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    Abstract 

 

Time fractional diffusion equation currently attracts attention because it is a 

useful tool to describe problems involving non-Markovian random walks. This kind of 

equation is obtained from the standard diffusion equation by replacing the first-order 

time derivative with a fractional derivative of order  1,0 . In this paper, two 

different implicit finite difference schemes for solving the  time fractional diffusion 

equation with source term are presented and analyzed, where the fractional derivative is 

described in the Caputo sense. Numerical experiments illustrate the effectiveness and 

stability of these two methods respectively. Further, by using the Von Neumann method, 

the theoretical proof for stability is provided. Finally, a numerical example is given to 

compare the accuracy of the two mentioned finite difference methods. 
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1. Introduction 

As an extension of the classical integer order differential equation, fractional 

differential equation is a kind of equation which is formed by changing integer order 



derivatives in a standard differential equation into fractional order derivatives. It 

provides a valuable tool for describing materials with memory and hereditary 

properties as well as non-locality and dynamic transmission process of anomalous 

diffusion[1]. Because researching fractional differential equation has important 

scientific significance and great application prospect, so finding some effective 

methods to solve it is an actual and important problem. Various ways to solve 

fractional differential equation analytically have been proposed [2], including Green 

function method, Laplace and Fourier transform method, but most of fractional 

differential equations cannot be solved analytically. Therefore, to develop numerical 

methods for solving fractional differential equation seems to be necessary and 

important. Scholars have put forward many effective numerical methods : such as 

finite difference method, finite element method, random walk approach, spectral 

method, the decomposition method, the homotopy perturbation method, the integral 

equation method, reproducing kernel method, the variational iteration method and so 

many others[3]. In this paper, we will use finite difference method to examine the 

numerical solution of one kind of important fractional differential equation----time 

fractional diffusion equation. The diffusion equation describes the spread of particles 

from a region of higher concentration to a region of lower concentration due to 

collisions of the molecules and Brownian motion. While time fractional diffusion 

equation is a generalization of the classical diffusion equation, which is obtained from 

the standard diffusion equation by replacing the first-order time derivative with a 

fractional derivative of order , with 10  . It can be used to treat sub-diffusive 



flow process, in which the net motion of the particles happens more slowly than 

Brownian motion[4]. 

Consider following time fractional diffusion equation with source term : 
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In view of the research objective of this paper, we investigate the current 

research status of time fractional diffusion equation with source term. We mainly 

focus on the discretization technique of time fractional derivative and stability proof 

method. Karatay et al.[6] proposed a method for solving inhomogeneous nonlocal 

fractional diffusion equation, in which time fractional derivative is defined by Caputo 

definition. This method was based on the modified Gauss elimination method. It was 

proved using the matrix stability approach that the method was unconditionally stable. 



Lin and Xu [7] constructed and analyzed a stable and high order scheme to efficiently 

solve the same model as Karatay et al.[6], but with the standard initial condition. The 

proposed method was based on a finite difference scheme in time and Legendre 

spectral methods in space. Wei et al.[8] presented and analyzed an implicit scheme, 

which is based on a finite difference method in time and local discontinuous Galerkin 

methods in space. Al-Shibani et al.[9] discussed a numerical scheme based on Keller 

box method for one dimensional time fractional diffusion equation. The fractional 

derivative term was replaced by the Grünwald-Letnikov formula. Unconditional 

stability was shown by means of the Von Neumann method. Gao et al.[10] considered 

fractional anomalous sub-diffusion equations on an unbounded domain. This paper’ 

main contribution lies in the reduction of fractional differential equations on an 

unbounded domain by using artificial boundary conditions and construction of the 

corresponding finite difference scheme with the help of method of order reduction. 

The stability of the scheme were proved using the discrete energy method.  

