25), the estimates (𝛾𝛾�3 and 𝛾𝛾�4) are 76.83%, and 66.39% of 
their corresponding parameters (𝛾𝛾3 and 𝛾𝛾4), respectively. The estimates (𝛾𝛾�3 and 
𝛾𝛾�4) of skew and kurtosis (𝛾𝛾3 and 𝛾𝛾4) in Table 1 were calculated based on Fisher’s 
𝑘𝑘-statistics formulae from Kendall and Stuart [33, pages 299-300], currently used 
by most commercial software packages such as SAS, SPSS, Minitab, etc., for 
computing the values of skew and kurtosis (where 𝛾𝛾3,4 = 0 for the standard normal 
distribution). 

 
 
Table 1. Product moment-based parameters (𝛾𝛾3,𝛾𝛾4)  of skew and kurtosis and their 
bootstrap estimates (𝛾𝛾�3,𝛾𝛾�4) for the pdfs in Fig. 2A and Fig. 2B. Each bootstrap estimate, 
associated 95% confidence interval (95% C.I.), and the standard error (SE) were based on 
resampling 25000 statistics. Each statistic was based on a sample size of 𝑛𝑛 =  25.  
 
Distribution Parameter Estimate 95% C.I. SE RSE% 
Fig. 2A 𝛾𝛾3 = 1.3 𝛾𝛾�3 = 1.276 (1.2699,  1.2817) 0.0030 0.2351 
 𝛾𝛾4 = 1.25 𝛾𝛾�4 = 1.699 (1.6743,  1.7242) 0.0128 0.7534 
Fig. 2B 𝛾𝛾3 = 2.3 𝛾𝛾�3 = 1.767 (1.7565,  1.7779) 0.0055 0.3113 
 𝛾𝛾4 = 6.9 𝛾𝛾�4 = 4.581 (4.5345,  4.6279) 0.0240 0.5239 

Note. RSE% = 100×(SE/Estimate). 

  

In order to address above limitations, Pant and Headrick [24] have characterized 
double-normal-PM and double-logistic-PM distributions through 𝐿𝐿-moment-based 
procedure and contrasted it with the product moment-based procedure. Additionally, 
to address the latter limitation, Headrick [22] has characterized the third- and fifth-
order PM distributions through the method of 𝐿𝐿 -moments. The method of 𝐿𝐿 -
moments introduced by Hosking [29] is an attractive alternative to product moment-
based method as it can be used in fitting theoretical and empirical distributions, 
estimating parameters, and testing of hypothesis [29-31]. In the context of non-
normal distributions, some of the advantages that 𝐿𝐿-moment based estimators have 
over product moments are that they (a) exist whenever the mean of the distribution 
exists, (b) are nearly unbiased for all sample sizes and distributions, and (c) are more 
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robust in the presence of outliers [29-31, 22, 34].  

For example, provided in Table 2 are the bootstrap estimates (𝜏̂𝜏3 and 𝜏̂𝜏4) of 𝐿𝐿-
moment-based parameters of 𝐿𝐿-skew and 𝐿𝐿-kurtosis (𝜏𝜏3 and 𝜏𝜏4) along with their 
corresponding 95% confidence intervals associated with the double-uniform-PM 
and double-triangular-PM distributions in Fig. 2 (Panels A and B). The 𝐿𝐿-moment-
based estimates (𝜏̂𝜏3 and 𝜏̂𝜏4) of 𝐿𝐿-skew and 𝐿𝐿-kurtosis (𝜏𝜏3 and 𝜏𝜏4) in Table 2 are 
relatively closer to their respective parameter values with much smaller variance 
compared to their product moment-based counterparts. Inspection of Table 2 shows 
that for the distribution in Fig. 2B (for the sample size 𝑛𝑛 = 25), the values of the 
estimates are on average 93.79% and 100.15% of their corresponding parameters. 

 
Table 2. 𝐿𝐿 -moment based parameters ( 𝜏𝜏3, 𝜏𝜏4)  of 𝐿𝐿 -skew and 𝐿𝐿 -kurtosis and their 
bootstrap estimates (𝜏̂𝜏3, 𝜏̂𝜏4) for the pdfs in Fig. 2A and Fig. 2B. Each bootstrap estimate, 
associated 95% confidence interval (95% C.I.), and the standard error (SE) were based on 
resampling 25000 statistics. Each statistic was based on a sample size of 𝑛𝑛 =  25.  
 
Distribution Parameter Estimate 95% C.I. SE RSE% 
Fig. 2A 𝜏𝜏3 = 0.2730 𝜏̂𝜏3 = 0.2702 (0.2661,  0.2712) 0.0005 0.1850 
 𝜏𝜏4 = 0.2169 𝜏̂𝜏4 = 0.2292 (0.2280,  0.2304) 0.0006 0.2618 
Fig. 2B 𝜏𝜏3 = 0.3334 𝜏̂𝜏3 = 0.3127 (0.3111,  0.3145) 0.0009 0.2878 
 𝜏𝜏4 = 0.3249 𝜏̂𝜏4 = 0.3254 (0.3241,  0.3266) 0.0006 0.1844 

 Note. RSE% = 100×(SE/Estimate). 

 
The remainder of the paper is organized as follows. In Section 2, the systems of 

equations for the product moment-based skew (𝛾𝛾3) and kurtosis (𝛾𝛾4) associated 
with the two families of double-uniform-PM and double-triangular-PM 
distributions are derived. Also provided in Section 2 is a methodology for solving 
the systems of equations for the shape parameters (𝐶𝐶ℒ and 𝐶𝐶ℛ) associated with 
these families of distributions. In Section 3, a brief introduction to 𝐿𝐿-moments is 
given. Section 3 also provides the derivation of the systems of equations for the 𝐿𝐿-
moment-based 𝐿𝐿 -skew (𝜏𝜏3)  and 𝐿𝐿 -kurtosis (𝜏𝜏4)  for the two families. Also 
provided in Section 3 is an 𝐿𝐿-moment-based methodology for solving the systems 
of equations for the shape parameters (𝐶𝐶ℒ  and 𝐶𝐶ℛ)  associated with the two 
families. In Section 4, a comparison between product moment- and 𝐿𝐿-moment-
based double-uniform-PM and double-triangular-PM distributions is presented in 
the context of fitting real-world data and estimation of parameters. In Section 5, a 
methodology for simulating multivariate distributions with specified 𝐿𝐿-correlation 
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structure is described. Provided in Section 6 is an example to demonstrate the 
multivariate data generation. In Section 7, the simulation results are provided and 
discussed. 
 

2  Product Moment-Based Methodology 

2.1  Product Moment-Based Double-Uniform-PM Distributions 

The product moments �𝜇𝜇𝑟𝑟=1,…,4� associated with (4) can be obtained from  

𝜇𝜇𝑟𝑟 = � (𝑢𝑢 + 𝐶𝐶ℒ𝑢𝑢3)𝑟𝑟
0

−�π 2⁄
𝜙𝜙(𝑢𝑢)𝑑𝑑𝑑𝑑 + � (𝑢𝑢 + 𝐶𝐶ℛ𝑢𝑢3)𝑟𝑟

�π 2⁄

0
𝜙𝜙(𝑢𝑢)𝑑𝑑𝑑𝑑. (6) 

where 𝜙𝜙(𝑢𝑢) = 1 √2𝜋𝜋⁄  is the pdf of 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(−�𝜋𝜋 2⁄ ,�𝜋𝜋 2⁄ ) distribution. 

The mean (𝜇𝜇), variance (𝜎𝜎2), skew (𝛾𝛾3), and kurtosis (𝛾𝛾4) of double-uniform-

PM distributions can be given using formulae in [33] as: 

𝜇𝜇 =
(𝐶𝐶ℛ − 𝐶𝐶ℒ)𝜋𝜋3 2⁄

16√2
 (7) 

𝜎𝜎2 =
𝜋𝜋
6

+
1

20
(𝐶𝐶ℒ + 𝐶𝐶ℛ)𝜋𝜋2 +

�25𝐶𝐶ℒ2 + 14𝐶𝐶ℒ𝐶𝐶ℛ + 25𝐶𝐶ℛ2�𝜋𝜋3

3584
 

(8) 

𝛾𝛾3 = −[6√105(𝐶𝐶ℒ − 𝐶𝐶ℛ  )𝜋𝜋 �4480 + 9𝜋𝜋 �224(𝐶𝐶ℒ + 𝐶𝐶ℛ) + 3𝜋𝜋(9𝐶𝐶ℒ2 +

          + 14𝐶𝐶ℒ 𝐶𝐶ℛ + 9𝐶𝐶ℛ2 )��]/[8960 + 3𝜋𝜋 �896(𝐶𝐶ℒ + 𝐶𝐶ℛ) + 5𝜋𝜋(25𝐶𝐶ℒ2 +

          + 14𝐶𝐶ℒ 𝐶𝐶ℛ + 25𝐶𝐶ℛ2)�]3 2⁄    

 

(9) 

𝛾𝛾4 = �6�−2296053760 − 984023040(𝐶𝐶ℒ + 𝐶𝐶ℛ)𝜋𝜋

+ 512512�67𝐶𝐶ℒ2 − 966𝐶𝐶ℒ𝐶𝐶ℛ + 67𝐶𝐶ℛ2�𝜋𝜋2

+ 174720(𝐶𝐶ℒ + 𝐶𝐶ℛ)�491𝐶𝐶ℒ2 − 854𝐶𝐶ℒ𝐶𝐶ℛ + 491𝐶𝐶ℛ2�𝜋𝜋3

+ 165�65773𝐶𝐶ℒ4 + 26572𝐶𝐶ℒ3𝐶𝐶ℛ − 82290𝐶𝐶ℒ2𝐶𝐶ℛ2

+ 26572𝐶𝐶ℒ𝐶𝐶ℛ3 + 65773𝐶𝐶ℛ4�𝜋𝜋4��

/�143(8960 + 3𝜋𝜋(896(𝐶𝐶ℒ + 𝐶𝐶ℛ) + 5𝜋𝜋(25𝐶𝐶ℒ2 + 14𝐶𝐶ℒ𝐶𝐶ℛ

+ 25𝐶𝐶ℛ2)))2� 

 

(10) 
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2.2  Product Moment-Based Double-Triangular-PM Distributions 

The product moments �𝜇𝜇𝑟𝑟=1,…,4� associated with (5) can be obtained from 

𝜇𝜇𝑟𝑟 = � (𝑡𝑡 + 𝐶𝐶ℒ𝑡𝑡3)𝑟𝑟
0

−√2𝜋𝜋
𝜙𝜙(𝑡𝑡)𝑑𝑑𝑑𝑑 + � (𝑡𝑡 + 𝐶𝐶ℛ𝑡𝑡3)𝑟𝑟

√2𝜋𝜋

0
𝜙𝜙(𝑡𝑡)𝑑𝑑𝑑𝑑. 

 

(11) 

 

 

where 𝜙𝜙(𝑡𝑡) = �
�√2𝜋𝜋 + 𝑡𝑡� 2𝜋𝜋⁄ ,     for 𝑡𝑡 ≤ 0
�√2𝜋𝜋 − 𝑡𝑡� 2𝜋𝜋⁄ ,     for 𝑡𝑡 > 0  

is the pdf of 𝑇𝑇𝑇𝑇𝑇𝑇(−√2𝜋𝜋,√2𝜋𝜋) 

distribution. 

