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ABSTRACT 

In this paper, a new flexible lifetime class of probability distributions is introduced based on 
the power Lindley (PL) distribution and the T-X family of distributions called the odd power 
Lindley (OPL-G) distribution. The proposed class can generate as many continuous lifetimes 
distributions, which can be used for modeling lifetime data in many fields. Some special 
models of the proposed class are discussed. Several properties of the proposed class are 
studied, such as density, survival function, hazard rate function, limiting behavior, quantile 
function, moments, and distribution of order statistics. The method of maximum likelihood 
estimation will be used to estimate the parameters of this new class of distributions. 
Asymptotic properties of the MLEs and a simulation are introduced to verify the 
performance of the parameter estimates. We finally choose a model of the proposed class 
and fit it to three real data sets in order to demonstrate the flexibility and potential of the 
proposed class. 

 Keywords: Odd power Lindley-G distributions, power Lindley distribution, 
lifetime distribution, maximum likelihood estimation 

 

 

1. Introduction 

 

The failure behavior of any system varies from one system to another due to the nature 

of the system. and hence, it can be considered as a random variable. Therefore, it is 

logical to try to find an appropriate statistical model for system failure. In other 

applications, we may be interested in the survival of a system, which characterized by its 

hazard rate, e.g., the number of shops runout of business. We point out that "survival 

analysis" is the scientific name for both failure rate and hazard rate. It should also be 

noted that failure rate and hazard rate have the same mathematical function.  
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Modeling survival data depends on the behavior of the hazard (failure), which can be 

monotone (non-increasing and non-decreasing) or non-monotone (bathtub and upside-down 

bathtub, or unimodal). Many statistical models have been proposed for modeling of survival 

data based on the behavior of the failure or the hazard of the system. These models include 

exponential, gamma, Weibull, and log normal distributions. A one-parameter distribution was 

introduced by Lindley [15] as an alternative model for data with a non-monotone hazard rate 

shape and became the well-known Lindley distribution. Ghitany et al. [11] studied the 

properties and applications of the Lindley distribution and found that this distribution may 

perform better in modeling than in exponential distribution. The power Lindley (PL) 

distribution with its inference was proposed by Ghitany et al. [10] and extended by Alkarni 

[3]. We should point out that the PL distribution often shows potential for fitting data and 

compete Weibull distribution. 

The benefit of introducing a family of distributions is to provide high flexibility in 

modeling lifetime data. Many generators of distributions have been proposed recently and 

listed by Gomes-Silva et al. [12], Tahir et al. [21] and Abouelmagd et al. [1]. 

In this paper, we focus on establishing a new family of distributions using the PL 

distribution as he generator distribution with the idea of the T-X family of distribution as 

defined by Alzaatreh et al. [4]. The PL distribution was chosen owing to its flexibility and 

simplicity since it has two parameters and models survival data, compared with the Weibull 

distribution; see Alkarni [2]. The proposed class generalized the one introduced by Gomes-

Silva et al. [12] into a more powerful and flexible class of distributions. 

The remainder of this paper is organized as follows. In Section 2, we introduce the odd 
power Lindley-G (OPL-G) family of distributions. In section 3, we discuss the general properties 
of the OPL-G distribution, such as the probability density function (PDF) and its behavior, 
hazard rate function, reliability function, moments, moments generating function, quantile, 
and distribution of order statistics. The estimation of the OPL-G parameters is investigated in 
Section 4 using the method of maximum likelihood estimation (MLE) and a large sample 
inference with EM algorithm of solving the nonlinear equations in the MLE. In section 5, some 
special sub classes and models of the OPL-G family are introduced. In Section 6, a simulation 
is introduced in order to check the reliability of using MLE estimates in the inference. In 
Section 7, a chosen model of the family is fitted to three real datasets and compared to some 
existing models in order to illustrate the applicability and flexibility of the OPL-G distribution. 
Finally, some concluding remarks are addressed in Section 8. 

