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Abstract

This paper examines the efficient yield curve estimation, exploiting the relationship between yield

curve and macroeconomic variables by focusing on an emerging market case: Brazil. Differently

from the classic literature on the Brazilian yield curve, where the Diebold & Li (2006) model is

estimated only through the two-step method, the model herein is also put in the state-space form,

and the parameters are simultaneously estimated using the Kalman filter. The results obtained

showed that the Kalman filter is the most suitable method for the model estimation.
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1. Introduction

The predictability of asset returns has attracted considerable attention of financial economists;

while returns are predictable a subject of ongoing debates remains. The yield curve has proved

to be a leading indicator for economic activity and inflation. It has also a massive influence over

the development of macroeconomic scenarios, which are composed by companies, institutions and

investors.

Understanding the behavior of the term structure of interest rate is important to macroe-

conomists, financial economists and fixed income managers, such understanding has motivated

several studies and theoretical advances in the modeling of the yield curve.

One of the most popular approaches to forecasting the yield curve is the Nelson & Siegel (1987)

(hereafter DNS) model, proposed by Diebold & Li (2006). The attractiveness for factor models

of the Nelson Siegel type is due to its parsimony and empirical performance. Models of this type

can capture most of the behavior on the term structure of interest rate by only three factors.

Existing evidence suggests that these specifications are remarkably well suited both fitting the

term structure and forecasting its movements.

Interpolation models were developed by McCulloch (1971) who interpolated the discount func-

tion rather than the yields or the asset prices in a direct manner; and by Vasicek (1977), who

adjusted exponential splines to the discount curve, obtaining smoother adjustments for the longest

area of the curve.

Following this same line of research, Vicente & Tabak (2007) compared a Gaussian affine model

to Diebold and Li model for Brazilian data and concluded that the latter model is slightly superior

in terms of yield curve forecasts. Vereda et al. (2008) employed a VAR approach to forecast

the term structure of interest rates and found that incorporating macro variables can improve

forecasting performance, especially for longer-term forecasts. In Caldeira et al. (2010) the Nelson

Siegel model is cast in state-space form, and the parameters are simultaneously and efficiently

estimated using the Kalman filter.

The term structure of interest rates and macroeconomics variables researches are recent. In a

seminal paper, Ang & Piazessi (2003) describe the joint dynamics of bond yields and macroeco-

nomic variables (inflation and growth), concluding that macro factors primarily explain movements

at the short end and middle of the yield curve. Thus Hordal et al. (2006) estimate a tractable

model of macroeconomic (inflation, output gap and short-term policy interest rate) and yield

curve dynamics. Through a German data, they find that the macroeconomic factors affect the

term structure of interest rates in different ways while inflation and output shock mostly affects

the curvature of the yield curve, monetary policy shocks have a marked impact on the slope of the

yield curve.

Using an affine term structure model, Bernanke et al. (2004) show that model which only
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uses macroeconomic variables, predicts the yields reasonably well at all maturities, while Smith &

Taylor (2009) proposed a derived formula that links the coefficients of the monetary policy rule

for the short term interest rate to the coefficients of the implied affine equations for long-term

interest rates, and showed that an increase in the coefficients in the monetary policy rule leads to

an upward shift in the coefficients of all maturities.

Finally, Kaya (2013) contribute to literature, studying the relationship between the yield curve

and macroeconomic factors, they find that the relationship is significantly affected by the change

in monetary policy which is associated with the implementation of inflation targeting (IT) regime.

Studies in the literature have generally focused on the developed countries, particularly on US,

and this very important literature has remained scarce for the emerging market cases.

The purpose of this paper is twofold: i. Use the three-factor model for the term structure

as proposed by Nelson & Siegel (1987) reinterpreting the factors as level, slope and curvature of

the yield curve just as in Diebold & Li (2006), in order to make the estimation. To estimate the

models, two approachesa Are applied: first, the classic two-step method; second, the state-space

approach.

This paper contributes to the literature in two ways. First, to compared different methods for

estimate Brazilian yield curve and find evidences that Kalman Filter is the most suitable method

for the estimation. Second, a recent data-set that includes the last few years, in which yields have

had significant oscillations in fact of financial and economic crisis, is employed.

The reminder of this paper is structured as follows. Section 2 provides a description of the

structure of Diebold-Li model for the yield curve and its state-space form. Section 3 describes the

data-set employed in the analysis. Section 4 presents the dynamic Nelson Siegle Model results.