The mean (𝜇𝜇), variance (𝜎𝜎2), skew (𝛾𝛾3), and kurtosis (𝛾𝛾4) of double-triangular-

PM distributions can be given using formulae in [33] as: 

𝜇𝜇 =
(𝐶𝐶ℛ − 𝐶𝐶ℒ)𝜋𝜋3 2⁄

5√2
 (12) 

𝜎𝜎2 =
𝜋𝜋(350 + 280𝜋𝜋(𝐶𝐶ℒ + 𝐶𝐶ℛ) + 3𝜋𝜋2(43𝐶𝐶ℒ2 + 14𝐶𝐶ℒ𝐶𝐶ℛ + 43𝐶𝐶ℛ2))

1050
 

(13) 

𝛾𝛾3 = −[2√21(𝐶𝐶ℒ − 𝐶𝐶ℛ)𝜋𝜋 �10725

+ 2𝜋𝜋 �7315(𝐶𝐶ℒ + 𝐶𝐶ℛ)

+ 81𝜋𝜋�38𝐶𝐶ℒ2 + 49𝐶𝐶ℒ 𝐶𝐶ℛ + 38𝐶𝐶ℛ2���]

/[11{�350 + 280𝜋𝜋(𝐶𝐶ℒ + 𝐶𝐶ℛ)

+ 3𝜋𝜋2�43𝐶𝐶ℒ2 + 14𝐶𝐶ℒ 𝐶𝐶ℛ + 43𝐶𝐶ℛ2��}3 2⁄ ] 

(14) 
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𝛾𝛾4 = �6�−1751750 + 1001000𝜋𝜋(𝐶𝐶ℒ + 𝐶𝐶ℛ) + 200200𝜋𝜋2(55𝐶𝐶ℒ2

− 17𝐶𝐶ℒ𝐶𝐶ℛ + 55𝐶𝐶ℛ2) + 3640𝜋𝜋3(𝐶𝐶ℒ + 𝐶𝐶ℛ)(3887𝐶𝐶ℒ2

− 4074𝐶𝐶ℒ𝐶𝐶ℛ + 3887𝐶𝐶ℛ2) + 3𝜋𝜋4(1803829𝐶𝐶ℒ4

+ 502684𝐶𝐶ℒ3𝐶𝐶ℛ − 598026𝐶𝐶ℒ2𝐶𝐶ℛ2 + 502684𝐶𝐶ℒ𝐶𝐶ℛ3

+ 1803829𝐶𝐶ℛ4)��

/�143(350 + 280𝜋𝜋(𝐶𝐶ℒ + 𝐶𝐶ℛ) + 3𝜋𝜋2(43𝐶𝐶ℒ2 + 14𝐶𝐶ℒ𝐶𝐶ℛ

+ 43𝐶𝐶ℛ2))2� 

 

(15) 

   

The product-moment-based procedure for simulating the double-uniform-PM 
and double-triangular-PM distributions involves a moment-matching approach in 
which specified values of skew (𝛾𝛾3) and kurtosis (𝛾𝛾4) are substituted on the left-
hand sides of (9)—(10) and (14)—(15), respectively, and then these systems are 
simultaneously solved for the shape parameters (𝐶𝐶ℒ and 𝐶𝐶ℛ). The solved values 
of 𝐶𝐶ℒ  and 𝐶𝐶ℛ  can be substituted into (7)—(8) and (12)—(13), respectively, to 
determine the values of mean and variance associated with the double-uniform-PM 
and double-triangular-PM distributions. The solved values of 𝐶𝐶ℒ and 𝐶𝐶ℛ can be 
substituted into (4) and (5) to generate the double-uniform-PM and double-
triangular-PM distributions, respectively, with specified values of skew and kurtosis. 
Eventually, (4) and (5) can be substituted into (3) to obtain the parametric plots of 
the pdfs associated with the corresponding distributions. For example, the pdfs of 
double-uniform-PM and double-triangular-PM distributions in Fig. 2 (Panels A and 
B) were plotted by first substituting the solved values of (A) 𝐶𝐶ℒ = 1.419686 and 
𝐶𝐶ℛ = 5.267159 into (4) and (B) 𝐶𝐶ℒ = 0.187949 and 𝐶𝐶ℛ = 1.216440 into (5), 
respectively, for generating the double-uniform-PM and the double-triangular-PM 
distributions, and substituting them separately into (3) for the parametric forms of 
corresponding pdfs.  

The boundary graphs plotted in |𝛾𝛾3| − 𝛾𝛾4 plane in Figure 3 (Panel A and Panel 
B) can be used for finding possible combinations of skew (𝛾𝛾3) and kurtosis (𝛾𝛾4) 
associated with product moment-based double-uniform-PM and double-triangular-
PM distributions. Fig. 3 (Panel A) shows the boundary graph for possible 
combinations of skew (𝛾𝛾3)  and kurtosis (𝛾𝛾4) associated with a valid double-
uniform-PM distribution, where the values of |𝛾𝛾3| range between 0 and 2.0573 and 
those of 𝛾𝛾4 range between -1.2 to 3.2381. Fig. 3 (Panel B) shows the boundary 
graph for possible combinations of skew (𝛾𝛾3) and kurtosis (𝛾𝛾4) associated with 
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a valid double-triangular-PM distribution, where the values of |𝛾𝛾3| range between 
0 and 3.5007 and those of 𝛾𝛾4 range between -0.6 to 13.6443. 
 

  

A B 
Figure 3. Boundary graphs of the regions for possible combinations of (absolute value) 
skew (|𝛾𝛾3|)  and kurtosis (𝛾𝛾4)  for the symmetric double-uniform-PM (Panel A) and 
double-triangular-PM (Panel B) distributions. 
  

3  𝑳𝑳-Moment-Based Methodology 

3.1  Preliminaries for 𝑳𝑳-Moments 

Let 𝑌𝑌1,𝑌𝑌2, … ,𝑌𝑌𝑖𝑖 , … ,𝑌𝑌𝑛𝑛  be independently and identically distributed random 
variables each with pdf 𝑓𝑓(𝑦𝑦), cdf 𝐹𝐹(𝑦𝑦), then the first four 𝐿𝐿-moments are defined 
as [31, pages 20-22]: 

𝜆𝜆1 = 𝛽𝛽0 (16) 

𝜆𝜆2 = 2𝛽𝛽1 − 𝛽𝛽0 (17) 

𝜆𝜆3 = 6𝛽𝛽2 − 6𝛽𝛽1 + 𝛽𝛽0 (18) 

𝜆𝜆4 = 20𝛽𝛽3 − 30𝛽𝛽2 + 12𝛽𝛽1 − 𝛽𝛽0 (19) 

where coefficients associated with 𝛽𝛽𝑟𝑟=0,1,2,3 in (16)—(19) are derived from shifted 
orthogonal Legendre polynomials and are computed as described in [31, page 20] 
and where 𝛽𝛽𝑟𝑟 is the 𝑟𝑟th weighted probability moment (PWM) defined as: 

𝛽𝛽𝑟𝑟 = �𝑦𝑦{𝐹𝐹(𝑦𝑦)}𝑟𝑟𝑓𝑓(𝑦𝑦)𝑑𝑑𝑑𝑑 (20) 

The 𝐿𝐿-moments 𝜆𝜆1 and 𝜆𝜆2 in (16)—(17) are measures of location and scale 
parameters and are equal to the arithmetic mean and one-half of the coefficient of 
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mean difference or Gini’s index [33, pages 47-48]. In the literature of 𝐿𝐿-moments 
(e.g., [29]), the dimensionless ratios of higher order 𝐿𝐿-moments (i.e., 𝜆𝜆3 and 𝜆𝜆4) 
to 𝜆𝜆2 are referred to as 𝐿𝐿-skew (𝜏𝜏3) and 𝐿𝐿-kurtosis (𝜏𝜏4), respectively. Thus, the 
formulae for 𝐿𝐿-skew (𝜏𝜏3) and 𝐿𝐿-kurtosis (𝜏𝜏4) are given as: 

𝜏𝜏3 =
𝜆𝜆3
𝜆𝜆2

 (21) 

𝜏𝜏4 =
𝜆𝜆4
𝜆𝜆2

 (22) 

 
In general, the indices of 𝐿𝐿-skew (𝜏𝜏3) and 𝐿𝐿-kurtosis (𝜏𝜏4) are bounded such 

that |𝜏𝜏3| < 1 and |𝜏𝜏4| < 1, and a symmetric distribution has 𝐿𝐿-skew (𝜏𝜏3) = 0 
[22].  

Estimates of 𝐿𝐿-moments from a sample (𝑛𝑛) of real data can be computed as a 
linear combination of the sample order statistics 𝑌𝑌1:𝑛𝑛 ≤ 𝑌𝑌2:𝑛𝑛 ≤ ⋯ ≤ 𝑌𝑌𝑛𝑛:𝑛𝑛 . The 
unbiased sample estimates of the PWMs are given as [29]: 

𝛽̂𝛽𝑟𝑟 =
1
𝑛𝑛
�

(𝑖𝑖 − 1)(𝑖𝑖 − 2) … (𝑖𝑖 − 𝑟𝑟)
(𝑛𝑛 − 1)(𝑛𝑛 − 2) … (𝑛𝑛 − 𝑟𝑟)

𝑛𝑛

𝑖𝑖=𝑟𝑟+1

𝑌𝑌𝑖𝑖:𝑛𝑛 (23) 

where 𝑟𝑟 =  0, 1, 2, 3 . Here, 𝛽̂𝛽0  is the sample mean. The first four sample 𝐿𝐿-
moments (𝜆̂𝜆1, 𝜆̂𝜆2, 𝜆̂𝜆3, 𝜆̂𝜆4)  are obtained by substituting 𝛽̂𝛽𝑟𝑟  instead of 𝛽𝛽𝑟𝑟  in 
equations (16)−(19). The sample estimates of 𝐿𝐿-skew and 𝐿𝐿-kurtosis are denoted 
as 𝜏̂𝜏3 and 𝜏̂𝜏4, where 𝜏̂𝜏3 = 𝜆̂𝜆3 𝜆̂𝜆2⁄  and 𝜏̂𝜏4 = 𝜆̂𝜆4 𝜆̂𝜆2⁄ . 

3.2  𝑳𝑳-Moment-Based Double-Uniform-PM Distributions 

The 𝐿𝐿 -moment-based system of equations for the double-uniform-PM 
distributions can be derived by first defining the PWMs based on (20) in terms of 
𝑝𝑝(𝑈𝑈)  in (4) and the uniform pdf  𝜙𝜙(𝑢𝑢) = 1 √2𝜋𝜋⁄  and cdf  Φ(𝑢𝑢) =

�𝑢𝑢 + �𝜋𝜋 2⁄ � √2𝜋𝜋�  as 

𝛽𝛽𝑟𝑟 = � (𝑢𝑢 + 𝐶𝐶ℒ 𝑢𝑢3){Φ(𝑢𝑢)}𝑟𝑟𝜙𝜙(𝑢𝑢)𝑑𝑑𝑑𝑑
0

−�𝜋𝜋 2⁄

+ � (𝑢𝑢 + 𝐶𝐶ℛ 𝑢𝑢3){Φ(𝑢𝑢)}𝑟𝑟𝜙𝜙(𝑢𝑢)𝑑𝑑𝑑𝑑

�𝜋𝜋 2⁄

0

. 

