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On the space of square-integrable Hilbert
C∗-module-valued

maps on compact groups

M. Todjro1, Y. Mensah and V.S.K. Assiamoua

Various properties of L2(G,M) the space of the square-integrable M-valued

functions on the compact group G where M is a Hilbert C∗-module are

established. In particular a pre-Hilbert space structure is constructed on it.

Similar results are obtained for its discrete analogue via the Fourier transform

of vector-valued functions.

1 Introduction

The aim of this paper is to scrutinize some properties of Bochner-square-
integrable Hilbert C∗-module-valued maps defined on compact groups. Intro-
duced by Kaplansky in the first half of 1950’s, the concept of Hilbert C∗-module
is straightforward generalization of the notion of Hilbert space. Roughly speak-
ing, it consists to endow a vector space with an inner product which takes
values not in the field of complex numbers but in a C∗-algebra. The results
were applied by Kaplansky to solve certains problems in operator theory such
as the structure of derivations of AW ∗-algebras [10]. At the present time, the
challenge is to invesgate for Hilbert C∗-modules the analogues of various facts
true for Hilbert spaces. However the methods to handle problems related to
Hilbert C∗-modules may not be easy to foresee since they are not orthogonally
complemented in general like Hilbert spaces.

On the other hand, square integrable functions are almost ubiquitous in
mathematics and its applications. They are encountered for instance in signal
processing (signals with finite energy), in stochastic calculus (random variables
with finite second moment), in mathematical physiscs (concrete realisation of
some Hilbert spaces)...
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The vector valued functions are useful tools in the study of some geometri-
cal properties of Banach spaces. Here in particular we are interested in study-
ing some properties of the space of square integrable Hilbert C∗-module-valued
functions on compact groups.

The rest of the paper is structured as follows. Section 2 contains definitions
and facts about Hilbert C∗-modules. Section 3 furnishes basic notions on the
representation theory of groups with emphasis on compact groups. Section 4
gives some facts about Fourier transform of vector-valued functions on com-
pact groups. We establish our main results in section 5.

2 Hilbert C∗-modules

In this section we recall the definition of a Hilbert C∗-module and some prop-
erties related to its norm. For more details, we refer to [11].

Definition 2.1 Let A be a C∗-algebra. A pre-Hilbert A-module is a vector
space M which is a right A-module equipped with an A-valued inner product
(x, y) 7→ 〈x, y〉 : M×M→ A such that the following conditions are satisfied:

1. ∀x, y, z ∈M,∀α, β ∈ C, 〈x, αy + βz〉 = α〈x, y〉+ β〈x, z〉.

2. ∀x, y ∈M, ∀a ∈ A, 〈x, ya〉 = 〈x, y〉a.

3. ∀x, y ∈M, 〈y, x〉 = 〈x, y〉∗.

4. ∀x ∈M, 〈x, x〉 ≥ 0 and if 〈x, x〉 = 0 then x = 0.

If M is a Banach space under the norm ||x||M = ||〈x, x〉||
1
2
A, where ‖ · ‖A is

the norm in A, then M is called a Hilbert A-module (or Hilbert C∗-module
over A). Otherwise, by using the completeness of the C∗-algebra A, the A-
valued inner product and the action of A on M can be extended to form the
completion M̂ of M which becomes a Hilbert A-module.

Hereafter are some simple examples of Hilbert C∗-modules.

1. Every complex Hilbert space is a Hilbert C∗-module over C.

2. Every C∗-algebra A is a Hilbert module over A. The A-valued inner
product is given by 〈a, b〉 = a∗b, ∀ a, b ∈ A. A concrete example is B(H)
the set of bounded operators on a Hilbert space H.

The norm || · ||M satisfies the following properties.

1. ∀x ∈M, ∀a ∈ A, ||x · a||M ≤ ||x||M||a||A.
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2. ∀x, y ∈M, ||〈x, y〉||A ≤ ||x||M||y||M.

In the category of Hilbert A-modules the isomorphisms are defined as fol-
lows.

Definition 2.2 Two Hilbert A-modules M1 and M2, with respective A-
valued inner products 〈·, ·〉1 and 〈·, ·〉2 are isomorphic if there exists a bi-
jective bounded A-linear mapping L : M1 → M2 such that the identity
〈L(x), L(y)〉2 = 〈x, y〉1 holds for all x, y ∈M1.