Section 5 concludes the paper.

2. Yield Curve Methodology

Before describing the structure of the model, it is necessary to define discount curve, forward

curve and yield curve, as well as their interrelations. The term structure of interest rates is

represented by a set of spot rates for different maturities. Each point corresponds to a yield yi(τ)

associated with maturity τ , obtained from a security traded on the market.

At any point of time t, there will be a collection of zero-coupon bonds that differ only in terms of

maturity. However, in a given moment, there may not be a bond available to all desired maturities

as bonds are not negotiated for all possible maturities.

One of the most basic constructions describing the term structure of the interest rate, from

which other curves are often derived, is the discount function. Let Pt(τ) be the price of a zero-

coupon bond at time t, which pays $1 at maturity τ . Supposedly, every zero-coupon bond is

default-free and has strictly positive prices. Thus, the discount function is defined by:
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Pt(τ) = eτyt(τ) (1)

The yield yt(τ) at which the bond is discounted is the internal rate of return of the zero-coupon

bond, at time t, and with maturity τ , expressed as:

yt(τ) =
−ln(Pt(τ))

τ
(2)

The forward rate at time t applied to the time interval between τ1 and τ2 , is defined by:

ft(τ1τ2) =
1

τ1 − τ2

∫ T2

T1

yt(x)dx (3)

The same argument applies to forward rates for k-periods. The forward rate can be interpreted

as the marginal rate of return necessary to maintain a bond for an additional period. The limit of

expression when τ1 draws closer to τ2, denoted by ft(τ), is the instantaneous forward rate:

ft(τ) =
−Pt(τ)

Pt(τ)
(4)

The instantaneous forward rate curve, ft(τ) , provides the decay rate of discount function Pt(τ)

in each point τ . The yield curve yt(τ) is the average decay rate for the interval between 0 and τ ,

expressed by:

yt(τ) =
1

τ

∫ T

0

ft(x)dx (5)

The function ft(τ) of forward rates describes the (instantaneous) rate of an investment return

which is maintained for a very short time interval. The instantaneous forward rate curve is a very

important theoretical construct, even though its value for a single maturity is of little practical

interest, due to the high transaction cost associated with a contract between two points in the

future if these two points are too close to each another. Only the mean of ft(τ) for a future time

interval is of practical interest.

At any point at time t, there will be a set of bonds with different maturities, τ , and different

payment flows, which may be used to estimate the yield curves, discount curves and forward

curves, which are not observable in practice. There are different approaches to the construction

of yield curves. McCulloch (1971) and Vasicek (1977) build yield curves using estimated smooth

discount curves and converting them into rates at relevant maturities. The method put forward

by McCulloch (1971) discounts function interpolation. The advantage of this method is that the

estimation model has only has linear parameters, its disadvantage is the resulting erratic curves

for longer maturities, i.e., the adjusted discount curve diverges for longer maturities instead of
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converging to zero. Vasicek (1977) use of exponential splines to adjust the discount function,

which would eliminate the divergence problem for longer maturities.

Statistical models were also used to estimate the term structure of interest rate as in Nelson

& Siegel (1987), Swenson (1994), among others. These models proved to be quite useful in the

analysis and pricing of fixed income securities, and special attention should be paid to the work

carried out by Nelson & Siegel (1987), medium- and long-term factors began to be interpreted as

slope, curvature and level factors.

Famma & Bliss (1987) proposed a method for the construction of the term structure using

forward rates estimated for the observed maturities. The method consists in sequentially building

the forward rates necessary to successively price bonds with longer maturities, known as the un-

smoothed forward rates proposed by Fama and Bliss. The yield curve resulting from this procedure

is a (discontinuous) function with jumps relative to the maturity of the bond being traded.

2.1. Diebold and Li Model

Empirical results suggest that the Diebold & Li (2006) model has a good forecasting power

if compared with an affine term structure model and the random walk benchmark, especially for

the short-term interest rates. Therefore, it provides a good stating point for emerging markets

research.