 

2. The Odd Power Lindley-G Family of Distributions 

 

The T-X family of distribution, as it was defined by Alzaatreh et al. [4] by its cumulative 

distribution function, is given by 

[ ( )]

( ) ( ) ,

W G x

a

F x r t dt                                                     (2.1) 

where ( )r t is the PDF of a lifetime random variable and [ ( )]W G x  is a cumulative distribution 

function (CDF) of a random variable .X  The PDF corresponding to (2.1) is given by 

https://vpn.ksu.edu.sa/science/article/pii/,DanaInfo=www.sciencedirect.com+S0167947312003386#s000010
https://vpn.ksu.edu.sa/science/article/pii/,DanaInfo=www.sciencedirect.com+S0167947312003386#s000035
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                                   ( ) [ ( )]. ( [ ( )]).
d

f x W G x r W G x
dx

                          (2.2) 

The OPL-G is then defined by letting 
( ;

[ ( )] ( ;
1 ( ;

G x
W G x H x

G x
 







, and  the 

generator ( )r t  is taken to be 
2

1( ) (1 ) , , ,
1

tr t t t e t
  
 



    


, where ( ; )G x   is a 

baseline CDF that depends on a parameter vector 1,..., )q    . Using (2.1), the OPL-G CDF 

is given by 

   ( ;
( ; , , ) 1 1 ( ; ; , , , 0.

1

H x
F x H x e x

 
   



 
    

 


              (2.3) 

For each choice of ,G and hence, ( ;H x  we have a new continuous life time distribution. 

Note that for 1,   the OPL-G is reduced to the odd Lindley-G (OL-G) family of distributions 

proposed by Gomes-Silva et al. [12]. 

An interpretation of the OPL-G family of distributions can be given as follows. Let Y be 
a lifetime random variable having a certain continuous G distribution. The odds ratio that an 
individual (or component) following the lifetime Y will die (failure) at time x is ( ;H x 

Consider that the variability of this odds of death is represented by the random 
variable X and assume that it follows the PL distribution with scale parameter   and shape 

parameter .  Then, 

 ( ) ( ; ( ; , , ),P Y x P X H x F x         

Which is given by (2.3). Table 1 lists ( ;H x   for some well-known lifetime distributions and 

their corresponding parameter vector   
 
Table 1: Useful ( ;H x   for some continuous lifetime distributions 

Distribution                             ( ;H x                                                                        

 

    Uniform                                  / ( )x x                                                             

    Exponential                            1xe                                                                              

    Weibull                                    ( ) 1xe
                                                           ( , )    

    Frechet                               
( ) 1( 1)xe

                                                   ( , )   

    Half-logistic                           ( 1) / 2xe                                                           -    

    Power function                     1[( ) 1]kk                                                    ( , )k   

    Pareto                                    ( / ) 1kx                                                          ( , )k  

    Burr XII                                   [1 ( / ) ] 1c kx s                                              ( , , )s k c                       

    Log-logistic                             [1 ( / ) ] 1cx s                                                ( , )s c  

    Lomax                                      [1 ( / )] 1kx s                                               ( , )s k  

     Gumbel                                  1{exp[exp( ( ) / )] 1}x m                       ( , )    

     Kumaraswamy                      (1 ) 1x                                                     ( , )              
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     Normal                                  (( ) / ) / (1 (( ) / ))x x               ( , )                                

 
  

 

3. General properties 

3.1 Probability density function  

The general form of the PDF corresponding to (2.3) is given by 

     
2

1 ( ;
( ; , , ) 1 ( ; ( ; ( ; ) ; , , , 0.

1

H x
f x H x H x h x e x

  
   



    
 


      

(2.4)                               

where 
2

( ; )
( ; ) ( ; )

(1 ( ; ))

d g x
h x H x

dx G x
 




 


. Hereafter, we refer to a random variable 

X  with PDF and CDF in (2.3) and (2.4), respectively, as X OPL-G ( , , ).    

The shape of the PDF depends on the function ( ;H x   and can be described analytically. 

