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Abstract

In this paper, a prey-predator system incorporating prey refuge

and predator cannibalism is studied. The stability and ultimate bound-

edness of the analyzed state parameters (y1, y2) defining the system

are obtained using the Lyapunov’s second or direct method. We con-

struct a suitable complete Lyapunov function for the nonlinear sys-

tem and demonstrate its efficacy. The method is built upon applying

various theoretical Lyapunov functions. By constructing a Lyapunov

function which possesses a functional relationship to the the original

model system, we give sufficient conditions which ensure the stability

and ultimate boundedness of the state parameters describing the non-

linear prey-predator system. We give a numeric example to illustrate

the result obtained.
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1 Introduction

In the last two decades, studies on the dynamic behaviors of predator-prey

species have received more remarkable attention in [5, 6, 7, 8, 12, 15, 17, 27,

29, 30] and the references cited therein. This dynamic relationship between

predator and prey is one of the most crucial relationship that has existed

between two populations in ecological systems because of its universal exis-

tence and significance. See Berryman [2]. Prey refuge plays a substantial

role on the co-existence of the prey-predator relationship. Some reported

results have shown that prey refuge can enhance the dynamical behaviour of

prey-predator systems. see [11, 14, 18, 24]. Consequently, this could bring

about cannibalism amongst the predators. However, the existence of both

refuge amongst the preys and cannibalism amongst the predators serve as a

stabilizing mechanism on the prey-predator systems if certain conditions on

the parameters describing the predator-prey system will hold.

As a new development which is fast growing in the recent years, cannibalism

as a special factor in social life population nature has attracted the interest of

many researchers. See [13, 23, 25, 26]. Studies have shown clearly that canni-

balism has a significant effect on the dynamic behaviors of model describing

populations [25-26]. We observe that the qualitative analysis of parameters

describing such system are very complicated to analyze. For example, Mag-

nusson [20] proposed and analyzed the destabilizing effect of cannibalism in

a structure prey-predator model. Zhang et al [31] investigated a diffusive

predator-prey models with predator cannibalism. Also, Deng et al [10] in-

vestigated a predator-prey model incorporating cannibalism with predator

nonlinear cannibalism. Deng et al [10] investigated the global asymptomatic
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stability of the systems in [10] which has both positive and negative effect

on the system and hence significant effect on the dynamic behaviors of the

system. The results extended the result of Basheer et al [1]. Much more

complicated still is the predator-prey model incorporating predator canni-

balism and prey-refuge. Most of the studies mentioned above used numerical

simulation and simple mathematical analysis while just few like Zhang et al

[31], Deng et al [10] and Ma et al [19] in addition used suitable Lyapunov’s

function to obtain conditions for the stability of the boundary equilibria of

the model system under consideration. These are interesting studies since

the results showed that either predator cannibalism or prey refuge severally

has positive and negative effect on the stability of the system.

This paper is concerned with problem of asymptotic stability and ultimate

boundedness of the parameters defining the prey refuge and predator canni-

balism of the Lokta Volterra Prey-Predator model of the form

ẏ1 = by1 − ay2
1 − eΦ(y1, y2) + λG(y1)

ẏ2 = −εy2 + ρy2 + gy1y2 − µF (y2)
(1)

where y1 and y2 are the densities of the prey and the predator at time

t, respectively; ρ is the birth rate from the predator cannibalism, ε is the

death rate of the predator, ρ > ε; a and b are intraspecific competition and

intrinsic growth rate of the prey respectively; e is the strength intraspecific

interaction between prey and predator, g is the conversion efficiency of in-

gested prey into a new predator; λ is the rate at which the prey get protection

from their refuge and µ is the rate of cannibalism. The continuous functions

λG(y1), µF (y2) and eΦ(y1, y2) are the prey refuge, predator cannibalism and

competitive interaction between predator and prey respectively and the con-
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stants a, b, ρ, ε, e, g, λ, µ are positive.