The Diebold & Li (2006) method follows the Nelson & Siegel (1987) exponential components

framework to distill the entire yield curve, period by period, into a three-dimensional parameter

that dynamically evolves. The corresponding yield curve is:

yt(τ) = β1t + β2t(
1− e−λτ

λτ
) + β3t(

1− e−λτ

λτ
− e−λτ ) (6)

where t is the date and τ the maturity. The parameter λ controls the exponential decay rate

and the maturity where β3t achieves its maximum curvature loading. Small values of λ produce

slow decay and can better fit the curve at long maturities, while large values of λ produce fast

decay and can better fit the curve at short maturities. According to Diebold & Li (2006), we

adopted a constant given by the value that maximizes the loading on the medium-term factor,

as shown in , setting the value of 0.0609 corresponding to a maximum curvature loading between

bonds of 2- and 3- year maturities.

The terms β1t, β2t and β3t are interpreted as three latent dynamic factors. The β1t loading is a

constant of value 1, that does not decay to 0 at the limit; hence, it is viewed as a long-term factor.

Thus, β2t seems a function that starts at 1 and decays monotonically and quickly to 0; which can

be viewed as a short-term factor. Finally, β3t starts on value 0, increasing and decaying to 0; hence

it can be viewed as a medium-term factor. These three factors are commonly interpreted as level,

slope and curvature by the effect they have on the yield curve, respectively.
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In a recent paper, Lima et al. (2006) study different models for the forecasting of interest rates

in Brazil. They compare the forecasting accuracy of VAR and VEC models with that of naive

forecasts form a simple random walk model. The authors conclude that VAR/VEC models are not

able to produce forecasts which are superior to the random walk benchmark.

2.2. Estimation and forecasting using the state-space form

When the state-space form is used, two approaches can be employed to estimate the latent

factors and the parameters. The initial approach proposed by Diebold & Li (2006) is based on

two steps and, therefore, is inefficient, disregarding the uncertainty that it is inherent to the first-

step estimates in the subsequent step. In the first stage, the measurement equation is estimated

using cross-sectional data, in which the estimates for the factors are obtained for each time period.

Assuming that the decay parameter is constant, the measurement equation becomes linear and can

be estimated by ordinary least squares. In the second stage, the time dynamics of the parameters

is specified and estimated as an AR(1) or VAR(1) process.

Diebold & Li (2006) showed that it is possible to estimate this model by maximum likelihood

in a single step by using the Kalman filter, providing efficient estimates for the parameters and

smoothed estimates for the unobservable factors.

This approach is not only adopted in Diebold & Li (2006), but also in Koopman & Mallee

(2007), among others. The procedure utilizes the Kalman filter to build the likelihood function,

which is then maximized in order to obtain parameter estimates. We consider the Nelson Siegel

model as a linear Gaussian state space model.

Our measurement equation models the time-series process of the yields according to latent

factors, assuming the form:
yt(m1)

yt(m2)
...

yt(mt)

 =


1 1−eλm1

λm1

1−eλm1

λm1
− em1

1 1−eλm2

λm2

1−eλm2

λm2
− em2

...
...

...

1 1−eλmN
λmN

1−eλmN
λmN

− emN


 Lt

St

Ct

 +


εt(m1)

εt(m2)
...

εt(mN)

 (7)

which can be expressed in matrix notation as above:

yt = Λ(λ)Ft + εt (8)

where εt ∼ MN(0,
∑

ε), t = 1, ..., T . Thus, yt represents a NX1 vector of yields, Λ(λ) is a

NX3 factor loading matrix, Ft is a 3X1 latent factor vector, and εt is a NX1 yield disturbance

vector. The diagonal structure of
∑

ε implies that measurement error across maturities of yt are

uncorrelated and that it is a fairly standard assumption in the literature. The transition equation

can be expressed by the vector autoregressive process:

6



 Lt − µLt
St − µSt
Ct − µCt

 =

 a11 0 0

0 a22 0

0 0 a33


 Lt−1 − µLt
St−1 − µSt
Ct−1 − µCt

 +

 ηLt

ηSt

ηCt

 (9)

which can be expressed as a matrix notation:

Ft = (I − A)µ+ AFt−1 + ηt (10)

Where ηn ∼ MN(0,
∑

η), t = 1, ..., T . Thus, µ is a 3X1 mean vector, A is a 3X3 coefficient

matrix,
∑

η is a 3X1 factor disturbance matrix. The assumption that the deviations to the NS

factors are uncorrelated is not standard in the literature. But Diebold & Li (2006) conclude that

the off-diagonal elements are marginally significant and the point estimates and standard errors of

the A matrix are little changed when estimating
∑

η.