In the sequel, we call the A-valued inner product simply an A-product and
we make the convention that all A-modules will be right modules. Interested
readers can consult [8], [11], [7] and references therein for more details on
Hilbert C∗-modules.

3 Representation theory of groups

The representations of groups play a central role in noncommutative harmonic
analysis. In this section we recall some elements of the representation theory
that we may need with emphasis on the compact groups case.
Let G be a group and H be a vector space. A representation of G on H
is a homomorphism U : t 7→ Ut from G into GL(H) the group of invertible
operators in H. The space H is called the representation space of U . If G
and H are topological spaces then U is said to be a continuous representation
if the map G × H → H, (t, ξ) 7→ Utξ is continuous. Moreover when H is a
Hilbert space, if for any t ∈ G, Ut is a unitary operator of H then U is called
a unitary representation. In this case, the representation U is continuous if
only if the map t 7→ Utξ defined from G to H is continuous for all ξ ∈ H. The
representation U is said to be of finite dimension if its representation space H
is of finite dimension.
Two representations U and V of a group G with representation spaces H
and K respectively are said to be equivalent if there exists an isomorphism
T : H → K that intertwines U and V , that is ∀t ∈ G, T ◦ Ut = Vt ◦ T .
A subvector space L of H is said to be invariant by the representation U if
∀t ∈ G, ∀ξ ∈ L, Utξ ∈ L. Any representation admits at least two trivial in-
variant subspaces: {0} and H. The representation U is said to be irreducible
if it does not admit a non trivial invariant subspace, otherwise U is said to be
decomposable. The set of all equivalent classes of unitary irreducible repre-
sentations of G is called the unitary dual of G and will be denoted Σ.
If L is invariant then one can define in an obvious way a represention of G
on L called a subrepresentation of U . A representation U of G with repre-
sentation space H is the direct sum of representations Ui of G on Hi if every
Hi is an invariant subspace of H, H is the direct sum of Hi and each Ui is a
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subrepresentation of U . One writes U = ⊕iUi.
The representations of a compact group behave nicely. Their main properties
are gathered in the following proposition.

Proposition 3.1 Let G be a compact group. Then

1. Every unitary representation of G admits a subrepresentation of finite
dimension.

2. Every irreducible unitary representation of G is finite dimensional.

3. Every unitary representation of G is the direct sum of irreducible unitary
representations.

For more details on representation theory we refer to [6] and [9].

4 Fourier transform on compact groups

This section draws a lot from [2], [4], [5] and [12]. In what follows, G is a
compact group and Σ denotes its dual objet, the set of all equivalence classes
of unitary irreducible representations of G. We denote by Uσ an element of the
class σ ∈ Σ, by Hσ its Hilbert representation space and by dσ the dimension
of Hσ. Let (ξσ1 , · · · , ξσdσ) be a basis of Hσ. The matrix elements of Uσ related
to the above basis are defined by uσij(t) = 〈Uσ

t ξ
σ
j , ξ

σ
i 〉 for all i, j ∈ {1, · · · , dσ}

and t ∈ G. The contragredient of the representation Uσ is the representation
denoted by Uσ whose matrix elements are the complex conjugate of those of
Uσ. We recall the orthogonality relations due to Schur:∫

G

uσij(t)u
σ
kl(t)dλ(t) =

1

dσ
δki δ

l
j

where the integration is taken against the normalized Haar measure λ of G
and δji is the Kronecker’s delta [9, section 27].

Let us denote by L1(G,M) the space of Bochner-integrableM-valued maps

on G. For f ∈ L1(G,M), the Fourier transform f̂ of f is given by

f̂(σ)(ξ, η) =

∫
G

〈Uσ
t ξ, η〉Hσf(t)dλ(t), ξ, η ∈ Hσ.