In this paper, we will try to use two different discretization formulas to estimate 

time fractional derivative, which are cited from papers Karatay et al.[6], Lin and Xu 

[7] respectively. For the second-order space derivative in this equation, we will adopt 

the classical central difference approximation. Then using the basic algebra 

knowledge to derive two different implicit finite difference schemes, which are both 

effective for solving our problem. Among them, for the first scheme, it’s same with 

the one proposed in paper [6], but [6] considered the nonlocal condition and used the 

idea on the modified Gauss-Elimination method based on matrix form, while we will 



consider the general case and use the algebra knowledge to derive the final implicit 

scheme. And in paper [6], authors proved stability using matrix stability approach, 

while we will use Von Neumann method. For the second scheme, compared with 

paper [7], we adopt the same formula to discretize time fractional derivative, but for 

estimating space derivative, Lin and Xu [7] used Legendre spectral methods, while we 

will use central difference approximation. During stability analysis, we will adopt Von 

Neumann method based on mathematical induction to give the proof according to our 

own cases and try to work out the properties about the coefficients of schemes, which 

will play an important role in proving stability. At last, we will make a comparison 

between the exact solutions and the numerical solutions given by these two methods 

to conclude which method is more accurate. 

The structure of this article is as follows : in section 2 and section 3, we 

respectively discuss two different finite difference methods for solving time fractional 

diffusion equation with source term, including their implicit schemes , reliability and 

stability proof. In section 4, numerical results are shown to compare the accuracy of 

the two mentioned methods. 

 

2. First finite difference method for time fractional diffusion equation with 

source term 

 

2.1 Construction of finite difference scheme 

In this part, we will discuss a finite difference approximation according to the 

following ways to discretize time fractional derivative and space second order 

derivative in time fractional diffusion equation (1) (2) (3). To do this, 
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Suppose that ),( ni txu is the exact solution of equation (1) (2) (3) at grid point
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iu denotes the numerical approximation to ),( ni txu . 

The time fractional derivative of order is discretized by using Caputo finite 

difference formula, which is a first order approximation appeared in Karatay et al.[6] : 
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For the spatial second derivative, central difference approximation is used: 
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Substitute (4) and (5) into equation (1) 
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The following finite difference scheme can be obtained : 
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  For the sake of simplification, let us introduce the notation : 
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So, the first implicit finite difference scheme we’ve derived to solve time 

fractional diffusion equation (1) (2) (3) can be written as follows : 
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2.2 Numerical experiments for effectiveness  

In this part, we shall illustrate several experiments to show the effectiveness and 

stability of the method presented above. We will check the agreement behavior 

between numerical solution and exact solution by using fixed space step x and 

different time step t . 

    Let us consider following time fractional diffusion equation [11]: 

 )
)3(

2
(

),(),( 2
2

2

2
x

x

et
te

x

txu

t

txu












 









   for  5.0 . (11) 

with the initial condition  
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and the boundary conditions 
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    The exact solution of this fractional diffusion equation is given by  

                        xettxu 2),(  . (14) 

 

 



   
   

Fig. 2.1. Comparison between numerical solution and exact solution at 41025.1 T  
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From the figures above, we can see that a relatively good agreement can be 

achieved between numerical solution and exact solution for this particular example. 

This means this method is feasible for the case we consider. In addition, from the 

error results under different time step, we observe that our computation is stable.  

2.3 Theoretical proof for stability  
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Theorem 2.3.1 Implicit finite difference scheme defined by (9) (10) is 

unconditionally stable. 

Proof : Assume that discretization of initial condition introduces the error 0

i . 
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    Suppose that the calculation of ),( ni txf is accurate, then the error is defined as :  

n

i

n

i

n

i uu 
~

  

    Which satisfies the finite difference equations (9) and (10), and this gives : 
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 Here we use Von Neumann method and apply mathematical induction to 

investigate the stability of the first finite difference scheme (9) (10). 

To do this, we suppose that n

i can be expressed in the form 
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then from the Lemma 2.3.1 and (19) 
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     Hence, for all ,n , we have  1n . 

     Therefore, according to Von Neumann’s criterion for stability, the implicit finite  

difference scheme defined by (9) (10) is unconditionally stable. 