Analysis of qualitative behaviors of state parameters (y1, y2) describing such

prey-predator model is usually complicated. The difficulty increases depend-

ing on the assumption made on the nonlinear functions Φ, G, F and the

requirement for a complete Lyapunov function. The Lyapunov functionals

used in Zhang et al [31], Deng et al [10] and Ma et al [19] and others mentioned

therein do not possess a functional relationship to the original model consid-

ered and the effect of continuous nonlinear functions eΦ(y1, y2) showing the

competitive interaction between prey and predator and λG(y1), µF (y2) the

prey refuge and cannibalism of the predator respectively raised this present

analysis where a complete Lyapunov function is constructed which possess

a functional relationship to same original predator-prey model system under

consideration. The role which Lyapunov theory [16] plays in the analysis of

stability and boundedness of dynamical systems and models of natural phe-

nomena remains undisputed. Though it goes without saying that stability

and boundedness are very important problem of dynamical systems, Lya-

punov’s theory is less visible. Lyapunov’s second (or direct) method allows us

to predict the stability in the large and boundedness behavior of parameters

describing the systems of prey-predator models without any prior knowledge

of the solutions. Lyapunov functional approach remains an excellent tool in

the study of dynamical systems. see (Qin et al [22], Biryuk et al [3], Olutimo

and Omoko [21]). However, the construction of these Lyapunov functional is

indeed a general problem. ([4], [9], [28]).

Our motivation comes from the papers by Zhang et al [31], Deng et al [10]

and Ma et al [19]. We obtain sufficient conditions for the asymptotic stabil-

4



ity and ultimate boundedness of (y1, y2)) that affect the dynamic behaviors

of the Lokta Volterra Prey Predator model (1). The result obtained indeed

becomes critical since the existence of both refuge amongst the preys and

cannibalism amongst the predators play a significant role in determining the

dynamic behavior of the prey-predator system (1). The result obtained is not

only new but provide for the development of more general formulation. Also,

numeric example and geometric argument are given to support our findings

on the dynamic behaviours of the system.

2 Stability Analysis

Theorem 1. In addition to the basic assumptions imposed on functions

Φ(y1, y2), G(y1) and F (y2) appearing in (1) and are continuous for all y1, y2,

we further suppose that the functions Φ(0, 0) = 0, G(0) = 0 and F (0) = 0.

We assume that there exist positive constants m, ν and l1, l2 such that the

following conditions hold:

(i) Φ(y1,y2)
y1

≥ ν, y1 6= 0

(ii) Φ(y1,y2)
y2

≥ m, y2 6= 0

(iii)
∫ y2

0
Φy1(y1, ξ)dξ ≤ 0,

(iv) | y1
a+λ
| ≤ l1, |y1

b
| ≤ l2, l1 > l2.

Then, the analyzed state parameters (y1, y2) describing the system (1) are

asymptotically stable as t→∞ if

e

b
ν + al1 > 1
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and

ρ− ε
a+ λ

+
g

ae+ µ
> gl2. (2)

Proof:

Our main tool in the proof of the result is the scalar function V = V (y1, y2)

defined as

V (y1, y2) =
1

2b
y2

1 +
1

2(a+ λ)
y2

2 +
g

ae+ µ

∫ y2

0

Φ(y1, ξ)dξ (3)

From (3), we see that Φ(0, 0) = 0.

By the hypothesis (ii) of Theorem 1, we have∫ y2

0

(Φ(y1, ξ)dξ ≥ my2
2

It follows that

V (y1, y2) ≥ 1

2b
y2

1 +

(
1

2(a+ λ)
+

gm

ae+ µ

)
y2

2.

It is obvious that the function V defined in (3) is a positive definite function,

that is,

V (y1, y2) ≥ ζ(y2
1 + y2

2), (4)

where ζ = min 1
2
{1
b
, ( 1

(a+λ)
+ 2gm

ae+µ
)}.