(24) 

Integrating (24) for 𝛽𝛽𝑟𝑟=0,1,2,3 and substituting into (16)—(19) yields the first 
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four 𝐿𝐿-moments; which are eventually substituted into (21)—(22) to obtain the 
following system of equations: 

𝜆𝜆1 =
(𝐶𝐶ℛ − 𝐶𝐶ℒ)𝜋𝜋3 2⁄

16√2
 (25) 

𝜆𝜆2 =
√𝜋𝜋�20 + 3𝜋𝜋(𝐶𝐶ℒ + 𝐶𝐶ℛ)�

60√2
 (26) 

𝜏𝜏3 =
15(𝐶𝐶ℛ − 𝐶𝐶ℒ)𝜋𝜋

24(𝐶𝐶ℒ + 𝐶𝐶ℛ)𝜋𝜋 + 160
 (27) 

𝜏𝜏4 =
6(𝐶𝐶ℒ + 𝐶𝐶ℛ)𝜋𝜋

21(𝐶𝐶ℒ + 𝐶𝐶ℛ)𝜋𝜋 + 140
 (28) 

The solutions for 𝐶𝐶ℒ and 𝐶𝐶ℛ for a valid double-uniform-PM distribution can 
also be determined by evaluating the following expressions for specified values of 
𝜏𝜏3 and 𝜏𝜏4: 

𝐶𝐶ℒ =
2(16𝜏𝜏3 − 35𝜏𝜏4)

3𝜋𝜋(7𝜏𝜏4 − 2)  (29) 

𝐶𝐶ℛ =
2(16𝜏𝜏3 + 35𝜏𝜏4)

3𝜋𝜋(2 − 7𝜏𝜏4)  (30) 

3.3  𝑳𝑳-Moment-Based Double-Triangular-PM Distributions 

The 𝐿𝐿 -moment-based system of equations for the double-triangular-PM 
distributions can be derived by first defining the PWMs based on (20) in terms of 
𝑝𝑝(𝑇𝑇) in (5) and then by integrating the following integral: 
 

𝛽𝛽𝑟𝑟 = � (𝑡𝑡 + 𝐶𝐶ℒ𝑡𝑡3){Φ(𝑡𝑡)}𝑟𝑟𝜙𝜙(𝑡𝑡)𝑑𝑑𝑑𝑑
0

−√2𝜋𝜋
+ � (𝑡𝑡 + 𝐶𝐶ℛ𝑡𝑡3){Φ(𝑡𝑡)}𝑟𝑟𝜙𝜙(𝑡𝑡)𝑑𝑑𝑑𝑑

√2𝜋𝜋

0
. (31) 

where 𝜙𝜙(𝑡𝑡) and Φ(𝑡𝑡) are the standard triangular pdf and cdf given as:  𝜙𝜙(𝑡𝑡) =

�
�√2𝜋𝜋 + 𝑡𝑡� 2𝜋𝜋⁄ ,   for 𝑡𝑡 ≤ 0
�√2𝜋𝜋 − 𝑡𝑡� 2𝜋𝜋⁄ ,   for 𝑡𝑡 > 0  

 and Φ(𝑡𝑡) = �
�√2𝜋𝜋 + 𝑡𝑡�

2
4𝜋𝜋� ,     for 𝑡𝑡 ≤ 0

1 − �√2𝜋𝜋 − 𝑡𝑡�
2

4𝜋𝜋� ,     for 𝑡𝑡 > 0  
. 

Integrating (31) for 𝛽𝛽𝑟𝑟=0,1,2,3 and substituting into (16)—(19) yields the first 
four 𝐿𝐿-moments; which are eventually substituted into (21)—(22) to obtain the 
following system of equations: 

𝜆𝜆1 =
(𝐶𝐶ℛ − 𝐶𝐶ℒ)𝜋𝜋3 2⁄

5√2
 (32) 
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𝜆𝜆2 =
√𝜋𝜋�49 + 18𝜋𝜋(𝐶𝐶ℒ + 𝐶𝐶ℛ)�

105√2
 (33) 

𝜏𝜏3 =
53𝜋𝜋(𝐶𝐶ℛ − 𝐶𝐶ℒ)

72𝜋𝜋(𝐶𝐶ℒ + 𝐶𝐶ℛ) + 196
 (34) 

𝜏𝜏4 =
1116𝜋𝜋(𝐶𝐶ℒ + 𝐶𝐶ℛ) + 583

2376𝜋𝜋(𝐶𝐶ℒ + 𝐶𝐶ℛ) + 6468
 (35) 

The solutions for 𝐶𝐶ℒ and 𝐶𝐶ℛ for a valid double-triangular-PM distribution can 
also be determined by evaluating the following expressions for specified values of 
𝜏𝜏3 and 𝜏𝜏4: 

𝐶𝐶ℒ =
(30899 + 176760𝜏𝜏3 − 342804𝜏𝜏4)

3816𝜋𝜋(66𝜏𝜏4 − 31)  (36) 

𝐶𝐶ℛ =
(30899 − 176760𝜏𝜏3 − 342804𝜏𝜏4)

3816𝜋𝜋(66𝜏𝜏4 − 31)  (37) 

For specified values of 𝐿𝐿-skew (𝜏𝜏3) and 𝐿𝐿-kurtosis (𝜏𝜏4) associated with the 
valid double-uniform-PM and double-triangular-PM distributions, the systems of 
equations (27)—(28) and (34)—(35) can be simultaneously solved for the values of 
shape parameters (𝐶𝐶ℒ  and 𝐶𝐶ℛ) . Alternatively, the specified values of 𝐿𝐿-skew 
(𝜏𝜏3)  and 𝐿𝐿 -kurtosis (𝜏𝜏4)  associated with the valid double-uniform-PM and 
double-triangular-PM distributions can be directly substituted into (29)—(30) and 
(36)—(37), respectively, to obtain the values of 𝐶𝐶ℒ and 𝐶𝐶ℛ. The solved values of 
𝐶𝐶ℒ  and 𝐶𝐶ℛ  can be substituted into (4) and (5), respectively, for generating the 
double-uniform-PM and double-triangular-PM distributions. Further, the solved 
values of 𝐶𝐶ℒ  and 𝐶𝐶ℛ  can be substituted into (25)—(26) and (32)—(33) to 
determine the values of 𝐿𝐿-location (𝜆𝜆1) and 𝐿𝐿-scale (𝜆𝜆2) associated with the 
double-uniform-PM and double-triangular-PM distributions, respectively.  

The boundary graphs in Figure 4 (Panel A and Panel B) can be used for finding 
possible combinations of 𝐿𝐿-skew (𝜏𝜏3) and 𝐿𝐿-kurtosis (𝜏𝜏4) associated with the 
𝐿𝐿-moment-based valid double-uniform-PM and double-triangular-PM distributions. 
Fig. 4 (Panel A) shows the boundary graph for possible combinations of 𝐿𝐿-skew 
(𝜏𝜏3) and 𝐿𝐿-kurtosis (𝜏𝜏4) associated with a valid double-uniform-PM distribution, 
where the values of |𝜏𝜏3|  range between 0 and 0.625 and those of 𝜏𝜏4  range 
between 0 and 0.2857. Fig. 4 (Panel B) shows the boundary graph for possible 
combinations of 𝐿𝐿 -skew (𝜏𝜏3)  and 𝐿𝐿 -kurtosis (𝜏𝜏4)  associated with a valid 
double-triangular-PM distribution, where the values of |𝜏𝜏3| range between 0 and 
0.7361 and those of 𝜏𝜏4 range between 0.0901 to 0.4697. 
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A B 
Figure 4. Boundary graphs of the regions for possible combinations of (absolute value) 𝐿𝐿-
skew (|𝜏𝜏3|) and 𝐿𝐿-kurtosis (𝜏𝜏4) for the symmetric double-uniform-PM (Panel A) and 
the double-triangular-PM (Panel B) distributions. 

  

In the next section, examples are provided to demonstrate the aforementioned 
methodology and the advantages of 𝐿𝐿-moment-based procedure over the product 
moment-based procedure in the contexts of fitting data and estimation of parameters.   

4  Comparison of 𝑳𝑳-Moments with Product Moments 

4.1  Fitting Data 

Provided in Figure 5 (Panels A and B) are the pdfs of the product moment- and 
the 𝐿𝐿 -moment-based double-triangular-PM distributions superimposed on the 
histogram of Thigh circumference data associated with 252 men from the dataset 
“bodyfat,” which was downloaded from http://lib.stat.cmu.edu/datasets/bodyfat. 

The product moment-based estimates (𝛾𝛾�3 and 𝛾𝛾�4)  of skew and kurtosis 
(𝛾𝛾3 and 𝛾𝛾4)  and the 𝐿𝐿-moment-based estimates (𝜏̂𝜏3 and 𝜏̂𝜏4) of 𝐿𝐿-skew and 𝐿𝐿-
kurtosis (𝜏𝜏3 and 𝜏𝜏4) were computed for the sample of 𝑛𝑛 =  252. The estimates 
𝛾𝛾�3 and 𝛾𝛾�4 were computed using Fisher’s 𝑘𝑘-statistics formulae [33, pages 47-48], 
whereas the estimates 𝜏̂𝜏3 and 𝜏̂𝜏4 were computed by substituting sample estimates 
of PWMs from (23) into (16)−(19) for obtaining the sample estimates of 𝐿𝐿 -
moments and subsequently substituting these estimates of 𝐿𝐿 -moments into the 
formulae for the estimates 𝜏̂𝜏3 and 𝜏̂𝜏4. The sample estimates (𝛾𝛾�3, 𝛾𝛾�4 and 𝜏̂𝜏3, 𝜏̂𝜏4) 
were then substituted into the left-hand sides of (A) (14)—(15) and (B) (34)—(35), 
respectively, to simultaneously solve for the values of shape parameters (𝐶𝐶ℒ and 
𝐶𝐶ℛ ) associated with the product moment- and the 𝐿𝐿 -moment-based double-
triangular-PM distributions. The solved values of 𝐶𝐶ℒ  and 𝐶𝐶ℛ  were finally 

http://lib.stat.cmu.edu/datasets/bodyfat
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substituted into (5) and (3) to superimpose the parametric plots of the double-
triangular-PM pdfs shown in Figure 5 (Panels A and B). 

  

Product moment-based double-triangular-
PM pdf superimposed on the histogram 

of Thigh circumference data (𝑛𝑛 =  252). 

𝐿𝐿-moment-based double-triangular-PM 
pdf superimposed on the histogram of 
Thigh circumference data (𝑛𝑛 =  252). 

Estimates Parameters 
𝑋𝑋� = 59.405952 𝜇𝜇 = 0.194003 
𝑠𝑠 = 5.249952 𝜎𝜎 = 2.233446 
𝛾𝛾�3 = 0.821210 𝐶𝐶ℒ = 0.302371 
𝛾𝛾�4 = 2.665714 𝐶𝐶ℛ = 0.548730 

A 

Estimates Parameters 
𝜆̂𝜆1 = 59.405952 𝜆𝜆1 = 0.091460 
𝜆̂𝜆2 = 2.873963 𝜆𝜆2 = 0.722054 
𝜏̂𝜏3 = 0.079921 𝐶𝐶ℒ = 0.043542 
𝜏̂𝜏4 = 0.162244 𝐶𝐶ℛ = 0.159684 

B 
Figure 5. The pdfs of (A) product moment- and (B) 𝐿𝐿-moment-based double-triangular-
PM distributions superimposed on histograms of the Thigh circumference data. To 
superimpose the double-triangular-PM distributions, the piecewise function 𝑝𝑝(𝑇𝑇) from 
(5) was transformed as (A) 𝑋𝑋� + 𝑠𝑠 (𝑝𝑝(𝑇𝑇) − 𝜇𝜇) 𝜎𝜎⁄  and (B) 𝜆̂𝜆1 + 𝜆̂𝜆2 (𝑝𝑝(𝑇𝑇) − 𝜆𝜆1) 𝜆𝜆2⁄ , 
respectively, where (𝑋𝑋�, 𝑠𝑠) and (𝜇𝜇, 𝜎𝜎) are the values of (mean, standard deviation), 
whereas (𝜆̂𝜆1, 𝜆̂𝜆2) and (𝜆𝜆1, 𝜆𝜆2) are the values of (𝐿𝐿-mean, 𝐿𝐿-scale) obtained from 
the actual data and the double-triangular-PM distribution, respectively. 

Inspection of Fig. 5 (Panels A and B) illustrates that the 𝐿𝐿-moment-based 
double-triangular-PM pdf provides a better fit to the Thigh circumference data. 
The Chi-Square goodness of fit statistics along with their corresponding 𝑝𝑝-values 
given in Table 3 provide evidence that the product moment-based double-
triangular-PM distribution does not provide a good fit to the Thigh circumference 
data, whereas, the 𝐿𝐿-moment-based double-triangular-PM distribution fits very 
well. The degrees of freedom for the Chi-Square goodness of fit tests were 
computed as 𝑑𝑑𝑑𝑑 = 5 = 10 (class intervals) – 4 (estimates of the parameters) – 1 
(sample size). 
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Table 3. Chi-square goodness of fit statistics for the product moment-based (𝑃𝑃) and the 
𝐿𝐿-moment-based (𝐿𝐿) double-triangular-PM approximations for the Thigh circumference 
data (𝑛𝑛 = 252) shown in Fig. 5 (Panels A and B). 
 