3.2 Hazard rate and reliability functions 

  The probability that any cause survives for some time x is called the reliability (survival) of 

the cause of delay and is given by 

( ) ( ) 1 ( ).R x P X x F x     

   The hazard rate function (HRF) also known as the failure rate function is generally defined 

as 

( )
( )

1 ( )

f x
x

F x
 


 

By using (2.3) and (2.4), the HRF is given by 

   

 

12 1 ( ; ( ; ( )
( ) ; , , , 0.

1 ( ;

H x H x h x
x x

H x

 




  

 

 
  

 

 



              (2.5) 

 The shape of the HRF depends on the function ( ;H x   and can be described analytically. 

3.3 Quantile function and order statistics 

The quantile function is useful for generating data from the OPL-G distribution for 

simulation. Let X be a random variable with CDF as shown in (2.3). The quantile 
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function, i.e., ( ),XQ p  is the root of the equation ( (p)) p,p (0,1)X XF Q   . 

Substituting this equation in (2.3), we have 

[ ( ( ))]
1 [ ( ( ))] ( 1)(1 )XH Q p

XH Q p e p
  

       

Multiplying both sides by ( 1)e   , we have the Lambert equation, 

 1 [ ( ( ))] ( 1)1 [ ( ( ))] ( 1)(1 )XH Q p

XH Q p e p e
               . 

Hence, we have the negative Lambert function W of the real argument 
( 1)( 1)(1 )p e      , i.e., 

( 1)

1 ( 1)( 1) 1 [ ( ( ))] .XW p e H Q p    


          

Solving the above equation for ( ),XQ p  we have the quantile function for PL-G distribution 

given by 

 

1

1 ( 1)

1

1 1
( ) 1 ( 1)( 1) .XQ p H W p e




 

  



 
  

       
  
 

                  (3.3.1) 

Order statistics are among the most fundamental tools in non-parametric statistics and 

inference. These can be used to tackle estimation problems and hypothesis tests in many 

ways. The PDF of the thk order statistics from a random sample 1,..., nX X  from the PL-G is 

given by 

1

: ( ) ( ( ( ,
( 1) )

k n k

k n X X X

n
f x f x F x F x

k n k

 


   
     

1

0

( (
( 1) )

n k
i k i

X X

i

n kn
f x F x

ik n k


 



 
  

     
                  (3.3.2) 

The associate CDF can be obtained as 

:

0

( 1)
!

( ) [ ( )]
( 1) ( )

.
! !

X

i

n k
k i

k n

i

n k

in
F x F x

k k i k i






 
 

 
  

                        (3.3.3) 

 

3.4 Moments and generating function 

Many of the necessary characteristics of a distribution can be obtained from ordinary 
moments. The OPL-G moments can be obtained numerically in any of the modern statistical 
packages, such as R. These packages contain the required mathematical functions for 
computing moments.  
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Alternatively, some structural properties of the new family, such as the ordinary and 
incomplete moments and generating function, can be determined from well-established 
properties of the Exp-G distributions. The properties of Exp-G distributions have been studied 
by many authors in recent years, see Mudholkar and Srivastava [16] and Mudholkar et al. [17] 
for exponentiated Weibull, Gupta et al. [13] for exponentiated Pareto, Gupta and Kundu [14] 
for exponentiated exponential, Nadarajah [18] for exponentiated Gumbel, Shirke and Kakade 
[20] for exponentiated log-normal and Nadarajah, and Gupta [19] for exponentiated gamma 
distributions. 

4. Estimation and inference 

Let 1, 2 ,..., nx x x  be a random sample with size n  obtained from the OPL-G 

distribution with parameters ,  and    . Let ( , , )T     be the 1p   unknown 

parameter vector. The log likelihood function of the PL-G distribution is given by 

1 1

1 1

( , ) log 2 log log( 1) log 1 ( ; ( 1) log ( ;

      log ( ; ( ; .

i

i

n n

n n i

i i

n n

i

i i

l l x n n n H x H x

h x H x





   



 

 

              

    

 

 

 

 

  