 

3. Second finite difference method for time fractional diffusion equation with 

source term 

3.1 Construction of finite difference scheme 

In this part, we will introduce another finite difference approximation to solve 

this time fractional diffusion equation (1) (2) (3).Similarly, 
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Use the following formula to discretize the time fractional derivative, which is 

cited from Lin & Xu [7] : 
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Use central difference approximation to discretize the space second order 

derivative : 
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Substituting (20) and (21) into equation (1) 
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    So, the second implicit finite difference scheme we’ve derived to solve time 



fractional diffusion equation (1) (2) (3) can be written as follows: 
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(where 1,,2,1  Mi  ,  Nn ,,3,2  ). (28)           

3.2 Numerical experiments for effectiveness  

In this part, we will still use the example (Takaci et al.[11]) mentioned in section 

2 (11) ~ (14) to check the effectiveness of the second method in the same way. 

  

Fig.3.1. Comparison of the numerical solution and the exact solution for 1.0x , 

5105.2 t , 
51025.1

2

1 t , 
510625.0

4

1 t ,  at time 41025.1 T  

From these figures, we can draw the conclusion that the second scheme can also 

be accepted to solve this particular example.    

3.3 Theoretical proof for stability 

Lemma 3.3.1  The coefficients 
   11)1( jjwj  ( ,2,1,0j ) satisfy : 

(1) 10 w , 0jw ,  ,2,1j ; 



(2) 01  jj ww ,    .,2,1,0 j   

Theorem 3.3.1 Implicit finite difference scheme defined by (27) (28) is 

unconditionally stable. 

Proof : 

The investigation about stability is completed by Von Neumann method utilizing 

mathematical induction.  

Suppose that discretization of initial condition introduces the error 0

i . 

Let
00
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with respect to initial datas 0
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ig respectively . 

Assume that the calculation of ),( ni txf is accurate, then the error n
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satisfies : 
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Suppose 
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i can be expressed in the form  
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    Substitute (31) into (29) and (30), we can get  
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    Begin with 1n , from (32), we have 
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    From (33) and Lemma 3.3.1, we know that 
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    Therefore, for all ,n , we have 1n . 

    According to the Von Neumann criteria about stability, we can get the conclusion 

that the implicit finite difference scheme (27) (28) is unconditionally stable. 

4. Accuracy comparison of two methods 

In this section, we will construct a comparison of the accuracy of the two 

implicit finite difference schemes discussed in section 2 and section 3 respectively. 

We will still use the previous example to compare exact solution and numerical 

solutions obtained using these two different technique to support the theoretical 



statements. 

4.1  Numerical experiment 

Remark 4.1.1  The accuracy of the first finite difference scheme is )( 2xo   in the 

spatial grid size and )( to  in the fractional time step[6]. 

Remark 4.1.2  The accuracy of the second finite difference scheme is )( 2xo   in the 

spatial grid size and )( 2 to in the fractional time step[7]. 

This means that in theory, the second method will be more accurate than the first 

one. In fact, the following numerical experiment [11] supports this conclusion. 

Table 4.1 Relative errors of two methods at 41025.1 T  

( 1.0x , 510625.0 t ) 

 

Clearly, the second method’s solution is more accurate than the first one. 

5 Conclusions 

In this paper, we have presented two methods for solving time fractional 

diffusion equation with source term. For the second order spatial derivative term in 

this equation, both methods adopted central difference approximation with second 

order accuracy. Whilst, for the time fractional derivative term, two different formulae 

were used to discretize it in these two methods. The first formula is based on the 



relationship between Caputo fractional derivative and Grünwald-Litnikov fractional 

derivative, derived from standard Grünwald-Litnikov formula, which can achieve first 

order accuracy in time. The second formula is derived directly from the definition of 

Caputo fractional derivative by using numerical integration method, which can 

achieve ( 221   ) order accuracy in time. Based on these two different discrete 

formulae, two implicit finite difference schemes were derived to solve our target 

equation. Numerical experimental work examined that these two schemes can both 

effectively solve our equation, while the second scheme is preferable than the first one. 

With the aid of mathematical induction, by Von Neumann method, we proved that 

these two methods are both unconditionally stable. 
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