Percent Expected Obs. (𝑃𝑃) Obs. (𝐿𝐿) Class Intervals (𝑃𝑃) Class Intervals (𝐿𝐿) 

10 25.2 33 27 < 53.8020 < 53.0657 

20 25.2 33 25 53.8020 – 56.2285 53.0657 – 55.2394 

30 25.2 26 21 56.2285 – 57.4936 55.2394 – 56.7618 

40 25.2 14 28 57.4936 – 58.3147 56.7618 – 57.9854 

50 25.2 19 26 58.3147 – 58.9499 57.9854 – 59.0419 

60 25.2 15 23 58.9499 – 59.5959 59.0419 – 60.1070 

70 25.2 17 26 59.5959 – 60.5107 60.1070 – 61.4054 

80 25.2 30 20 60.5107 – 62.1242 61.4054 – 63.2059 

90 25.2 38 34 62.1242 – 65.6385 63.2059 – 66.2480 

100 25.2 27 22 65.6385 or greater 66.2480 or greater 

    𝜒𝜒2 = 25.6984 𝜒𝜒2 = 5.9365 

    𝑝𝑝 =  0.0001 𝑝𝑝 =  0.3124 

4.2  Estimation of Parameters 

In the context of estimation of parameters, an example is provided in Figure 6 
and Tables 4 and 5 to demonstrate the advantages of 𝐿𝐿-moment-based procedure 
over the product moment-based procedure. Given in Fig. 6 (Panel A) are the pdfs 
of four distributions of which the first and third (Distributions 1 and 3) are the 
double-uniform-PM and the second and fourth (Distributions 2 and 4) are the 
double-triangular-PM distributions. Distributions 1 and 2 are symmetric and 
Distributions 3 and 4 are asymmetric distributions. The values of product moment- 
and 𝐿𝐿-moment-based parameters of skew (𝛾𝛾3), kurtosis (𝛾𝛾4) and 𝐿𝐿-skew (𝜏𝜏3), 
𝐿𝐿-kurtosis (𝜏𝜏4) along with their solved values of shape parameters (𝐶𝐶ℒ and 𝐶𝐶ℛ) 
associated with these four distributions, are provided in Fig. 6 (Panel B). The pdfs 
in Fig. 6 (Panel A) were plotted by first substituting the solved values of 𝐶𝐶ℒ and 
𝐶𝐶ℛ into (4) and (5), respectively, to generate the double-uniform-PM and double-
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triangular-PM distributions and then substituting these into (3) to plot the 
parametric forms of pdfs associated with these four distributions. 

The advantages of 𝐿𝐿-moment-based procedure over the product moment-
based procedure can be demonstrated in the context of estimation of parameters 
associated with the four distributions in Fig. 6 by considering the Monte Carlo 
simulation results associated with the indices for the standard error (SE) and 
percentage of relative bias (RB%) reported in Tables 4 and 5.  

Specifically, a Fortran [35] algorithm was written to simulate 25,000 
independent samples of sizes 𝑛𝑛 = 25 and 𝑛𝑛 = 500, and the product moment-
based estimates (𝛾𝛾�3 and 𝛾𝛾�4) of skew and kurtosis (𝛾𝛾3 and 𝛾𝛾4) and the 𝐿𝐿-moment-
based estimates ( 𝜏̂𝜏3  and 𝜏̂𝜏4 ) of 𝐿𝐿 -skew and 𝐿𝐿 -kurtosis ( 𝜏𝜏3  and 𝜏𝜏4 ) were 
computed for each of the (2 × 25,000) samples based on the values of shape 
parameters (𝐶𝐶ℒ and 𝐶𝐶ℛ) listed in Fig. 6 (Panel B). The estimates (𝛾𝛾�3 and 𝛾𝛾�4) of 
𝛾𝛾3 and 𝛾𝛾4 were computed based on Fisher’s 𝑘𝑘-statistics formulae [33, pages 47-
48], whereas the estimates ( 𝜏̂𝜏3  and 𝜏̂𝜏4 ) of 𝜏𝜏3 and 𝜏𝜏4  were computed by 
substituting sample estimates of PWMs from (23) into (16)−(19) for obtaining the 
sample estimates of 𝐿𝐿-moments and subsequently substituting these estimates of 
𝐿𝐿 -moments into the formulae for the estimates 𝜏̂𝜏3  and 𝜏̂𝜏4 . Bias-corrected 
accelerated bootstrapped average estimates (Estimate), associated 95% confidence 
intervals (95% C.I.), and standard errors (SE) were obtained for each type of 
estimates using 10,000 resamples via the commercial software package TIBCO 
Spotfire S+ [36]. Further, if a parameter was outside its associated 95% C.I., then 
the percentage of relative bias (RB%) was computed for the estimate as 

RB% = 100 × (Estimate − Parameter)/Parameter (38) 
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Distribution 1 

 

𝛾𝛾3 = 0, 𝛾𝛾4 = −0.5 
(𝜇𝜇 = 0,𝜎𝜎 = 1.226485) 
𝐶𝐶ℒ = 𝐶𝐶ℛ = 0.710458 
𝜏𝜏3 = 0, 𝜏𝜏4 = 0.1146 

(𝜆𝜆1 = 0, 𝜆𝜆2 = 0.697507) 

Distribution 2 

 

𝛾𝛾3 = 0, 𝛾𝛾4 = 4 
(𝜇𝜇 = 0,𝜎𝜎 = 4.917699) 
𝐶𝐶ℒ = 𝐶𝐶ℛ = 1.346056 
𝜏𝜏3 = 0, 𝜏𝜏4 = 0.3773 

(𝜆𝜆1 = 0, 𝜆𝜆2 = 2.402011) 

Distribution 3 

 

𝛾𝛾3 = 1.9,𝛾𝛾4 = 2.7 
(𝜇𝜇 = 5.236402,𝜎𝜎 = 11.592811) 
𝐶𝐶ℒ = 1.844870, 𝐶𝐶ℛ = 23.123476 

𝜏𝜏3 = 0.4909, 𝜏𝜏4 = 0.2633 
(𝜆𝜆1 = 5.236402,𝜆𝜆2 = 5.333293) 

Distribution 4 

 

𝛾𝛾3 = 3.33, 𝛾𝛾4 = 12.55 
(𝜇𝜇 = 12.945011,𝜎𝜎 = 36.424664) 
𝐶𝐶ℒ = 1.538219, 𝐶𝐶ℛ = 17.976736 

𝜏𝜏3 = 0.5937, 𝜏𝜏4 = 0.4536 
(𝜆𝜆1 = 12.945011,𝜆𝜆2 = 13.757148) 

A B 
Figure 6. The pdfs (Panel A) of two double-uniform-PM (Distributions 1 and 3) and two 
double-triangular-PM (Distributions 2 and 4) distributions, their corresponding parameter 
values (Panel B) of product moment-based skew (𝛾𝛾3) and kurtosis (𝛾𝛾4), 𝐿𝐿-moment-based 
𝐿𝐿-skew (𝜏𝜏3) and 𝐿𝐿-kurtosis (𝜏𝜏4), and the solved values of shape parameters (𝐶𝐶ℒ and 𝐶𝐶ℛ).  
Table 4. Parameter values of product moment-based skew (𝛾𝛾3) and kurtosis (𝛾𝛾4), their 
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corresponding bootstrap estimates, associated 95% confidence intervals (95% C.I.), and 
standard errors (SE) for the four distributions in Figure 6. Each bootstrap estimate is based 
on resampling 25000 statistics. Each statistic is based on sample sizes of 25 and 500. 

 
Dist. Parameter Estimate 95% C.I. SE RB% 

𝑛𝑛 =  25 
1 𝛾𝛾3 = 0 𝛾𝛾�3 = 0.0021 (−0.0020,  0.0064) 0.0051 ----- 

 𝛾𝛾4 = −0.5 𝛾𝛾�4 = −0.3064 (−0.3140,  −0.2993) 0.0243 −38.72 
      2 𝛾𝛾3 = 0 𝛾𝛾�3 = 0.0144 (−0.0016,  0.0292) 0.0043 ----- 
 𝛾𝛾4 = 4 𝛾𝛾�4 = 3.548 (3.5175,  3.5816) 0.0231 −11.30 
      3 𝛾𝛾3 = 1.9 𝛾𝛾�3 = 1.953 (1.9450,  1.9603) 0.0035 2.79 

 𝛾𝛾4 = 2.7 𝛾𝛾�4 = 3.616 (3.5763,  3.6638) 0.0111 33.93 
      4 𝛾𝛾3 = 3.33 𝛾𝛾�3 = 2.688 (2.6773,  2.6984) 0.0039 −19.28 
 𝛾𝛾4 = 12.55 𝛾𝛾�4 = 8.217 (8.1477,  8.2816) 0.0079 −34.53 

𝑛𝑛 = 500 
1 𝛾𝛾3 = 0 𝛾𝛾�3 = 0.0002 (-0.0006,  0.0010) 0.0004 ----- 

 𝛾𝛾4 = −0.5 𝛾𝛾�4 = − 0.4901 (−0.4914,  −0.4889) 0.0006 −1.98 
      2 𝛾𝛾3 = 0 𝛾𝛾�3 = − 0.0014 (−0.0052,  0.0023) 0.0019 ----- 
 𝛾𝛾4 = 4 𝛾𝛾�4 = 4.001 (3.9937,  4.0101) 0.0041 ----- 
      3 𝛾𝛾3 = 1.9 𝛾𝛾�3 = 1.907 (1.9054,  1.9087) 0.0008 0.37 

 𝛾𝛾4 = 2.7 𝛾𝛾�4 = 2.77 (2.7620,  2.7779) 0.0041 2.59 
      4 𝛾𝛾3 = 3.33 𝛾𝛾�3 = 3.314 (3.3107,  3.3179) 0.0018 −0.48 
 𝛾𝛾4 = 12.55 𝛾𝛾�4 = 12.52 (12.4877,  12.5540) 0.0169 ----- 
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Table 5. Parameter values of 𝐿𝐿-moment-based 𝐿𝐿-skew (𝜏𝜏3) and 𝐿𝐿-kurtosis (𝜏𝜏4), their 
corresponding bootstrap estimates, associated 95% confidence intervals (95% C.I.), and 
standard errors (SE) for the four distributions in Figure 6. Each bootstrap estimate is based 
on resampling 25000 statistics. Each statistic is based on sample sizes of 25 and 500. 
 