We are able to use Kalman filter to estimate latent factors since the DNS state space model is

linear in latent factors. The Kalman filter procedure is carried out recursively during t = 1, ..., T

with initial values for the latent factors and their variances being the unconditional mean and

unconditional variance, respectively. Purchasing Ft|t as the minimum mean square linear estimator

(MMSLE) of Ft and vt|t as the MSE matrix. So, f1|0 = µ and v1|0 = (I−A)−1
∑

η. With observation

yt and initial values of f1|0 and v1|0, the Kalman filter updates the values for ft|t and vt|t through:

ft|t = ft|t−1 +Ktet|t−1 (11)

vt|t = vt|t−1 +KtΛ(λ)vt|t−1 (12)

Where et|t−1 = ytΛ(λ)ft|t−1 is the predicted error, evt|t−1 = Λ(λ)vt|t−1Λ(λ)′+
∑

ε is the predicted

error variance matrix and Kt = vt|t−1Λ(λ)′ev−1t|t−1 is the Kalman gain matrix. The next period

MMSLE of the latent factors and associated variance matrix conditional on yields are governed by

the prediciton equations:

ft|t−1 = (I − A)µ+ AFt−1|t−1 (13)

vt|t−1 = Avt−1|t−1A
′ +

∑
η

(14)

Denote θ as the system parameter vector. The parameters to be estimated via numerical

maximum likelihood estimation are θDNS = [Aij,
∑

ηij,
∑

εij, µ, λ]. So, we could represent the

likelihood function as:
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l(θ) = −NT
2
log2π − 1

2

T∑
t=1

log|evt| −
1

2

T∑
t=1

e′t(evt)
−1et (15)

As a result, l(θ) can be evaluated by Kalman filter through a quasi-Newton optimization

method for the purposes of maximization without inverting the Hessian matrix (more details

around Kalman filter estimation can be obtained on Durbin & Koopman (2001), Anderson &

Moore (1979) and Simon (2006)).

The values of ft|t and vt|t for the last iteration of the Kalman filter are used as initial values

in the recursive algorithm to obtain smoothed values of the unobserved factors. Iterating the

following equations, we obtain the smoothed estimates:

ft|T = ft|t + vt|tΛ(λ)′v−1t+1(ft+1|T − Λ(λ)ft|t − µ) (16)

vt|T = vt|t + vt|tΛ(λ)′v−1t+1(vt+1|T − ft+1|t)v
−1
t+1
′Λ(λ)vt|t (17)

These smoothed estimates provide a more accurate inference on ft because it uses more infor-

mation from the system than the filtered estimates.

The maximum likelihood estimator obtained thereby is preferable to the two-step method, as

in the latter the estimation of parameters in the second stage does not take into consideration

the uncertainty over the values of the estimated factors in the first stage, producing inefficient

parameter estimates. The joint estimation of the measurement and state equations on the other

hand does not have such problem and yields efficient estimates for the parameters. Another

advantage of likelihood estimation is the joint estimation of the decay parameter which, in the

two-step method, has to be calibrated according to some measure. Almeida et al. (2007) show that

different rules for the calibration of the decay parameter yield different results for the out-of-sample

forecast of the term structure of interest rate, indicating that the two-step estimation method lacks

robustness. Moreover, the Kalman smoother allows to obtain smoothed estimates for the latent

variables, which take the whole sample information into account in order to infer on the time series

of the unobserved factors.

3. Data Set

Brazilian economic data sets are relatively comprehensive when it comes to inflation measures

and market expectations. As a consequence of a high-inflationary history, Brazilian market par-

ticipants were adapted to use a variety of price indexes and price expectations indexes, some of

which are available at the weekly or even daily frequencies. Overall, this means that the Brazilian

data provide lots of useful high-frequency information about yield curve behavior.
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The data set analyzed consists of Brazilian Interbank Deposit Futures Contract (DI1). The

source of the data is the Brazilian Mercantile and Futures Exchange (BM&FBovespa), which is the

entity that offers DI-futuro contracts and determines the maturities with authorized contracts. The

DI-futuro contract with maturity τ is a zero-coupon future contract in which the underlying asset

is the DI-futuro interest rate accrued on a daily basis, capitalized between trading period t and τ .