Now, we consider the case where (1) is homogeneous, that is, λG(y1) = 0,

µF (y2) = 0. The derivative of function V (y1, y2) in (3) along system (1) with

respect to t after simplification gives:
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dV (y1, y2)

dt
= y2

1 − a
y1

b
y2

1 −
e

b
y1Φ(y1, y2)− 1

a+ λ
(ρ− ε)y2

2

+ g
y1

a+ λ
y2

2 +
g

ae+ µ

∫ y2

0

Φy1(y1, ξ)dξ +
g

ae+ µ
y2Φ(y1, y2)

dV (y1, y2)

dt
= y2

1 −
e

b

Φ(y1, y2)

y1

y2
1 −

1

a+ λ
(ρ− ε)y2

2 − a
∣∣∣∣y1

b

∣∣∣∣y2
1 + g

∣∣∣∣ y1

a+ λ

∣∣∣∣y2
2

+
g

ae+ µ

∫ y2

0

Φy1(y1, ξ)dξ +
g

ae+ µ

Φ(y1, y2)

y2

y2
2

Using the hypothesis (i), (ii) and (iv) of Theorem 1, we have,

dV (y1, y2)

dt
≤ y2

1 −
e

b
νy2

1 −
1

a+ λ
(ρ− ε)y2

2

− al1y
2
1 + gl2y

2
2 +

g

ae+ µ
my2

2

dV (y1, y2)

dt
≤ −(

e

b
ν + al1 − 1)y2

1 − (
ρ− ε
a+ λ

+
g

ae+ µ
− gl2)y2

2

Since (2) is satisfied, we have that

dV (y1, y2)

dt
≤ −δ1y

2
1 − δ2y

2
2

≤ −η(y2
1 + y2

2), (5)

for some δ1 > 0, δ2 > 0, where η = min{δ1, δ2}.

It follows that

dV (y1, y2)

dt
≤ 0.

The proof of Theorem 1 is complete.
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3 Boundedness Analysis

As in Theorem 1, the boundedness analysis of the state parameters (y1, y2),

describing the system (1) depends on the scalar differentiable Lyapunov func-

tion V (y1, y2) defined in (3). Here, we consider the heterogenous case where

λG(y1) 6= 0 and µF (y2) 6= 0 in (1).

Theorem 2. Let all the conditions of Theorem 1 be satisfied and in addition

we assume that there exist a positive constants q, n such that the following

hold:

(i) |G(y1)| ≤ q;

(ii) |F (y2)| ≤ n,

uniformly for all y1, y2. Then, there exist a constant D > 0 such that the state

parameters (y1(t), y2(t)) describing system (1) uniformly ultimately satisfies

|y1(t)| ≤ D, |y2(t)| ≤ D,

for all sufficiently large t, where the magnitude ofD depends only on a, b, ε, ρ, λ, µ,m, ν, q, n

and l1, l2.

Proof: In view of (5),

dV (y1, y2)

dt
≤ −η(y2

1 + y2
2) +

1

b
λ|G(y1)|y1 +

1

a
µ|F (y2)|y2,

since ˙V (y1, y2)(5) ≤ 0 for all y1, y2.

By noting the the hypothesis of Theorem 2, we have that

dV (y1, y2)

dt
≤ −η(y2

1 + y2
2) +

1

b
λq|y1|+

1

a
µn|y2|
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So that

dV (y1, y2)

dt
≤ −η(y2

1 + y2
2) + δ3|y1|+ δ4|y2|,

where δ3 = 1
b
λq and δ4 = 1

a
µn.

dV (y1, y2)

dt
≤ −η(y2

1 + y2
2) + δ5(|y1|+ |y2|),

where δ5 = max{δ3, δ4}.

Using the fact that 2|y1||y2| ≤ y2
1 + y2

2, we have

dV (y1, y2)

dt
≤ −η(y2

1 + y2
2) +

√
2δ5(y2

1 + y2
2)

1
2 .

dV (y1, y2)

dt
≤ −η(y2

1 + y2
2) + δ6(y2

1 + y2
2)

1
2 , (6)

where δ6 =
√

2δ5.

If we choose

(y2
1 + y2

2)
1
2 ≥ δ7 = η−1δ6,

the inequality (6) implies that

dV (y1, y2)

dt
≤ −η(y2

1 + y2
2).