Dist. Parameter Estimate 95% C.I. SE RB% 
𝑛𝑛 = 25 

1 𝜏𝜏3 = 0 𝜏̂𝜏3 = 0.0004 (−0.0006,  0.0014) 0.0005 ----- 
 𝜏𝜏4 = 0.1146 𝜏̂𝜏4 = 0.1202 (0.1194,  0.1211) 0.0004 4.89 
      2 𝜏𝜏3 = 0  𝜏̂𝜏3 = 0.0017 (−0.0008,  0.0040) 0.0012 ----- 
 𝜏𝜏4 = 0.3773 𝜏̂𝜏4 = 0.3795 (0.3783,  0.3807) 0.0006 0.58 
      3 𝜏𝜏3 = 0.4909 𝜏̂𝜏3 = 0.4967 (0.4957,  0.4978) 0.0005 1.18 

 𝜏𝜏4 = 0.2633 𝜏̂𝜏4 = 0.2888 (0.2871,  0.2904) 0.0009 9.68 
      4 𝜏𝜏3 = 0.5937 𝜏̂𝜏3 = 0.5727 (0.5711,  0.5742) 0.0008 −3.54 
 𝜏𝜏4 = 0.4536 𝜏̂𝜏4 = 0.4678 (0.4660,  0.4694) 0.0009 3.13 

𝑛𝑛 = 500 
1 𝜏𝜏3 = 0 𝜏̂𝜏3 = 0.0001 (−0.0001,  0.0002) 0.0001 ----- 

 𝜏𝜏4 = 0.1146 𝜏̂𝜏4 = 0.1149 (0.1146,  0.1150) 0.0001 ----- 
      2 𝜏𝜏3 = 0  𝜏̂𝜏3 = −0.0002 (−0.0006,  0.0004) 0.0003 ----- 
 𝜏𝜏4 = 0.3773 𝜏̂𝜏4 = 0.3775 (0.3772,  0.3777) 0.0001 ----- 
      3 𝜏𝜏3 = 0.4909 𝜏̂𝜏3 = 0.4914 (0.4912,  0.4916) 0.0001 0.10 

 𝜏𝜏4 = 0.2633 𝜏̂𝜏4 = 0.2647 (0.2644,  0.2651) 0.0002 0.53 
      4 𝜏𝜏3 = 0.5937 𝜏̂𝜏3 = 0.5931 (0.5929,  0.5933) 0.0001 −0.10 
 𝜏𝜏4 = 0.4536 𝜏̂𝜏4 = 0.4546 (0.4542,  0.4549) 0.0002 0.22 

 

The results in Tables 4 and 5 illustrate that the 𝐿𝐿-moment-based estimators are 
superior to their product moment-based counterparts in terms of both smaller 
relative bias and error. These characteristics are most pronounced in the context of 
smaller sample sizes and higher-order moments. For example for the Distribution 4, 
given a sample size of 25, the product moment-based estimates (𝛾𝛾�3  and 𝛾𝛾�4 ) 
generated in the simulation were, on average, 80.72% and 65.47% of their 
respective parameters (𝛾𝛾3 and 𝛾𝛾4). On the other hand, for the same Distribution 4, 
the 𝐿𝐿-moment-based estimates (𝜏̂𝜏3 and 𝜏̂𝜏4) generated in the simulation study were, 
on average, 96.46% and 103.13% of their respective parameters (𝜏𝜏3 and 𝜏𝜏4). Thus, 
the relative biases of estimators based on 𝐿𝐿-moments are essentially negligible 
compared to those associated with the estimators based on product moments. Also, 
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it can be verified that the standard errors associated with the estimates (𝜏̂𝜏3 and 𝜏̂𝜏4) 
are relatively much smaller than the standard errors associated with the estimates 
(𝛾𝛾�3 and 𝛾𝛾�4). 

Inspection of the graphs in Fig. 5 (Panels A and B) and the Monte Carlo 
simulation results in Tables 4 and 5 indicate that the 𝐿𝐿-moment based procedure is 
superior to product moment-based procedure in terms of fitting data and estimation 
of parameters.  

 
5  𝑳𝑳-Correlations for the Double-Uniform-PM and Double-

Triangular-PM Distributions 
Let 𝑌𝑌𝑗𝑗  and 𝑌𝑌𝑘𝑘  be two random variables with cdf s 𝐹𝐹(𝑌𝑌𝑗𝑗)  and 𝐹𝐹(𝑌𝑌𝑘𝑘) 

respectively. The second 𝐿𝐿-moments of 𝑌𝑌𝑗𝑗 and 𝑌𝑌𝑘𝑘 can be defined as [37]: 
 

𝜆𝜆2�𝑌𝑌𝑗𝑗� = 2𝐶𝐶𝐶𝐶𝐶𝐶 �𝑌𝑌𝑗𝑗 ,𝐹𝐹�𝑌𝑌𝑗𝑗�� 

 
(39) 

 
 

𝜆𝜆2(𝑌𝑌𝑘𝑘) = 2𝐶𝐶𝐶𝐶𝐶𝐶�𝑌𝑌𝑘𝑘,𝐹𝐹(𝑌𝑌𝑘𝑘)�. 
 

(40) 
 

The second 𝐿𝐿-comoment of 𝑌𝑌𝑗𝑗 towards 𝑌𝑌𝑘𝑘 and 𝑌𝑌𝑘𝑘 towards 𝑌𝑌𝑗𝑗 are given as:  
 

𝜆𝜆2�𝑌𝑌𝑗𝑗 ,𝑌𝑌𝑘𝑘� = 2𝐶𝐶𝐶𝐶𝐶𝐶 �𝑌𝑌𝑗𝑗 ,𝐹𝐹(𝑌𝑌𝑘𝑘)� 

 
(41) 

 
 

𝜆𝜆2�𝑌𝑌𝑘𝑘,𝑌𝑌𝑗𝑗� = 2𝐶𝐶𝐶𝐶𝐶𝐶 �𝑌𝑌𝑘𝑘,𝐹𝐹�𝑌𝑌𝑗𝑗��. 

 
(42) 

 
The 𝐿𝐿 -correlations of 𝑌𝑌𝑗𝑗  toward 𝑌𝑌𝑘𝑘  and 𝑌𝑌𝑘𝑘  toward 𝑌𝑌𝑗𝑗  are subsequently 

defined as: 
 

𝜂𝜂𝑗𝑗𝑗𝑗 =
𝜆𝜆2�𝑌𝑌𝑗𝑗 ,𝑌𝑌𝑘𝑘�
𝜆𝜆2�𝑌𝑌𝑗𝑗�

 

 
(43) 

 

 

𝜂𝜂𝑘𝑘𝑘𝑘 =
𝜆𝜆2�𝑌𝑌𝑘𝑘,𝑌𝑌𝑗𝑗�
𝜆𝜆2(𝑌𝑌𝑘𝑘)  

 

 
(44) 

 

The 𝐿𝐿-correlation given in (43) (or, 44) is bounded such that −1 ≤ 𝜂𝜂𝑗𝑗𝑗𝑗 ≤ 1. A 
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value of 𝜂𝜂𝑗𝑗𝑗𝑗 = 1  �or, 𝜂𝜂𝑗𝑗𝑗𝑗 = −1 �  implies that 𝑌𝑌𝑗𝑗  and 𝑌𝑌𝑘𝑘  have a strictly and 
monotonically increasing (or, decreasing) relationship. See Serfling and Xiao [37] 
for further details on the topics related with 𝐿𝐿-correlation.  

The extension of the double-uniform-PM and double-triangular-PM 
distributions to multivariate level can be achieved by specifying 𝑇𝑇 piecewise 
functions as given in (4) and/or (5) with a specified 𝐿𝐿 -correlation structure. 
Specifically, let 𝑍𝑍1, … ,𝑍𝑍𝑇𝑇  denote standard normal variables with cdfs and the 
joint pdf associated with 𝑍𝑍𝑗𝑗 and 𝑍𝑍𝑘𝑘 given by the following expressions: 

 

Φ�𝑍𝑍𝑗𝑗� = � (2𝜋𝜋)−1 2⁄ exp �−𝑣𝑣𝑗𝑗2 2⁄ �
𝑧𝑧𝑗𝑗

−∞
𝑑𝑑𝑣𝑣𝑗𝑗  

 

 
(45) 

 

 

Φ(𝑍𝑍𝑘𝑘) = � (2𝜋𝜋)−1 2⁄
𝑧𝑧𝑘𝑘

−∞
exp{−𝑣𝑣𝑘𝑘2 2⁄ } 𝑑𝑑𝑣𝑣𝑘𝑘 

 

 
(46) 

 

 

𝑓𝑓𝑗𝑗𝑗𝑗 = �2𝜋𝜋�1 − 𝑟𝑟𝑗𝑗𝑗𝑗2 �
1 2⁄

�
−1

exp �− �2�1 − 𝑟𝑟𝑗𝑗𝑗𝑗2 ��
−1
�𝑧𝑧𝑗𝑗2 + 𝑧𝑧𝑘𝑘2 − 2𝑟𝑟𝑗𝑗𝑗𝑗𝑧𝑧𝑗𝑗𝑧𝑧𝑘𝑘��. 

 

 
(47) 

 

where 𝑟𝑟𝑗𝑗𝑗𝑗 in (47) is the intermediate correlation between 𝑍𝑍𝑗𝑗 and 𝑍𝑍𝑘𝑘. The cdfs in 
(45) and (46) are considered as zero-one uniform deviates, i.e., 
Φ�𝑍𝑍𝑗𝑗�,Φ(𝑍𝑍𝑘𝑘)~𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(0, 1). These zero-one uniform deviates can be transformed 

into 𝑈𝑈~𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(−�𝜋𝜋 2⁄ ,�𝜋𝜋 2⁄ )  and  𝑇𝑇~𝑇𝑇𝑇𝑇𝑇𝑇(−√2𝜋𝜋,√2𝜋𝜋)  variates for the 
functions defined in (4) and (5) as: 

 
𝑈𝑈 = �𝜋𝜋 2⁄ (2Φ(𝑍𝑍) − 1), 

 

 
(48) 

 
 

𝑇𝑇 = �
√2𝜋𝜋 ��2Φ(𝑍𝑍) − 1� ,

√2𝜋𝜋 �1 −�2�1 −Φ(𝑍𝑍)�� ,

    for Φ(𝑍𝑍) ≤ 0.5
    for Φ(𝑍𝑍) > 0.5

  

 
(49) 

 

  
As such, the piecewise functions 𝑝𝑝(𝑈𝑈)  in (4) and 𝑝𝑝(𝑇𝑇)  in (5) can be 

considered as functions of Φ�𝑍𝑍𝑗𝑗�, or Φ(𝑍𝑍𝑘𝑘) �e. g., 𝑝𝑝𝑗𝑗 �Φ�𝑍𝑍𝑗𝑗�� or 𝑝𝑝𝑘𝑘�Φ(𝑍𝑍𝑘𝑘)��. 
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Thus, the 𝐿𝐿 -correlation of 𝑌𝑌𝑗𝑗 = 𝑝𝑝𝑗𝑗 �Φ�𝑍𝑍𝑗𝑗��  toward 𝑌𝑌𝑘𝑘 = 𝑝𝑝𝑘𝑘�Φ(𝑍𝑍𝑘𝑘)�  can be 

determined using (43) with the denominator standardized to 𝜆𝜆2�𝑌𝑌𝑗𝑗� = 1 √𝜋𝜋⁄  for 
the standard normal distribution as: 

 

𝜂𝜂𝑗𝑗𝑗𝑗 = 2√𝜋𝜋� � 𝑥𝑥𝑗𝑗 �𝑝𝑝𝑗𝑗 �Φ�𝑍𝑍𝑗𝑗���
∞

−∞

∞

−∞
Φ(𝑧𝑧𝑘𝑘) 𝑓𝑓𝑗𝑗𝑗𝑗 𝑑𝑑𝑧𝑧𝑗𝑗𝑑𝑑𝑧𝑧𝑘𝑘. 

 

 
(50) 

 

The variable 𝑥𝑥𝑗𝑗 �𝑝𝑝𝑗𝑗 �Φ�𝑍𝑍𝑗𝑗��� in (50) is the standardized piecewise function 

defined in (4) or (5) such that it has a 𝐿𝐿-location (or, mean) of zero and 𝐿𝐿-scale 
equal to that of the standard normal distribution. That is, the quantile function 𝑌𝑌𝑗𝑗 =

𝑝𝑝𝑗𝑗 �Φ�𝑍𝑍𝑗𝑗�� is standardized by a linear transformation as: 
 

𝑥𝑥𝑗𝑗 �𝑝𝑝𝑗𝑗 �Φ�𝑍𝑍𝑗𝑗��� = 𝜉𝜉 �𝑝𝑝𝑗𝑗 �Φ�𝑍𝑍𝑗𝑗�� − 𝜆𝜆1� 

 

 
(51) 

 

where 𝜆𝜆1 is the mean from (25) or (32) and 𝜉𝜉 is a constant that scales 𝜆𝜆2 in (26) 
or (33) and in the denominator of (43) to 1 √𝜋𝜋⁄  . In particular, 𝜉𝜉 for the double-
uniform-PM and double-triangular-PM distributions can be expressed as: 

 

𝜉𝜉(double−uniform−PM)  =
60√2

𝜋𝜋(20 + 3𝜋𝜋𝐶𝐶ℒ + 3𝜋𝜋𝐶𝐶ℛ)
 

 

 
(52) 

𝜉𝜉(double−triangular−PM)  =
105√2

𝜋𝜋(49 + 18𝜋𝜋𝐶𝐶ℒ + 18𝜋𝜋𝐶𝐶ℛ)
. 