The DI-futuro rate is the average daily rate of Brazilian interbank deposits (borowing/lending),

calculated by the Clearinghouse for Custody and Settlements (CETIP) for all business days. The

DI-futuro rate, which is published on a daily basis, is expressed in annually compounded terms,

based on 252 business days.

The data were observed between January.2008 and March.2018, and represent the most liquid

ID contracts negotiated during the analyzed period. Table 1 presents statistics for Brazilian yield

curve. For each time series we report the mean, standard deviation, minimum and maximum.

Table 1: Descriptive Statistics, Yield Curves (2008:01 to 2018:03)

Descriptive Statistics
Maturity Mean Std Dv Minimum Maximum

3 0.1088 0.0233 0.0630 0.1476
6 0.1094 0.0238 0.0622 0.1519
9 0.1102 0.0238 0.0622 0.1565
12 0.1112 0.0237 0.0630 0.1587
15 0.1124 0.0233 0.0649 0.1613
18 0.1135 0.0228 0.0675 0.1632
21 0.1145 0.0221 0.0702 0.1647
24 0.1155 0.0215 0.0729 0.1659
27 0.1163 0.0210 0.0753 0.1686
30 0.1169 0.0205 0.0778 0.1700
36 0.1178 0.0197 0.0814 0.1716
42 0.1186 0.0191 0.0834 0.1732
48 0.1192 0.0186 0.0846 0.1758
60 0.1197 0.0178 0.0864 0.1770

It should be noted that the rates for shorter maturities are more volatile, which is a stylized

fact in the interest rate literature. Another point to note is that, even in the case of a sample

period that is not very long, there is a wide variation between the minimum and maximum rates

for all maturities, reflecting the behavior of monetary policy in the period - even more when it

comes to high maturities.

The next Figure shows the behavior of the interest curve for the analyzed period. It is important

to highlight that this interest curve was obtained considering fixed maturities. Note the various

formats assumed by the term structure of the interest curve, in periods in which it has positive

slopes, negative slopes and periods with more than one inversion. Thus the sample seems adequate
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to compare the performance of different adjustment methodologies.

Figure 1: Term Structure of the Interest Rate (January.2008 to March.2018)
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Thus, in context to explore the relationship between the interest curve and the macroeconomic

variables, a variable matrix was set up, based on Kaya (2013) composed by: inflation, output gap,

capacity utilization, exchange rate and policy rate.

Inflation rate was calculated as πt = (logIPCAt − logIPCAt−12), where IPCA denotes de

Consumer Price Index and IPCA series are collected from IPEA. To calculate the output gap, it

was first calculated the PIB growth as grt = (logPIBt − logPIBt−12), and so, detrend the grt by

using Hodric-Prescott (HP) filter. Adopting this process, we ensure that output gap measures at

time t do not rely on unavailable information at that point. Utilization capacity was calculated

as uct = (logUCIt − logUCIt−12), where UCI series are collected from IPEA and are seasonally

adjusted.

For the nominal exchange rate, et Real was used against the US Dollar. For the policy rate, rt

the overnight interest rate of Central Bank of Brazil, SELIC, was used. The exchange rates and

the price indices are collected from IPEA.

The relationship between yield curve and macroeconomic variables is not stable, as is possible

to verify in many works (Bansal & Zhou, 2002)

With the subprime crisis in 2008, Brazil and several countries were affected, financially dam-

aging leveraged sectors and modifying the financing profile of the others. In 2014, the Brazilian

economy started a deep economic crisis and only after 2017 Brazil shyly resume GDP growth in
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order to get out of the deepest financial crisis in the country, related to the shocking levels of GDP

and unemployment.

A simple approach to take into account a possible structural break is to estimate any given

model in each period. Thus, the sample period is divided as January.1998-December.2013 (pre-

2014 period) and January.2014-March.2018 (post-2014 period) for the macroeconomic and yield

curve relationship investigation.

4. Dynamic Nelson Siegle Model

In Section 2, the model of Diebold & Li (2006) was fit out in state-space form, with a transition

equation, which models the dynamics of the factors, and a linear measurement equation that

relates the observed yields to the state vector. The parameters were estimated simultaneously by

maximum likelihood using the Kalman filter, which is an efficient estimator and which eliminates

the problem related to how to calibrate the decay parameter. The yields used resume on future

ID rates between January 2008 and March 2018, totaling 1722 observations (123 observations for

each one of the 14 maturities).