In this paper we are mostly interested in the space L2(G,M) of Bochner-
square-integrable M-valued maps on G. Since the Haar measure on G is
finite, we have L2(G,M) ⊂ L1(G,M) so the above Fourier transform formula

is valid for functions in L2(G,M). Each f̂(σ) is interpreted as a sesquilinear

mapping from Hσ × Hσ in M. Now set S (Σ,M) =
∏
σ∈Σ

S (Hσ;M) where

S (Hσ;M) is the space of all sesquilinear maps from Hσ ×Hσ to M.
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We consider S2(Σ,M) =

{
φ ∈ S (Σ,M) :

∑
σ∈Σ

dσ

dσ∑
i=1

dσ∑
j=1

||φ(σ)(ξσj , ξ
σ
i )||2M <∞

}
.

The authors in [3] proved that the Fourier transform is a norm preserving iso-
morphism from L2(G,M) on S2(Σ;M) when they are respectively endowed
with the norms

||f ||L =

(∫
G

||f(t)||2Mdλ(t)

) 1
2

(1)

and

||φ||S =

(∑
σ∈Σ

dσ

dσ∑
i=1

dσ∑
j=1

||φ(σ)(ξσj , ξ
σ
i )||2M

) 1
2

. (2)

Moreover they proved the following reconstruction formula which is valid
for all f ∈ L2(G,M):

f =
∑
σ∈Σ

dσ

dσ∑
i=1

dσ∑
j=1

f̂(σ)(ξσj , ξ
σ
i )uσij. (3)

5 Main results

Proposition 5.1 The mapping A×L2(G,M)→ L2(G,M), (a, f) 7→ f · a
with

(f · a)(t) = f(t)a for all t ∈ G (4)

is an action of A on L2(G,M).

Proof Let f ∈ L2(G,M) and a ∈ A, we have f · a ∈ L2(G,M) since∫
G

||f · a(t)||2Mdλ(t) =

∫
G

||f(t)a||2Mdλ(t)

=

∫
G

||〈f(t)a, f(t)a〉||Adλ(t)

=

∫
G

||a∗〈f(t), f(t)〉a||Adλ(t)

≤
∫
G

||a∗||A||f(t)||2M||a||Adλ(t)

=

∫
G

||f(t)||2M||a||2Adλ(t)

=

(∫
G

||f(t)||2Mdλ(t)

)
||a||2A <∞.

Moreover for t ∈ G and a, b ∈ A we have

((f · a) · b)(t) = (f · a)(t)b = (f(t)a)b = f(t)(ab) = (f · (ab))(t).
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Therefore (f · a) · b = f · (ab). �

Let f and g be in L2(G,M). We set

〈f, g〉L =

∫
G

〈f(t), g(t)〉dλ(t). (5)

Proposition 5.2 The mapping L2(G,M) × L2(G,M) → A, (f, g) 7→
〈f, g〉L is an A-product on L2(G,M).

Proof Let f, g ∈ L2(G,M) and a ∈ A.

1. Then ||f(·)||M and ||g(·)||M belong to L2(G), so ||f(·)||M||g(·)||M ∈
L1(G). We have∫
G

||〈f(t), g(t)〉||Adλ(t) ≤
∫
G

||f(t)||M||g(t)||Mdλ(t) < ∞. Hence 〈·, ·〉L
is well-defined.

2. Let α, β ∈ C. We have

〈f, αg + βh〉L =

∫
G

〈f(t), αg(t) + βh(t)〉dλ(t) = α〈f, g〉L + β〈f, h〉L.

3. We have

〈f, g · a〉L =

∫
G

〈f(t), g(t)a〉dλ(t) =

∫
G

〈f(t), g(t)〉adλ(t) = 〈f, g〉La.

4. We have

〈f, g〉L =

∫
G

〈f(t), g(t)〉dλ(t) =

∫
G

〈g(t), f(t)〉∗dλ(t)

=

(∫
G

〈g(t), f(t)〉dλ(t)

)∗
= 〈g, f〉∗L.

5. We have 〈f, f〉L =

∫
G

〈f(t), f(t)〉dλ(t) ≥ 0 as ∀t ∈ G, 〈f(t), f(t)〉 ≥ 0.

Furthermore let f ∈ L2(G,M) such that

∫
G

〈f(t), f(t)〉dλ(t) = 0, then

t 7→ 〈f(t), f(t)〉 is null λ-a.e., hence f = 0 λ-a.e.. So 〈f, f〉L = 0 gives
f = 0 since f ∈ L2(G,M).