 

(53) 
 

The next step is to use (50) to solve for the values of the 𝑛𝑛(𝑛𝑛 − 1)/2  
intermediate correlations �𝑟𝑟𝑗𝑗𝑗𝑗�  such that the  𝑛𝑛  specified double-uniform-PM 
and/or double-triangular-PM distributions have their specified 𝐿𝐿 -correlation 
structure. 

Analogously, the 𝐿𝐿-correlation of 𝑌𝑌𝑘𝑘 = 𝑝𝑝𝑘𝑘�Φ(𝑍𝑍𝑘𝑘)� toward 𝑌𝑌𝑗𝑗 = 𝑝𝑝𝑗𝑗 �Φ�𝑍𝑍𝑗𝑗�� 
is given as 

 

𝜂𝜂𝑘𝑘𝑘𝑘 = 2√𝜋𝜋� � 𝑥𝑥𝑘𝑘 �𝑝𝑝𝑘𝑘�Φ(𝑍𝑍𝑘𝑘)��
∞

−∞

∞

−∞
Φ�𝑧𝑧𝑗𝑗� 𝑓𝑓𝑗𝑗𝑗𝑗  𝑑𝑑𝑧𝑧𝑘𝑘𝑑𝑑𝑧𝑧𝑗𝑗 . 

 

 
 

(54) 
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Note that in general, the 𝐿𝐿 -correlation of 𝑌𝑌𝑗𝑗 = 𝑝𝑝𝑗𝑗 �Φ�𝑍𝑍𝑗𝑗��  toward 𝑌𝑌𝑘𝑘 =

𝑝𝑝𝑘𝑘�Φ(𝑍𝑍𝑘𝑘)� in (50) is not equal to the 𝐿𝐿-correlation of 𝑌𝑌𝑘𝑘 = 𝑝𝑝𝑘𝑘�Φ(𝑍𝑍𝑘𝑘)� toward 

𝑌𝑌𝑗𝑗 = 𝑝𝑝𝑗𝑗 �Φ�𝑍𝑍𝑗𝑗�� in (54). These 𝐿𝐿-correlations are equal only when the values of 

shape parameters (𝐶𝐶ℒ  and 𝐶𝐶ℛ)  associated with 𝑌𝑌𝑗𝑗 = 𝑝𝑝𝑗𝑗 �Φ�𝑍𝑍𝑗𝑗��  and 𝑌𝑌𝑘𝑘 =

𝑝𝑝𝑘𝑘�Φ(𝑍𝑍𝑘𝑘)� are equal (i.e., when the two distributions are the same). Source code 
written in Mathematica [38, 39] is provided in Algorithm 1, which shows an 
example for computing an intermediate correlation �𝑟𝑟𝑗𝑗𝑗𝑗� for a specified value of 
𝐿𝐿-correlation. The steps for simulating correlated double-uniform-PM and double-
triangular-PM distributions with specified values of 𝐿𝐿-skew (𝜏𝜏3), 𝐿𝐿-kurtosis (𝜏𝜏4), 
and with specified 𝐿𝐿-correlation structure are given in Section 6. 
 
6  The Steps for Monte Carlo Simulation with an Example 

The procedure for simulating double-uniform-PM and double-triangular-PM 
distributions with specified 𝐿𝐿-moments and 𝐿𝐿-correlations can be summarized in 
the following six steps: 

1. Specify the 𝐿𝐿-moments for 𝑇𝑇 transformations of the forms in (4) and (5), 
i.e., 𝑝𝑝1(𝑈𝑈1), … , 𝑝𝑝𝑗𝑗�𝑈𝑈𝑗𝑗�, 𝑝𝑝𝑘𝑘(𝑇𝑇𝑘𝑘), … ,𝑝𝑝𝑛𝑛(𝑇𝑇𝑛𝑛), where 𝑈𝑈𝑗𝑗 and 𝑇𝑇𝑘𝑘 are the 
functions of Φ(𝑧𝑧𝑗𝑗) and Φ(𝑧𝑧𝑘𝑘) in (48) and (49), respectively. Obtain the 
solutions for the shape parameters (𝐶𝐶ℒ and 𝐶𝐶ℛ) by simultaneously 
solving the systems of equations (27)—(28) and (34)—(35) for the 
specified values of 𝐿𝐿-skew (𝜏𝜏3) and 𝐿𝐿-kurtosis (𝜏𝜏4) for each distribution. 
Specify a 𝑛𝑛 × 𝑛𝑛 matrix of 𝐿𝐿-correlations (𝜂𝜂𝑗𝑗𝑗𝑗) for 𝑝𝑝𝑗𝑗�𝑈𝑈𝑗𝑗� toward 
𝑝𝑝𝑘𝑘(𝑇𝑇𝑘𝑘), where 𝑗𝑗 < 𝑘𝑘 ∈ {1, 2, … ,𝑛𝑛}. 

2. Compute the values of intermediate (Pearson) correlations (ICs), 𝑟𝑟𝑗𝑗𝑗𝑗, by 
substituting the value of specified 𝐿𝐿-correlation (𝜂𝜂𝑗𝑗𝑗𝑗) and the solved 
values of 𝑐𝑐 and 𝑘𝑘 from Step 1 into the left- and the right-hand sides of 
(50), respectively, and then numerically integrating (50) to solve for 𝑟𝑟𝑗𝑗𝑗𝑗. 
See Algorithm 1 for an example. Repeat this step separately for all 
𝑛𝑛(𝑛𝑛 − 1) 2⁄  pairwise combinations of ICs. 

3. Assemble the ICs computed in Step 2 into a 𝑛𝑛 × 𝑛𝑛 matrix and then 
decompose this matrix using Cholesky factorization. Note that this step 
requires the IC matrix to be positive definite.  
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4. Use elements of the matrix resulting from Cholesky factorization of Step 3 
to generate 𝑛𝑛 standard normal variables (𝑍𝑍1, … ,𝑍𝑍𝑛𝑛) correlated at the IC 
levels as follows: 

 
𝑍𝑍1 = 𝑎𝑎11𝑉𝑉1 
 

 

𝑍𝑍2 = 𝑎𝑎12𝑉𝑉1 + 𝑎𝑎22𝑉𝑉2  
⋮  
𝑍𝑍𝑗𝑗 = 𝑎𝑎1𝑗𝑗𝑉𝑉1 + 𝑎𝑎2𝑗𝑗𝑉𝑉2 + ⋯+ 𝑎𝑎𝑖𝑖𝑖𝑖𝑉𝑉𝑖𝑖 + ⋯+ 𝑎𝑎𝑗𝑗𝑗𝑗𝑉𝑉𝑗𝑗 (55) 
⋮  
𝑍𝑍𝑛𝑛 = 𝑎𝑎1𝑛𝑛𝑉𝑉1 + 𝑎𝑎2𝑛𝑛𝑉𝑉2 + ⋯+ 𝑎𝑎𝑖𝑖𝑖𝑖𝑉𝑉𝑖𝑖 + ⋯+ 𝑎𝑎𝑗𝑗𝑗𝑗𝑉𝑉𝑛𝑛 + ⋯+ 𝑎𝑎𝑛𝑛𝑛𝑛𝑉𝑉𝑛𝑛 
 

 

where 𝑉𝑉1, … ,𝑉𝑉𝑛𝑛 are independent standard normal random variables and 
where 𝑎𝑎𝑖𝑖𝑖𝑖  is the element in the 𝑖𝑖-th row and 𝑗𝑗-th column of the matrix 
resulting from Cholesky factorization of Step 3. 

5. Substitute 𝑍𝑍1, … ,𝑍𝑍𝑛𝑛 from Step 4 into the following Taylor series-based 
expansion for computing the cdf, Φ�𝑍𝑍𝑗𝑗�, of standard normal distribution 
[40] 

 
Φ�𝑍𝑍𝑗𝑗� = 0.5 + 𝜙𝜙�𝑍𝑍𝑗𝑗��𝑍𝑍𝑗𝑗 + 𝑍𝑍𝑗𝑗3 3⁄ + 𝑍𝑍𝑗𝑗5 (3 ∙ 5)⁄ + 𝑍𝑍𝑗𝑗7 (3 ∙ 5 ∙ 7)⁄

+ ⋯� 

 
 

(56) 
 

where 𝜙𝜙�𝑍𝑍𝑗𝑗� is the pdf of standard normal distribution and the absolute 
error associated with (56) is less than 8 × 10−16.  

6. Substitute the uniform (0, 1) variables, Φ�𝑍𝑍𝑗𝑗�, generated in Step 5 into 

(48) and (49) for obtaining the  𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(−�𝜋𝜋 2⁄ ,�𝜋𝜋 2⁄ ) and 
𝑇𝑇𝑇𝑇𝑇𝑇(−√2𝜋𝜋,√2𝜋𝜋) deviates, which are subsequently substituted into 𝑛𝑛 
equations of the form in (4) and (5) to generate the double-uniform-PM 
and double-triangular-PM distributions with specified values of 𝐿𝐿-skew 
(𝜏𝜏3), 𝐿𝐿-kurtosis (𝜏𝜏4), and with specified 𝐿𝐿-correlation structure. 

 
For the purpose of evaluating the proposed methodology and demonstrating the 

steps above, an example is subsequently provided to compare the 𝐿𝐿-moment-based 
𝐿𝐿 -correlation procedure with the product moment-based Pearson correlation 
procedure. Specifically, the distributions in Fig. 6 are used as a basis for a 
comparison using the specified correlation matrix in Table 6 where strong, moderate, 
and weak correlations are considered in a single matrix. Let the four distributions 
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in Fig. 6 be 𝑌𝑌1 = 𝑝𝑝1(𝑈𝑈1) , 𝑌𝑌2 = 𝑝𝑝2(𝑇𝑇2) , 𝑌𝑌3 = 𝑝𝑝3(𝑈𝑈3),  and 𝑌𝑌4 =  𝑝𝑝4(𝑇𝑇4) , 
respectively, from (4) and (5), where 𝑈𝑈1 and 𝑈𝑈3 are the functions of Φ(𝑍𝑍1) and 
Φ(𝑍𝑍3) based on (48) and 𝑇𝑇2  and 𝑇𝑇4  are the functions of Φ(𝑍𝑍2) and Φ(𝑍𝑍4) 
based on (49). The specified values of product moment-based skew (𝛾𝛾3) and 
kurtosis (𝛾𝛾4)  and 𝐿𝐿 -moment-based 𝐿𝐿 -skew (𝜏𝜏3)  and 𝐿𝐿 -kurtosis (𝜏𝜏4)  along 
with the solved values of shape parameters associated with these four distributions 
are given in Fig. 6 (Panel B). Provided in Tables 7 and 8 are the intermediate 
correlations (ICs) obtained, respectively, for the product moment-based Pearson 
correlation and 𝐿𝐿-moment-based 𝐿𝐿-correlation procedures for the distributions in 
Fig. 6. Provided in Algorithm 2 is a source code written in Mathematica [38, 39], 
which shows an example for computing ICs for the product moment-based Pearson 
correlation procedure. See Appendix for a description of methodology on 
simulating Pearson correlation based multivariate distributions. See, also Pant and 
Headrick [24, pages 6474-6475] for a detailed methodology for simulating 
correlated double-PM distributions through the method of Pearson correlation.  