Differently the two-step method, in the Kalman filter estimation, the parameters are estimated

in a single step. So, λ governs the decay rate of factor loadings of both the level and curvature are

estimated with other parameters and not determined a priori. The initial values of the parameters

for Kalman filter were obtained from the estimation using the two-step method. Figure 2 shows

the factor loadings for level, slope and curvature, obtained from the estimated λ.

With an estimated λ equal to 0.85, the factor loading of the curvature assumes maximum value

for maturities between 13 and 23 months. The main argument in favor of Diebold-Li three-factor

model is its capacity to yield forecasts successfully. Although it is not the best model when the

fit of the term structure of interest rate is the major goal, the model put forward by Diebold & Li

(2006) can replicate the several shapes taken by the yield curves.
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Figure 2: Factor Loading λ = 0.85

Figure 3 shows the yield curve performance, divided by the factors (level, slope and curvature),

comparing the Two-Step and Kalman Filter paths. Note that the model estimated with three

factors fits well to a wide variety of shapes of the yield curve: positively sloped, negatively sloped

and with different curvature shapes. Note that the level of the yield curve exhibited a more

volatile behavior after November 2008, when the financial crisis had a stronger impact on the

assets traded in the Brazilian market. Another volatile behavior is observed during 2016-2017,

when a instability crisis caused a significant impact on Brazilian assets market. The 2016-2017

volatile can be observed on slope and curvature, even blander. In general, both methods have

similar trajectories. However, we can notice that in periods with curve changes,the Kalman filter

has a smoother estimate, or in other words, a more efficient estimation.

An advantage of parametric models, besides being more parsimonious, lies in the economic

interpretation of the parameters, as is the case of Nelson & Siegel (1987) model interpreted by

Diebold & Li (2006) in which the three factors are interpreted as level, slope and curvature of the

interest curve. This economic intuition of the parameters allows a more effective immunization of

fixed income portfolios, for example, being possible to neutralize the portfolio not only to parallel

movements of the yield curve, but also to changes in the inclination and curvature. In this regard,

see Caldeira (2011).

12



Figure 3: Factors Estimates: Two-Step and Kalman Filter Methods

In Figure 4 we conclude that the λ estimated by Kalman Filter appears with a smoother

trajectory, showing more adherence in the estimation of the yield curve and proving that models

in state-space form can estimate on a most efficiently way than classic methods like two steps.

Figure 4: Load Curvature Fator: λ Two-Step and λ Kalman Filter
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The curvature loading factor is greater in the high regime than in the low regime for the one

through 12-months maturities and therefore influences the yields of those maturities more than

in the low regime. For longer maturities in the high regime, the curvature loading factor decays

quickly and is less of a factor in yield determination than in the low regime.

Figure 5 presents the real yield curve (observed) and the adjusted yield curve through the two

different analyzed methods: Diebold & Li (2006) model estimated in two-step, and in a single step

estimation using the Kalman filter. The quality of the adjustment of each methodology is analyzed

in different situations, considering periods with positive inclination, inverted curve and negative

inclination. This allows us to verify if some estimation method presents a better performance for

certain yield curve shapes.

In June.2008, the rates for low maturities were loading elevation expectations, since the inter-

mediate maturities the yield curve presented downward inclination, assuming a well defined curve

for maturities on 20-months ahead. Even the two-step, as the Kalman filter, showed a similar

adjustment.

The curve of January.2009, greatly differs from the format shown in June.2008, but in the last

case, the interest rates for the shorter maturities are in higher and the curve does not show a sharp

inversion of inclination. The models introduce a better adjustment for maturities between 20 and

50 months.

The next shows the real and adjusted interest curve for July.2010, period in which interest

rates for the shorter maturities were lower than those previously analyzed, reflecting the monetary

policy on elevation of interest rates implemented by the monetary authority in the period. Note

that the curve clearly shows a positive slope, reflecting expectation regarding the possible start

on high cycle of the basic interest rate. It can be observed that in this case, in which the curve

presented positive inclination from the shortest maturities without inversions, every model shows

a good performance in relation to the adjustment of the interest curve in all maturities.