�

As a consequence of Proposition 5.1 and Proposition 5.2 we have:
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Corollary 5.3 The space L2(G,M) is a pre-Hilbert A-module under the
action of A on L2(G,M) defined by f · a = f(·)a for all f ∈ L2(G,M), a ∈ A
and the A-valued inner product 〈·, ·〉L.

Proof We will only show that L2(G,M) is a complex vector space. Let f ,
g ∈ L2(G,M), we have∫
G

||(f + g)(t)||2Mdλ(t) =

∫
G

||〈f(t) + g(t), f(t) + g(t)〉||Adλ(t)

6
∫
G

||〈f(t), f(t)〉||Adλ(t) +

∫
G

||〈f(t), g(t)〉||Adλ(t)

+

∫
G

||〈g(t), f(t)〉||Adλ(t) +

∫
G

||〈g(t), g(t)〉||Adλ(t).

The integral

∫
G

||〈f(t), f(t)〉||Adλ(t) =

∫
G

||f(t)||2Mdλ(t) is finite. It is the

same to

∫
G

||〈g(t), g(t)〉||Adλ(t).

By Hölder’s inequality,∫
G

||〈f(t), g(t)〉||Adλ(t) 6
∫
G

||f(t)||M||g(t)||Mdλ(t)

6

(∫
G

||f(t)||2Mdλ(t)

)1

2
(∫

G

||g(t)||2Mdλ(t)

)1

2
< +∞.

Similary

∫
G

||〈g(t), f(t)〉||Adλ(t) < +∞.

Hence

∫
G

||(f + g)(t)||2Mdλ(t) < +∞ and f + g ∈ L2(G,M).

Moreover for all f ∈ L2(G,M) and α ∈ C, αf ∈ L2(G,M). �

The discrete analogues of the above results are proved for S2(Σ,M).

Proposition 5.4 The mapping A×S2(Σ,M) 7→ S2(Σ,M), (a, φ) 7→ φ ·a
with

(φ · a)(σ)(ξ, η) = (φ(σ)(ξ, η))a,

for all σ ∈ Σ and ξ, η ∈ Hσ, is an action of A on S2(Σ,M).

Proof Let φ ∈ S2(Σ,M) and a ∈ A, we have:
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||φ · a||2S =
∑
σ∈Σ

dσ

dσ∑
i,j=1

||(φ · a)(σ)(ξσj , ξ
σ
i )||2M

=
∑
σ∈Σ

dσ

dσ∑
i,j=1

||φ(σ)(ξσj , ξ
σ
i )a||2M

≤
∑
σ∈Σ

dσ

dσ∑
i,j=1

||φ(σ)(ξσj , ξ
σ
i )||2M||a||2A <∞.

For σ ∈ Σ, a, b ∈ A and η, ξ ∈ Hσ, we have

[(φ · a) · b](σ)(ξ, η) = [(φ · a)(σ)(ξ, η)]b = (φ(σ)(ξ, η)a)b = φ(σ)(ξ, η)(ab)

= (φ · (ab))(σ)(ξ, η).

�

For φ, ψ ∈ S2(Σ,M), we set

〈φ, ψ〉S =
∑
σ∈Σ

dσ

dσ∑
i=1

dσ∑
j=1

〈φ(σ)(ξσi , ξ
σ
j ), ψ(σ)(ξσi , ξ

σ
j )〉. (6)

Proposition 5.5 The mapping S2(Σ,M) × S2(Σ,M) → A, (φ, ψ) 7→
〈φ, ψ〉S is an A-product on S2(Σ,M).

Proof Let φ, ψ, ϕ ∈ S2(Σ,M), α, β ∈ C and a ∈ A.

1. The equality 〈φ, αψ + βϕ〉S = α〈φ,ψ〉S + β〈φ, ϕ〉S is trivial.

2.

〈φ, ϕ · a〉S =
∑
σ∈Σ

dσ

dσ∑
i,j=1

〈φ(σ)(ξσi , ξ
σ
j ), ϕ(σ)(ξσi , ξ

σ
j )a〉

=

(∑
σ∈Σ

dσ

dσ∑
i,j=1

〈φ(σ)(ξσi , ξ
σ
j ), ϕ(σ)(ξσi , ξ

σ
j )〉

)
a = 〈φ, ϕ〉Sa.