Then, there exist a δ8 such that

dV (y1, y2)

dt
≤ −δ8 provided (y2

1 + y2
2) ≥ δ8η

−1.

This completes the proof of Theorem 2.
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4 Numerical Example

Consider equation (1) in the form

ẏ1 = 2y1 − 4y2
1 −

1

3
(y1 +

y1

1 + y2
1

+ y2 + y2
2) +

1

2
(1 + y1)2

ẏ2 = −y2 + 3y2 +
2

5
y1y2 −

1

4

(
y2

1 + y2
2

+ 2

) (7)

It is clear that a = 4, b = 2, ε = 1, ρ = 3, e = 1
3
, g = 2

5
, λ = 1

2
, µ = 1

4
and

Φ(y1, y2) =

(
y1 +

y1

1 + y2
1

+ y2 + y2
2

)
,

G(y1) = (1 + y1)2,

F (y2) =

(
y2

1 + y2
2

+ 2

)
.

It is easy to check that the hypothesis in Theorem 1 and Theorem 2 are

satisfied since

Φ(y1, y2)

y2

≥ 1 = m

Φ(y1, y2)

y1

≥ 1 = ν

|G(y1)| ≥ 1 = q

|F (y2)| ≥ 2 = n

and if we pick l1 = 3
5

and l2 = 1
10

, then the inequalities in (2) are also satisfied

since y1 6= 0.

Hence, this shows that all the conditions of Theorem 1 and Theorem 2 are

satisfied. Thus, we conclude that analyzed state parameters (y1, y2) describ-

ing the system (7) are asymptotically stable and ultimately bounded.
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5 Stability and Boundedness Analysis of Non-

linear Prey-Predator System (7)

1. In Figure 1 and Figure 2, the population densities (y1, y2) of prey and

predator respectively defining the prey-predator model (7) are asymp-

totically stable if the conditions of Theorem 1 are satisfied. In Figure

1, the population density of prey increases as a result of refuge from

predators and and then remain stable as t→∞. In Figure 2, the pop-

ulation density of predators decreases initially as a result of prey refuge

and then increases for a time due to the increase in prey population

which remain stable as t→∞.

2. In Figure 3, visualizing how the trajectories of system (7) satisfying

the conditions of Theorem 1 tends towards (0, 0). Thus the state pa-

rameters (y1, y2) defining (7) are asymptotically stable as t→∞.

3. In Figure 3 and Figure 4, the prey and predator densities (y1, y2) de-

scribing the system (7) are ultimately bounded as t→∞. Prey refuge

and predator cannibalism significantly affect dynamic behaviours of

the system. The result obtained shows that the prey refuge and preda-

tor cannibalism must be controlled or restricted in order to achieve a

stabilized dynamic system.

Conclusion

The results obtained show that prey refuge can lead to prey cannibalism

in the long run if the ratio of prey density to growth rate and the ratio of

prey density to intraspecific competition of prey is not controlled. Thus,
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the conditions obtained then serve as a stabilizing mechanism in the prey-

predator system (7). Also, prey refuge can in the long run lead to prey

cannibalism and predator cannibalism which can lead to extinction if prey

and predator densities are not bounded by a single constant. Thus, the prey

refuge and predator cannibalism must be controlled. The result obtained

shows that even with the presence of prey refuge and predator cannibalism

the two species will be persistent.

Figure 1: The parameter y1(t) in (blue) of (7) satisfying all the conditions of

Theorem 1 as t→∞.

Figure 2: The parameter y2(t) in (red) of (7) satisfying all the conditions of

Theorem 1 for as t→∞.
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Figure 3: Visualizing how the solution paths satisfying the conditions of

Theorem 1 for the stability of y1(t), y2(t) in (7) converge to (0, 0).

Figure 4: The parameter y1(t) in (blue) of (7) satisfying the conditions of

Theorem 1 and Theorem 2 for is ultimately bounded by a single constant as

t→∞.
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Figure 5: The parameter y2(t) in (red) of (7) satisfying the conditions of

Theorem 1 and Theorem 2 for is ultimately bounded by a single constant as

t→∞.
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