The same occurs for the curve in February.2014, on a period when the interest rates for the

shorter maturities were lower, reflecting the monetary policy of elevation. The curve displays a

positive slope, reflecting expectation of a rise in interest rates. Over again, both models present a

good adjustment for all maturities.

The curve of March.2016 differs greatly from the February.2014 and July.2010 curves, where the

lowest maturities show elevate interest rates, with an expectation of lowering. Both models intro-

duce a better adjustment for maturities between 10 an 30 months; without maintaining accuracy

in periods where there is a greater trend of high or low interest rates.

The last curve refers to January.2018, period with lower interest rates for shorter maturities,

reflecting the monetary policy on elevations of interest rates in the face of the troubled economic

scenario. Note that the curve shows a positive slope (even more pronounced than the curves of
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the dates February.2014 and July.2010), reflecting the market expectation of a high cycle.

Figure 5: Observed and Adjusted Yields [Specific Dates Behavior]

Finally, Figure 6 brings the adjusted and interpolated yield curve for four different maturities.

The fit of the models to the real data reinforces previous observations that, in the majority of

cases, both methods used present good performance to adjust the yield curve; and in some cases

the Kalman Filter exhibits superior performance. Even at times when the curve does not show

strong inversions of curvature and inclination, the models also present a satisfactory adjustment.

In Table 2 we present statistics for both the two-step and Kalman filter, and calculate the

mean, standard deviation and RMSE (Root Mean Squared Error). We perceive that the two

models analyzed capture a substantial part of the dynamics of the interest curve. The Kalman

filter RMSE performs better for almost all maturities, except for the tips (3, 6 and 48 months),

proving its accuracy when compared with two-step. The worst performance is observed for the

shortest maturity which is more susceptible to Selic rate fluctuations. In Caldeira et al. (2010) the

model estimated by Kalman filter outperforms the model estimated in two-steps in all maturities;

showing a adherence in conclusions of the studies.
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Figure 6: Observed and Adjusted Yields [Specific Maturities Behavior]

We can verify that the Kalman filter presents smaller variation in its means for all maturities

along, when compared with two steps method; being one more fact in favor of the estimated

method in the form of state space. About the standard deviation, we arrive at the same conclusion,

demonstrating that the Kalman filter generally performs better.

Table 2: Comparative Statistics: Two-Step x Kalman Filter

Descriptive Statistics
Kalman Filter Two-Step

Maturity Mean Std Dev RMSE Mean Std Dev RMSE
3 0.1169 0.3978 0.4131 0.0618 0.1387 0.1514
6 0.0524 0.1367 0.1459 -0.0065 0.0877 0.0876
9 0.0012 0.0225 0.0224 -0.0478 0.1046 0.1146
12 -0.0199 0.0577 0.0600 -0.0536 0.0985 0.1180
15 -0.0196 0.0577 0.0608 -0.0372 0.0764 0.0847
18 -0.0106 0.0381 0.0394 -0.0139 0.0539 0.0555
21 -0.0008 0.0234 0.0232 0.0077 0.0443 0.0448
24 0.0103 0.0326 0.0341 0.0274 0.0588 0.0646
27 0.0170 0.0383 0.0417 0.0398 0.0703 0.0800
30 0.0105 0.0429 0.0440 0.0366 0.0784 0.0862
36 -0.0013 0.0368 0.0366 0.0250 0.0737 0.0776
42 -0.0017 0.0336 0.0335 0.0193 0.0632 0.0659
48 -0.0109 0.0480 0.0491 0.0016 0.0408 0.0407
60 -0.0530 0.1150 0.1262 -0.0604 0.1163 0.1307
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5. Concluding Remarks

This paper presents the main concepts related to structure of the yield curve and of bonds with

and without coupon, with zero-coupon bonds, which are employed in the construction of the yield

curve. It was also presented the interrelations between the various yield curves estimates.

In the present research, was estimated Diebold & Li (2006) model for Brazilian data by the

inefficient two-step method and into a state-space form estimated by maximum likelihood using

Kalman filter. The maximum likelihood estimation allows for the joint estimation of all parameters

of the model, preventing the a priori selection of the decay parameter.

The results indicate that the model estimated by maximum likelihood performs better than

the model estimated by two-step method for almost all forecasting horizons. This results show

the flexibility of the model to adjust itself to a wide variety of yield curve shapes, and that the

estimation by the Kalman filter is better than its counterparts estimated by the two-step method.
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