3.

〈φ, ϕ〉S =
∑
σ∈Σ

dσ

dσ∑
i,j=1

〈φ(σ)(ξσi , ξ
σ
j ), ϕ(σ)(ξσi , ξ

σ
j )〉

=
∑
σ∈Σ

dσ

dσ∑
i,j=1

〈ϕ(σ)(ξσi , ξ
σ
j ), φ(σ)(ξσi , ξ

σ
j )〉∗

=

(∑
σ∈Σ

dσ

dσ∑
i,j=1

〈ϕ(σ)(ξσi , ξ
σ
j ), φ(σ)(ξσi , ξ

σ
j )〉

)∗
= 〈ϕ, φ〉∗S.
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4. 〈φ, φ〉S = 0⇒ φ = 0. Indeed, if
∑
σ∈Σ

dσ

dσ∑
i=1

dσ∑
j=1

〈φ(σ)(ξσi , ξ
σ
j ), φ(σ)(ξσi , ξ

σ
j )〉 =

0 then 〈φ(σ)(ξσi , ξ
σ
j ), φ(σ)(ξσi , ξ

σ
j )〉 = 0 for σ ∈ Σ, i, j ∈ {1, 2, · · · , dσ}.

But 〈φ(σ)(ξσi , ξ
σ
j ), φ(σ)(ξσi , ξ

σ
j )〉 = 0 for all σ ∈ Σ, i, j ∈ {1, 2, · · · , dσ}

implies φ(σ)(ξσi , ξ
σ
j ) = 0 for all σ ∈ Σ, i, j ∈ {1, 2, · · · , dσ}. So φ = 0. �

We deduce from the two propositions above the following corollary.

Corollary 5.6 The space S2(Σ,M) is a pre-Hilbert module under the ac-
tion of A on S2(Σ,M) defined by φ · a = φ(·)a and with the A-valued inner
product 〈·, ·〉S.

The following Parseval type result holds.

Proposition 5.7 Let f, g ∈ L2(G,M). We have 〈f, g〉L = 〈f̂ , ĝ〉S.

Proof

Let f, g ∈ L2(G,M). We can write f =
∑
σ∈Σ

dσ∑
i=1

dσ∑
j=1

dσa
σ
iju

σ
ij and g =

∑
σ∈Σ

dσ∑
k=1

dσ∑
l=1

dσb
σ
klu

σ
kl

where aσij = f̂(σ)(ξσj , ξ
σ
i ) and bσkl = ĝ(σ)(ξσl , ξ

σ
k ). Then

〈f, g〉L = 〈
∑
σ∈Σ

dσ∑
i=1

dσ∑
j=1

dσa
σ
iju

σ
ij,
∑
σ∈Σ

dσ∑
k=1

dσ∑
l=1

dσb
σ
klu

σ
kl〉L

=
∑
σ∈Σ

dσ∑
i=1

dσ∑
j=1

dσ∑
k=1

dσ∑
l=1

d2
σ〈aσijuσij, bσkluσkl〉L

=
∑
σ∈Σ

dσ∑
i=1

dσ∑
j=1

dσ∑
k=1

dσ∑
l=1

d2
σ

∫
G

〈aσijuσij(t), bσkluσkl(t)〉dλ(t)

=
∑
σ∈Σ

dσ∑
i=1

dσ∑
j=1

dσ∑
k=1

dσ∑
l=1

d2
σ

∫
G

〈aσij, bσkl〉uσij(t)uσkl(t)dλ(t)

=
∑
σ∈Σ

dσ∑
i=1

dσ∑
j=1

dσ∑
k=1

dσ∑
l=1

d2
σ〈aσij, bσkl〉

∫
G

uσij(t)u
σ
kl(t)dλ(t)

=
∑
σ∈Σ

dσ∑
i=1

dσ∑
j=1

dσ∑
k=1

dσ∑
l=1

d2
σ〈aσij, bσkl〉δki δlj

=
∑
σ∈Σ

dσ∑
i=1

dσ∑
j=1

dσ〈aσij, bσij〉

= 〈f̂ , ĝ〉S.
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�
It follows from the above proposition that the Fourier transform is an A-
product preserving operator.