Provided in Tables 9 and 10 are the results of Cholesky factorization on the IC 
matrices in Tables 7 and 8, respectively. The elements of matrices in Tables 9 and 
10 are used to generate 𝑍𝑍1, … ,𝑍𝑍4 correlated at the IC levels by making use of the 
formulae (55) in Step 4 with 𝑛𝑛 =  4. The values of  𝑍𝑍1, … ,𝑍𝑍4 are then used in (56) 
to obtain the Taylor series-based approximations of the cdf s Φ(𝑍𝑍1) , Φ(𝑍𝑍2), 
Φ(𝑍𝑍3), and Φ(𝑍𝑍4), which are treated as 𝑈𝑈(0, 1). These zero-one uniform deviates 
are substituted into (48) and (49) to obtain the 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(−�𝜋𝜋 2⁄ ,�𝜋𝜋 2⁄ )  and 
𝑇𝑇𝑇𝑇𝑇𝑇(−√2𝜋𝜋,√2𝜋𝜋) variates, which are finally substituted into (4) and (5) to generate 
the four distributions in Figure 6 that are correlated at the specified correlation level 
of Table 6.  

For the Monte Carlo simulation, a Fortran [35] algorithm was written for both 
procedures to generate 25,000 independent sample estimates for the specified 
parameters of (a) product moment-based skew (𝛾𝛾3), kurtosis (𝛾𝛾4), and Pearson 
correlation (𝜌𝜌𝑗𝑗𝑗𝑗), and (b) 𝐿𝐿-moment-based 𝐿𝐿-skew (𝜏𝜏3), 𝐿𝐿-kurtosis (𝜏𝜏4), and 𝐿𝐿-
correlation (𝜂𝜂𝑗𝑗𝑗𝑗) based on samples of sizes 𝑛𝑛 =  25 and 𝑛𝑛 =  500. The estimates 
of 𝛾𝛾3 and 𝛾𝛾4 were computed using the Fisher’s 𝑘𝑘-statistics formulae [33, pages 
47-48], which are currently used by most commercial software packages such as 
SAS, SPSS, Minitab, etc., for computing the values of skew and kurtosis (where 
𝛾𝛾3,4 = 0 for the standard normal distribution). The estimate for 𝜌𝜌𝑗𝑗𝑗𝑗 was based on 
the usual formula for the Pearson correlation statistic. The estimate of  𝜂𝜂𝑗𝑗𝑗𝑗 was 
computed by substituting (39) and (41) into (43), where the empirical forms of the 
cdfs were used in (39) and (41). The sample estimates 𝜌𝜌𝑗𝑗𝑗𝑗 and 𝜂𝜂𝑗𝑗𝑗𝑗  were both 
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transformed using Fisher’s  𝑧𝑧′  transformations. Bias-corrected accelerated 
bootstrapped average estimates (Estimate), associated 95% confidence intervals 
(95% C. I.), and standard errors (SE) were obtained for the estimates associated with 

the parameters �𝛾𝛾3,4, 𝜏𝜏3,4, 𝑧𝑧�𝜌𝜌𝑗𝑗𝑗𝑗�
′ , 𝑧𝑧�𝜂𝜂𝑗𝑗𝑗𝑗�

′ �  using 10,000 resamples via the 

commercial software package TIBCO Spotfire S+ [36]. The bootstrap results 
associated with the estimates of  𝑧𝑧�𝜌𝜌𝑗𝑗𝑗𝑗�

′  and  𝑧𝑧�𝜂𝜂𝑗𝑗𝑗𝑗�
′  were transformed back to 

their original metrics. Further, if a parameter was outside its associated 95% C.I., 
then an index of relative bias (RB%) was computed for the estimate using (38). The 
results of this simulation are presented in Tables 4, 5, 11, 12, and are discussed in 
the next section. 
 
Table 6. Specified correlations for the four distributions in Figure 6.  
Distribution 1 2 3 4 

1 1.0    
2 0.75 1.0   
3 0.65 0.45 1.0  
4 0.55 0.40 0.35 1.0 

 
Table 7. Intermediate correlations for the product moment-based Pearson correlation 
procedure.  
 1 2 3 4 

1 1.0    
2 0.815205 1.0   
3 0.780825 0.567608 1.0  
4 0.756481 0.550618 0.466007 1.0 

 
Table 8. Intermediate correlations for the 𝐿𝐿-moment-based 𝐿𝐿-correlation procedure.  
 1 2 3 4 

1 1.0    
2 0.753655 1.0   

3 0.654484 0.419888 1.0  

4 0.554824 0.372290 0.341364 1.0 
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Table 9. Cholesky decomposition on the intermediate correlations matrix of Table 7. 
𝑎𝑎11 = 1.0 𝑎𝑎12 = 0.815205 𝑎𝑎13 = 0.780825 𝑎𝑎14 = 0.756481 

𝑎𝑎21 = 0.0 𝑎𝑎22 = 0.579173 𝑎𝑎23 = −0.119004 𝑎𝑎24 = −0.114075 

𝑎𝑎31 = 0.0 𝑎𝑎32 = 0.0 𝑎𝑎33 = 0.613311 𝑎𝑎34 = −0.225412 

𝑎𝑎41 = 0.0 𝑎𝑎42 = 0.0 𝑎𝑎43 = 0.0 𝑎𝑎44 = 0.603252 

 
Table 10. Cholesky decomposition on the intermediate correlations matrix of Table 8. 

𝑎𝑎11 = 1.0 𝑎𝑎12 = 0.753655 𝑎𝑎13 = 0.654484 𝑎𝑎14 = 0.554824 

𝑎𝑎21 = 0.0 𝑎𝑎22 = 0.657271 𝑎𝑎23 = −0.111623 𝑎𝑎24 = −0.069768 

𝑎𝑎31 = 0.0 𝑎𝑎32 = 0.0 𝑎𝑎33 = 0.747791 𝑎𝑎34 = −0.039513 

𝑎𝑎41 = 0.0 𝑎𝑎42 = 0.0 𝑎𝑎43 = 0.0 𝑎𝑎44 = 0.828095 

 
7  Discussion and Conclusion  
 

The advantages of 𝐿𝐿-moment-based procedure over the product moment-based 
procedure can be expressed in the context of fitting real-world data, estimation of 
parameters, and simulating correlated non-normal distributions with specified 
correlations.  

One of the advantages of 𝐿𝐿-moment-based procedure can be highlighted in the 
context of fitting real-world data. Comparison of the two distributions in Figure 5 
(Panels A and B) clearly indicates that 𝐿𝐿 -moment-based double-triangular-PM 
distribution (Fig. 5, Panel B) provides a better fit to the Thigh circumference data, 
whereas the product moment-based double-triangular-PM distribution (Fig. 5, Panel 
A) does not provide a good fit to the data. 

Another advantage of the 𝐿𝐿-moment-based procedure over product moment-
based procedure can be expressed in the context of estimation. The 𝐿𝐿-moment-
based estimators of 𝐿𝐿-skew and 𝐿𝐿-kurtosis can be far less biased than the product 
moment based estimators of skew and kurtosis when samples are drawn from the 
distributions with more severe departures from normality [22-24, 29-31, 32, 34]. 
Inspection of the simulation results in Tables 4 and 5 clearly indicates the 
superiority that estimates (𝜏̂𝜏3 and 𝜏̂𝜏4) of 𝐿𝐿-skew (𝜏𝜏3) and 𝐿𝐿-kurtosis (𝜏𝜏4) have 
over their corresponding product moment-based estimates (𝛾𝛾�3 and 𝛾𝛾�4) of skew 
(𝛾𝛾3) and kurtosis (𝛾𝛾4)  in terms of less bias and dispersion in the context of 
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double-uniform-PM and double-triangular-PM distributions. For example, for 
samples of size 𝑛𝑛 =  25, the estimates 𝜏̂𝜏3  and 𝜏̂𝜏4  for Distribution 4 were, on 
average, 96.46% and 103.13% of their corresponding parameters, whereas the 
estimates 𝛾𝛾�3 and 𝛾𝛾�4 were 80.72% and 65.47% of their corresponding parameters.  

Another advantage that 𝐿𝐿 -moment-based estimates have over their product 
moment-based counterparts can be expressed by comparing their relative standard 
errors (RSEs) defined as RSE = {(SE/Estimate) × 100}. Comparing Tables 4 and 
5, it is evident that the estimates of 𝜏𝜏3 and 𝜏𝜏4 are more efficient as their RSEs are 
considerably smaller than the RSEs associated with the product moment-based 
estimates of 𝛾𝛾3  and 𝛾𝛾4 . For example, in terms of Distribution 4 in Figure 6, 
inspection of Tables 4 and 5 (for 𝑛𝑛 =  500), indicates that RSE measures of: 
RSE (𝜏̂𝜏3) = 0.017% and RSE (𝜏̂𝜏4) = 0.044% are considerably smaller than the 
RSE measures of: RSE (𝛾𝛾�3) = 0.054% and RSE (𝛾𝛾�4) = 0.135%. Additionally, 
in terms of distribution in Fig. 2A, inspection of Tables 1 and 2 (for 𝑛𝑛 =  25), 
indicates that RSE measures of: RSE (𝜏̂𝜏3) = 0.185%  and RSE (𝜏̂𝜏4) = 0.262% 
are considerably smaller than the RSE measures of: RSE (𝛾𝛾�3) = 0.235%  and 
RSE (𝛾𝛾�4) = 0.753% . This demonstrates that the estimates of 𝐿𝐿 -skew and 𝐿𝐿 -
kurtosis have higher precision compared to estimates of skew and kurtosis because 
the former have less variance around their bootstrapped estimates than the latter. 

Presented in Tables 11 and 12 are the simulation results of product moment-
based Pearson correlations and 𝐿𝐿-correlations, respectively. Overall inspection of 
these tables indicates that the 𝐿𝐿-correlation is superior to Pearson correlation in 
terms of relative bias. For example, for 𝑛𝑛 =  25, the relative bias for the two 
distributions, Distributions 1 and 4, in Figure 6 was  6.78% for the Pearson 
correlation compared with only 2.11% for the 𝐿𝐿-correlation. It is also noted that the 
variability associated with bootstrapped estimates of 𝐿𝐿-correlation appears to be 
more stable than that of the bootstrapped estimates of Pearson correlation both 
within and across different conditions.  

In summary, the new 𝐿𝐿-moment-based procedure is an attractive alternative to 
the more traditional product moment-based procedure in the context of the two 
families of double-uniform-PM and double-triangular-PM distributions. In 
particular, the 𝐿𝐿 -moment-based procedure has distinct advantages when 
distributions with large departures from normality are used. Finally, we note that 
Mathematica [38, 39] source codes are available from the authors for implementing 
both the 𝐿𝐿-moment- and product moment-based procedures.  
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(* Intermediate Correlation *) 
𝑟𝑟34 = 0.341364; 
 
𝑓𝑓34 = PDF[MultinormalDistribution[{0, 0}, {{1, 𝑟𝑟34}, {𝑟𝑟34, 1}}], {𝑍𝑍3, 𝑍𝑍4}]; 
Φ3 = CDF[NormalDistribution[0, 1], 𝑍𝑍3]; 
Φ4 = CDF[NormalDistribution[0, 1], 𝑍𝑍4]; 
 
(* Shape parameters for Distribution 3 in Fig. 6 (Panel A). The values of 𝐿𝐿-location (𝜆𝜆1) 
and the normalizing constant (𝜉𝜉1) were based on equations (25) and (52) *) 
𝐶𝐶ℒ = 1.844870; 
𝐶𝐶ℛ = 23.123476; 
𝜆𝜆1 = 5.236402; 
𝜉𝜉1 = 0.105786; 
 
𝑋𝑋3 = �𝜋𝜋 2⁄ (2Φ3 − 1) 
𝑌𝑌𝑌𝑌3 = 𝑋𝑋3 + 𝐶𝐶ℒ ∗ 𝑋𝑋33; 
𝑌𝑌𝑌𝑌3 = 𝑋𝑋3 + 𝐶𝐶ℛ ∗ 𝑋𝑋33; 
 
(* The piecewise function based on equation (4), which is Distribution 3 in Fig. 6 (Panel A) 
*) 
 
𝑌𝑌3 = Piecewise[{{𝑌𝑌𝑌𝑌3,𝑋𝑋3 ≤ 0}, {𝑌𝑌𝑌𝑌3,𝑋𝑋3 > 0}}]; 
 
(* Standardize Distribution 3 in Fig. 6 (Panel A) *) 
 