The associate score function is  ( ) ( / , / , / , )T

n n n nU l l l         where the 

elements of ( )nU   are given by  

1

1 1

1

1

1

2
( ; ,

1

( ; log[ ( ; ]
log[ ( ; ],

1 ( ;

( ; log[ ( ; ],

( ; ( ;
( 1)

1 ( ;

i

i i

i

i

i i

i i

i

n
n

i

n n
n

i i

n

i

n
n

ii i

l n n
H x

H x H xl n
H x

H x

H x H x

H x H xl

H x













  

 




 



 








      

     
    

   

      
    



 







 




 

 

 1

1 1

( ;1

( ;

( ; ( ;1
( ; ,

( ;

1,..., ,

i

i

i i

i

i

n

i i

n n

i ii i

H x

H x

h x H x
H x

h x

i q






 



 





 
     





 





 
 



 

respectively. 

The maximum likelihood estimates of  can be obtained as a solution of ( ) 0nU    by any 

numerical method, such as Newton–Raphson in R. Fisher information matrix is a p p  matrix 

consisting of the second partial derivatives of ( )nU   and is given by 
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                                                 ( ) ,n

I I I

I I I I

I I I

  

  

 

 
 

   
 
 





  

 

where the elements of  nI   are the second partial derivatives of ( )nU  . These elements 

can be obtained from R or MATLAB to obtain a confidence interval for the estimates. Under 

the standard regular conditions for the large sample approximation in Cox and Hinkley [9], 

which was fulfilled for the proposed model, the distribution of   is approximately 
1( , ( ) ),p nN J    where ( ) E[I ( )].n nJ    Whenever the parameters are in the interior of 

the parameter space but not on the boundary, the asymptotic distribution of ( )n   is 

1(0, ( ) ),pN J  where 1 1( ) lim ( )n
n

J n I 


    is the unit information matrix and p is the 

number of parameters of the distribution. The asymptotic multivariate normal 
1( , ( ) )p nN I    distribution of   can be used to approximate the confidence interval for 

the parameters, the hazard rate, and the survival functions. An 100(1 )  asymptotic 

confidence interval for parameter 
i  is given by  

2 2

( , ),ii ii
i iZ I Z I       

where iiI  is the ( , )i i  diagonal element of 
1( )nI   for 1,...,i p , and 

2

Z  is the 

quantile 1
2


  of the standard normal distribution. 

5. Special subclasses 

In this section we introduce some subclasses of the OPL-G class of distributions by choosing 

several choices of ( ;H x   

5.1 Odd power Lindley exponential distribution 

    Taking ( ) 1; 0,xH x e      then by (2.3) and (2.4), we obtain the CDF and PDF of the 

odd power Lindley exponential (OPLE) distribution as 

( 1)( ; , , ) 1 1 ( 1) ; , , , 0,
1

xx eF x e e x
   

     


  
     

 
 and 

2
1 ( 1)( ; , , ) 1 ( 1) ( 1) ; , , , 0,

1

xx x x ef x e e e x
      

     


        
 

respectively. 
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The OPLE HRF is obtained by direct substitution in (2.5) as follows: 

2 11 ( 1) ( 1)
( ) ; , , , 0.

1 ( 1)

x x x

x

e e e
x x

e

    

 


   

 

     
  

 

Plots of the PDF and HRF of the OPLE distribution for some selected parameter values are 

shown in Figure 1. 

 

    Figure 1: Plots of the density function of the OPLE distribution for different values of 

    ,  and .        

The OPLE distribution contains several special sub models. When 1,  we have the odd 

Lindley exponential (OLE) distribution. When log( 1) / ,x x    we have the power 

Lindley distribution introduced by Ghitany et al. [10]. For 1  and log( 1) / ,x x    

we have the Lindley distribution [15]. As can be seen from Figure 1, the PDF 

monotonically increases with modal of   as 0x   whenever    The shape of the 
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PDF is upside down bathtub or is increasing and deceasing for   We also note that 

( ) 0f x   as 0x   whenever    

5.2 Odd power Lindley Pareto distribution 

    Taking ( ) ( / ) 1; , 0,kH x x k     then by (2.3) and (2.4), we obtain the CDF and PDF 

of the OPLP distribution as 

(( / ) 1)( ; , , , ) 1 1 (( / ) 1) ; , , , , 0,
1

kk xF x k x e k x
  

      


  
     

 
 

2
1 1 (( / ) 1)

1
( ; , , , ) 1 (( / ) 1) (( / ) 1) ;

( 1)

                        , , , , 0.

kk k k x

k
f x k x x x e

k x

   
    

 

  

   


     



 

respectively. 