Now let us set

||f ||L = ||〈f, f〉L||
1
2
A, f ∈ L2(G,M) (7)

and
||φ||S = ||〈φ, φ〉S||

1
2
A, φ ∈ S2(Σ,M). (8)

We deduce the following result as a consequence of Proposition 5.7.

Corollary 5.8 The map f 7→ f̂ is a linear isometry from (L2(G,M), ||·||L )
into (S2(Σ,M), || · ||S ).

Set
|f |L = 〈f, f〉

1
2
L. (9)

Proposition 5.9 For all f, g ∈ L2(G,M), we have

|f − g|2 + |f + g|2L = 2(|f |2L + |g|2L).

Proof Let f, g ∈ L2(G,M). We have

|f + g|2L + |f − g|2L = 〈f + g, f + g〉L + 〈f − g, f − g〉L
= 〈f, f〉L + 〈f, g〉L + 〈g, f〉L + 〈g, g〉L

+〈f, f〉L − 〈f, g〉L − 〈g, f〉L + 〈g, g〉L
= 2〈f, f〉L + 2〈g, g〉L
= 2(|f |2L + |g|2L).

�

Proposition 5.10 There exists C0 > 0 such that for all σ ∈ Σ and for all

i, j, k, l ∈ {1, · · · , dσ} we have

∫
G

|uσij(t)uσkl(t)|dλ(t) ≤ C0.

Proof For all σ ∈ Σ and i, j ∈ {1, · · · , dσ} the functions t 7→ uσij(t) are
continuous on G. They are bounded since G is a compact. Therefore there
exists C0 > 0 such that ∀i, j, k, l ∈ {1, · · · , dσ}, ∀t ∈ G, |uσij(t)uσkl(t)| ≤ C0.

We obtain

∫
G

|uσij(t)uσkl(t)|dλ(t) ≤
∫
G

C0dλ(t) = C0λ(G) = C0 since λ(G) = 1.

�
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Proposition 5.11 ∀σ ∈ Σ, ∃Nσ ∈ N∗,

dσ∑
i=1

dσ∑
j=1

dσ∑
k=1

dσ∑
l=1

||〈aσij, aσkl〉||A ≤ Nσ

dσ∑
i=1

dσ∑
j=1

||aσij||2M.

Proof We have

dσ∑
i=1

dσ∑
j=1

dσ∑
k=1

dσ∑
l=1

||〈aσij, aσkl〉||A ≤
dσ∑
i=1

dσ∑
j=1

dσ∑
k=1

dσ∑
l=1

||aσij||M × ||aσkl||M

≤
dσ∑
i=1

dσ∑
j=1

dσ∑
k=1

dσ∑
l=1

max(||aσij||2M, ||aσkl||2M).

There are nσij ∈ {1, 2, · · · , dσ} such that
dσ∑
i=1

dσ∑
j=1

dσ∑
k=1

dσ∑
l=1

max(||aσij||2M, ||aσkl||2M) =

dσ∑
i=1

dσ∑
j=1

nσij||aσij||2M. Let us put Nσ = max
i,j

nσij. Hence

dσ∑
i=1

dσ∑
j=1

dσ∑
k=1

dσ∑
l=1

||〈aσij, aσkl〉||A ≤
dσ∑
i=1

dσ∑
j=1

nσij||aσij||2M ≤ Nσ

dσ∑
i=1

dσ∑
j=1

||aσij||2M.

�

Proposition 5.12 If for all σ ∈ Σ, sup
σ∈Σ

(dσNσ) <∞ then ∀f ∈ L2(G,M),

there exists C1 > 0 such that ||f ||L ≤ C1||f̂ ||S.