𝑥𝑥3 = 𝜉𝜉1 ∗ (𝑌𝑌3 − 𝜆𝜆1); 
 
(* Compute the specified 𝐿𝐿-correlation *) 
 
𝜂𝜂34 = 2√𝜋𝜋 ∗ NIntegrate[ 𝑥𝑥3 ∗ Φ4 ∗ 𝑓𝑓34 , { 𝑍𝑍3 , − 8, 8},  { 𝑍𝑍4 , − 8, 8}, Method → 
MultiDimensional]  
 
0.349999 
 
Algorithm 1. Mathematica algorithm for computing intermediate correlations (ICs) for 
specified values of 𝐿𝐿-correlations. The example is for 𝐿𝐿-correlation of Distribution 𝑗𝑗 = 3 
toward Distribution 𝑘𝑘 = 4 (𝜂𝜂34). See Distributions 3 and 4 in Fig. 6 (Panel A), specified 
correlation in Table 6, and intermediate correlation in Table 8. 
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(* Intermediate Correlation *) 
𝑟𝑟34 = 0.466007; 
 
𝑓𝑓34 = PDF[MultinormalDistribution[{0, 0}, {{1, 𝑟𝑟34}, {𝑟𝑟34, 1}}], {𝑍𝑍3, 𝑍𝑍4}]; 
Φ3 = CDF[NormalDistribution[0, 1], 𝑍𝑍3]; 
Φ4 = CDF[NormalDistribution[0, 1], 𝑍𝑍4]; 
 
(* Parameters for Distributions 3 and 4 in Fig. 6 (Panel A) *) 
𝐶𝐶ℒ3 = 1.844870; 
𝐶𝐶ℛ3 = 23.123476; 
𝜇𝜇3 = 5.236402; 
𝜎𝜎3 = 11.592811; 
𝐶𝐶ℒ4 = 1.538219; 
𝐶𝐶ℛ4 = 17.976736; 
𝜇𝜇4 = 12.945011; 
𝜎𝜎4 = 36.424664; 
𝑋𝑋3 = �𝜋𝜋 2⁄ (2Φ3 − 1); 
𝑋𝑋4 = Piecewise[{{√2𝜋𝜋(�2Φ4 − 1),Φ4 ≤ 0.5}, {√2𝜋𝜋(1−�2(1 −Φ4)),Φ4 > 0.5}}]; 
𝑌𝑌𝑌𝑌3 = 𝑋𝑋3 + 𝐶𝐶ℒ3 ∗ 𝑋𝑋33; 
𝑌𝑌𝑌𝑌3 = 𝑋𝑋3 + 𝐶𝐶ℛ3 ∗ 𝑋𝑋33; 
𝑌𝑌𝑌𝑌4 = 𝑋𝑋4 + 𝐶𝐶ℒ4 ∗ 𝑋𝑋43; 
𝑌𝑌𝑌𝑌4 = 𝑋𝑋4 + 𝐶𝐶ℛ4 ∗ 𝑋𝑋43; 
(* Distributions 3 and 4 in Fig. 6 (Panel A) based on equations (4) and (5) *) 
𝑌𝑌3 = Piecewise[{{𝑌𝑌𝑌𝑌3,𝑋𝑋3 ≤ 0}, {𝑌𝑌𝑌𝑌3,𝑋𝑋3 > 0}}]; 
𝑌𝑌4 = Piecewise[{{𝑌𝑌𝑌𝑌4,𝑋𝑋4 ≤ 0}, {𝑌𝑌𝑌𝑌4,𝑋𝑋4 > 0}}]; 
 
(* Standardize each distribution *) 
𝑥𝑥3 = (𝑌𝑌3 − 𝜇𝜇3)/𝜎𝜎3; 
𝑥𝑥4 = (𝑌𝑌4 − 𝜇𝜇4)/𝜎𝜎4; 
 
(* Compute the specified product moment-based Pearson correlation *) 
𝜌𝜌34 = NIntegrate[𝑥𝑥3 ∗ 𝑥𝑥4 ∗ 𝑓𝑓34, {𝑍𝑍3,−8, 8}, {𝑍𝑍4,−8, 8}, Method → MultiDimensional] 
 
0.35 
 
Algorithm 2. Mathematica algorithm for computing intermediate correlations (ICs) for 
specified product moment-based Pearson correlations. The example is for Pearson 
correlation between Distribution 𝑗𝑗 = 3  and Distribution 𝑘𝑘 = 4  ( 𝜌𝜌34 ). See pdfs of 
Distributions 3 and 4 in Fig. 6 (Panel A), specified correlation in Table 6, and intermediate 
correlation in Table 7. 
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Table 11. Specified correlations, their corresponding bootstrap estimates, associated 95% 
confidence intervals (95% C.I.), and standard errors (SE) for the product moment-based 
Pearson correlations. Each bootstrap estimate is based on resampling 25000 statistics. Each 
statistic is based on sample sizes of 25 and 500. 

 
Parameter Estimate 95% C.I. SE RB% 

𝑛𝑛 =  25 

𝜌𝜌12 = 0.75 0.7641 (0.7630,  0.7649) 0.00117 1.88 

𝜌𝜌13 = 0.65 0.6627 (0.6614,  0.6640) 0.00116 1.95 

𝜌𝜌14 = 0.55 0.5873 (0.5860,  0.5888) 0.00108 6.78 

𝜌𝜌23 = 0.45 0.4680 (0.4656,  0.4701) 0.00146 4.00 

 𝜌𝜌24 = 0.40 0.4262 (0.4237,  0.4288) 0.00157 6.55 

𝜌𝜌34 = 0.35 0.3770 (0.3737,  0.3803) 0.00198 7.71 

𝑛𝑛 =  500 

𝜌𝜌12 = 0.75 0.7506 (0.7504,  0.7508) 0.00025 0.08 

𝜌𝜌13 = 0.65 0.6501 (0.6498,  0.6503) 0.00024 ----- 

𝜌𝜌14 = 0.55 0.5515 (0.5512,  0.5518) 0.00022 0.27 

𝜌𝜌23 = 0.45 0.4503 (0.4498,  0.4508) 0.00030 ----- 

 𝜌𝜌24 = 0.40 0.4009 (0.4003,  0.4015) 0.00034 0.23 

𝜌𝜌34 = 0.35 0.3506 (0.3499,  0.3513) 0.00041 ----- 
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Table 12. Specified correlations, their bootstrap estimates along with associated 95% 
confidence intervals (95% C.I.) and standard errors (SE) for the 𝐿𝐿 -moment-based 𝐿𝐿 -
correlation procedure. Each bootstrap estimate is based on resampling 25000 statistics. 
Each statistic is based on sample sizes of 25 and 500. 

 
Parameter Estimate 95% C.I. SE RB% 

𝑛𝑛 =  25 

𝜂𝜂12 = 0.75 0.7610 (0.7597,  0.7621) 0.00143 1.47 

𝜂𝜂13 = 0.65 0.6616 (0.6601,  0.6632) 0.00140 1.78 

𝜂𝜂14 = 0.55 0.5616 (0.5595,  0.5634) 0.00142 2.11 

𝜂𝜂23 = 0.45 0.4603 (0.4578,  0.4627) 0.00161 2.29 
 𝜂𝜂24 = 0.40 0.4065 (0.4039,  0.4091) 0.00159 1.63 

𝜂𝜂34 = 0.35 0.3651 (0.3619,  0.3681) 0.00179 4.31 

𝑛𝑛 =  500 

𝜂𝜂12 = 0.75 0.7504 (0.7502,  0.7507) 0.00030 0.05 

𝜂𝜂13 = 0.65 0.6499 (0.6496,  0.6503) 0.00030 ----- 

𝜂𝜂14 = 0.55 0.5505 (0.5501,  0.5509) 0.00029 0.09 

𝜂𝜂23 = 0.45 0.4502 (0.4496,  0.4507) 0.00033 ----- 
 𝜂𝜂24 = 0.40 0.4001 (0.3996,  0.4007) 0.00034 ----- 

𝜂𝜂34 = 0.35 0.3500 (0.3495,  0.3507) 0.00036 ----- 
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Appendix 
Pearson Correlation Based Procedure for Double-Uniform-PM and Double-
Triangular-PM Distributions 
 

Let 𝑈𝑈𝑗𝑗  and 𝑇𝑇𝑘𝑘  be two 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(−�𝜋𝜋 2⁄ ,�𝜋𝜋 2⁄ )  and 𝑇𝑇𝑇𝑇𝑇𝑇(−√2𝜋𝜋,√2𝜋𝜋) 
variates of the forms (48) and (49), respectively, where Φ𝑗𝑗 and Φ𝑘𝑘 are the cdfs 
associated with standard normal variables  𝑍𝑍𝑗𝑗 and 𝑍𝑍𝑘𝑘. Let 𝑝𝑝�𝑈𝑈𝑗𝑗� and 𝑝𝑝(𝑇𝑇𝑘𝑘) be 
two random variables of the forms (4) and (5) that are based on 𝑈𝑈𝑗𝑗  and 𝑇𝑇𝑘𝑘 , 
respectively, and are correlated at the specified Pearson correlation level of 𝜌𝜌𝑗𝑗𝑗𝑗. 
Let 𝑍𝑍𝑗𝑗 and 𝑍𝑍𝑘𝑘 be correlated at the intermediate correlation level of 𝑟𝑟𝑗𝑗𝑘𝑘, with the 
joint pdf given by (47). The specified Pearson correlation 𝜌𝜌𝑗𝑗𝑗𝑗  between 𝑝𝑝�𝑈𝑈𝑗𝑗� 
and 𝑝𝑝(𝑇𝑇𝑘𝑘) is given by  

 

𝜌𝜌𝑗𝑗𝑗𝑗 = 𝐶𝐶𝐶𝐶𝐶𝐶 ��
𝑝𝑝�𝑈𝑈𝑗𝑗� − 𝜇𝜇𝑗𝑗

𝜎𝜎𝑗𝑗
� ,�

𝑝𝑝(𝑇𝑇𝑘𝑘) − 𝜇𝜇𝑘𝑘
𝜎𝜎𝑘𝑘

�� 

 

        = � � �
𝑝𝑝�𝑈𝑈𝑗𝑗� − 𝜇𝜇𝑗𝑗

𝜎𝜎𝑗𝑗
��

𝑝𝑝(𝑇𝑇𝑘𝑘) − 𝜇𝜇𝑘𝑘
𝜎𝜎𝑘𝑘

�  𝑓𝑓𝑗𝑗𝑗𝑗 𝑑𝑑𝑧𝑧𝑗𝑗
+∞

−∞

+∞

−∞
𝑑𝑑𝑧𝑧𝑘𝑘  

 
 
 
(A.1) 

 
where 𝜇𝜇𝑗𝑗  and 𝜇𝜇𝑘𝑘  are the means, and 𝜎𝜎𝑗𝑗  and 𝜎𝜎𝑘𝑘  are the standard deviations 
associated with 𝑝𝑝�𝑈𝑈𝑗𝑗� and 𝑝𝑝(𝑇𝑇𝑘𝑘), which can be obtained from equations (7) and 
(12), and (8) and (13), respectively. Also, note that 𝑝𝑝�𝑈𝑈𝑗𝑗�  and 𝑝𝑝(𝑇𝑇𝑘𝑘) can be 
expressed as piecewise functions in Mathematica [39] source code as in Algorithm 
2. 

Substituting the value of specified correlation, 𝜌𝜌𝑗𝑗𝑗𝑗, on the left-hand side and 
solved values of 𝐶𝐶ℒ  and 𝐶𝐶ℛ  together with the values of means and standard 
deviations and equation (47) on the right-hand side of (A.1) and subsequently 
integrating (A.1) for 𝑛𝑛(𝑛𝑛 − 1) 2⁄  intermediate correlations 𝑟𝑟𝑗𝑗𝑗𝑗  so that 𝑛𝑛 
specified double-uniform-PM and double-triangular-PM distributions also have a 
specified correlation structure. 
 