Proof Let f ∈ L2(G,M). One can write f =
∑
σ∈Σ

dσ∑
i=1

dσ∑
j=1

dσa
σ
iju

σ
ij where

aσij = f̂(σ)(ξσj , ξ
σ
i ). We have:



12 Todjro et al.

||f ||2L =

∫
G

||f(t)||2Mdλ(t)

=

∫
G

||〈f(t), f(t)〉||Adλ(t)

=

∫
G

||〈
∑
σ∈Σ

dσ∑
i=1

dσ∑
j=1

dσa
σ
iju

σ
ij(t),

∑
σ∈Σ

dσ∑
k=1

dσ∑
l=1

dσa
σ
klu

σ
kl(t)〉||Adλ(t)

=

∫
G

||
∑
σ∈Σ

dσ∑
i=1

dσ∑
j=1

dσ∑
k=1

dσ∑
l=1

d2
σ〈aσij, aσkl〉uσij(t)uσkl(t)||Adλ(t)

≤
∫
G

∑
σ∈Σ

dσ∑
i=1

dσ∑
j=1

dσ∑
k=1

dσ∑
l=1

d2
σ||〈aσij, aσkl〉uσij(t)uσkl(t)||Adλ(t)

=
∑
σ∈Σ

dσ∑
i=1

dσ∑
j=1

dσ∑
k=1

dσ∑
l=1

d2
σ||〈aσij, aσkl〉||A

∫
G

|uσij(t)uσkl(t)|dλ(t)

≤ C0

∑
σ∈Σ

dσ∑
i=1

dσ∑
j=1

dσ∑
k=1

dσ∑
l=1

d2
σ||〈aσij, aσkl〉||A

≤ C0

∑
σ∈Σ

dσ∑
i=1

dσ∑
j=1

Nσd
2
σ||aσij||2M

= C0

∑
σ∈Σ

Nσdσ

dσ∑
i=1

dσ∑
j=1

dσ||aσij||2M

≤ C0

∑
σ∈Σ

sup
σ∈Σ

(dσNσ)
dσ∑
i=1

dσ∑
j=1

dσ||aσij||2M

= C0 sup
σ∈Σ

(dσNσ)
∑
σ∈Σ

dσ∑
i=1

dσ∑
j=1

dσ||aσij||2M

= C0 sup
σ∈Σ

(dσNσ)||f̂ ||2S.

We set C1 =
√
C0 sup

σ∈Σ
(dσNσ). Hence ||f ||L ≤ C1||f̂ ||S. �

Now we consider L2(G) ⊗M the tensor product of L2(G) and M. For a
generic element f⊗x ∈ L2(G)⊗M and a ∈ A, the relation (f⊗x)·a = f⊗(xa)
defines an action of A on L2(G) ⊗ M. In fact, let a, b ∈ A and f ⊗ x ∈
L2(G)⊗M. We have [(f⊗x) ·a] ·b = (f⊗ (xa)) ·b = f⊗ (xab) = (f⊗x) · (ab).
Let f ⊗ x and g ⊗ y be generic elements of L2(G)⊗M. We set

〈f ⊗ x, g ⊗ y〉⊗ = 〈f, g〉
l
〈x, y〉 (10)
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where 〈f, g〉
l

=

∫
G

f(t)g(t)dλ(t).

Proposition 5.13 The map defined from (L2(G)⊗M)×(L2(G)⊗M) into
A by (f ⊗ x, g ⊗ y) 7→ 〈f ⊗ x, g ⊗ y〉⊗ is an A-product.

Proof Let f ⊗ x, g ⊗ y ∈ L2(G)⊗M be generic elements, a ∈ A and λ ∈ C.
We have:

1. 〈f⊗x, (g⊗y) ·a〉⊗ = 〈f⊗x, (g⊗ya)〉⊗ = 〈f, g〉
l
〈x, ya〉 = 〈f, g〉

l
〈x, y〉a =

〈f ⊗ x, g ⊗ y〉⊗a. Even 〈(f ⊗ x) · a, g ⊗ x〉⊗ = 〈f ⊗ (xa), g ⊗ x〉⊗ =
〈f, g〉

l
〈xa, y〉 = 〈f, g〉

l
a∗〈x, y〉 = a∗〈f, g〉

l
〈x, y〉 = a∗〈f ⊗ x, g ⊗ y〉⊗.

2. 〈f ⊗ x, g ⊗ y〉⊗ = 〈f, g〉
l
〈x, y〉 = 〈g, f〉

l
〈y, x〉∗ = (〈g, f〉

l
〈y, x〉)∗ = 〈g ⊗

y, f ⊗ x〉∗⊗.

3. 〈λf ⊗ x, g ⊗ y〉⊗ = 〈λf, g〉
l
〈x, y〉 = λ〈f, g〉

l
〈x, y〉 = λ〈f ⊗ x, g ⊗ y〉⊗.

4. 〈f ⊗ x, f ⊗ x〉⊗ = 〈f, f〉
l
〈x, x〉 ≥ 0. And, on the other hand, 〈f ⊗ x, f ⊗

x〉⊗ = 0 implies 〈f, f〉
l

= 0 or 〈x, x〉 = 0. Hence f ⊗ x = 0.

Let us denote by L2(G)⊗̂M the completion of the pre-Hilbert A-module
L2(G)⊗M with respect to the norm:

||f ⊗ x||⊗ = ||〈f ⊗ x, f ⊗ x〉⊗||
1
2
A (11)

where f ⊗ x is a generic element in L2(G)⊗M.

We denote by L2(G,M) the completion of L2(G,M) under the norm || · ||L
defined in (7).

The following proposition extends to module-valued functions on compact
groups the Proposition 4.2.1.1 in [1] concerning C∗-algebra-valued functions
in mesure spaces. Its proof follows highly [1].

Proposition 5.14 The Hilbert A-modules L2(G)⊗̂M and L2(G,M) are
isomorphic.

Proof For f ∈ L2(G) and x ∈ M, f(·)x ∈ L2(G,M) since there is a se-
quence fn(·)x of countably valued functions which converges to f(·)x almost
everywhere and

||f(·)x||2L =

∫
G

||f(t)x||2Mdλ(t)

=

∫
G

|f(t)|2||x||2Mdλ(t)

= ||f ||22||x||2M <∞,
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where || · ||2 is the L2-norm of L2(G). Since the mapping (f, x) 7→ f(·)x is
bilinear, the mapping U : L2(G)⊗M→ L2(G,M) defined by U(f⊗x) = f(·)x
for any f ∈ L2(G) and x ∈M is linear and well defined. Let us prove that U
preserves the action of A on L2(G)⊗M. Let f ⊗ x ∈ L2(G)⊗M and a ∈ A,
U((f ⊗ x) · a) = U(f · (xa)) = f(·)xa = [f(·)x]a = U(f ⊗ x) · a. On the other
hand let f ⊗ x, g ⊗ y ∈ L2(G)⊗M be generic elements. We have

〈U(f ⊗ x), U(g ⊗ y)〉L = 〈f(·)x, g(·)y〉L

=

∫
G

〈f(t)x, g(t)y〉dλ(t)

=

∫
G

f(t)〈x, y〉g(t)dλ(t)

=

∫
G

f(t)g(t)〈x, y〉dλ(t)

=

(∫
G

f(t)g(t)dλ(t)

)
〈x, y〉

= 〈f, g〉
l
〈x, y〉

= 〈f ⊗ x, g ⊗ y〉⊗.
Hence, U preserves the inner product. It is an isometry. So U is injective and
continuous since U is an A-linear operator of L2(G)⊗M in L2(G,M). Now
let us show that the range of U is dense in L2(G,M). Let F ∈ L2(G,M) be

a simple function. For every t ∈ G, F (t) =
n∑
i=1

xiχEi(t) =
n∑
i=1

χEi(t)xi where

(Ei) are disjoint measurable subsets of G and χEi is the characteristic function
of Ei. For all 1 ≤ i ≤ n, χEi ∈ L2(G) and χEi(t)xi = U(χEi⊗xi)(t). Therefore

F (t) =
n∑
i=1

U(χEi ⊗ xi)(t) = U(
n∑
i=1

χEi ⊗ xi)(t) and F is in the range of U .

Hence the set of simple functions is a subset of the range of U which itself is
included in L2(G,M). The range of U is dense in L2(G,M) since the M-
valued simple functions are dense in L2(G,M). Therefore, U can be extended
to a unitary operator defined from L2(G)⊗̂M to L2(G,M). Consequently, the
proposition is obtained. �
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