The HRF of the OPLP distribution is obtained by direct substitution in (2.5) as follows 

1 12 1 (( / ) 1) (( / ) 1)
( ) ; , , , , 0.

( 1) 1 (( / ) 1)

k k k

k k

x x xk
x k x

x

 



  
   

    

      
   

 

Plots of the PDF and HRF of the OPLP distribution for some selected parameters values are 

shown in Figure 2. 
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    Figure 2: Plots of the density function of the OPLP distribution for different values of 

    ,  and k.       

The OPLP distribution contains several special sub models. When 1,  we have the odd 

Lindley Pareto distribution proposed by Zeghdoudi and Lazri [22]. When 
1// ( 1) ,kx x    we have the power Lindley distribution introduced by Ghitany et al. 

[10]. For 1  and 1// ( 1) ,kx x    we have the Lindley distribution [15]. As can be 

seen from Figure 2, the PDF monotonically decreases with modal of  as 0x   

whenever  and 1.k    The shape of the PDF is upside down bathtub for   and 

1.k   We also note that ( ) 0f x   as .x   

5.3 Odd power Lindley half-logistic distribution 

    Taking ( ) ( 1) / 2,xH x e   then by (2.3) and (2.4), we obtain the CDF and PDF of the odd 

Power Lindley half-logistic (OPLHL) distribution as 
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(( 1)/2)( ; , ) 1 1 (( 1) / 2) ; , , 0,
1

xx eF x e e x
 

   


  
     

 
 

2
1 (( 1)/2)( ; , ) 1 (( 1) / 2) ( 1) ; , , 0.

2 ( 1)

xx x x ef x e e e x
  




   



        
 

 

 

The HRF of the OPLHL is obtained by direct substitution in (2.5) as follows 

12 1 (( 1) / 2) ( 1)
( ) ; , , 0.

2 1 (( 1) / 2)

x x x

x

e e e
x x

e

 

 


  

 

     
  

 

Plots of the PDF and HRF of the OPLHL distribution for some selected parameters values are 

shown in Figure 3. 
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Figure 3: Plots of the density function of the OPLHL distribution for different values of 

     and .       

The OPLHL distribution contains several special sub models. When 1,  we have the 

Lindley half-logistic distribution. As can be seen in Figure 3, the monotonically increases 

and decreases with modal of  as 0x   whenever    The shape of the PDF is 

upside down bathtub for 1.   We also note that ( ) 0f x   as .x   

5.4 Odd power Lindley Weibull distribution 

    Taking ( )( ) 1; , 0,xH x e
      then by (2.3) and (2.4), we obtain the CDF and PDF of 

the odd Power Lindley Weibull (OPLW) distribution as 

( )( ) ( 1)( ; , , , ) 1 1 ( 1) ; , , , , 0,
1

xx eF x e e x
    

       


  
     

 
 

 
( )

2 1
( ) ( ) 1 ( ) ( 1)( ; , , , ) 1 ( 1) 1 ; , , , , 0.

1

xx x x ef x e e x e x
    

 
      

       



       

 
 

respectively. 

Plots of the PDF of the OPLW distribution for some selected parameters values are shown in 

Figure 4. 
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Figure 4: Plots of the density function of the OPLW distribution for different values of 

    , ,  and .         

The OPLW distribution contains several special sub models. When 1,  we have the odd 

Lindley Weibull distribution proposed by Gomes–Silva [12]. When 1,   we have the 

OPLE. As can be seen in Figure 4, the PDF monotonically decreases with modal of  as 

0x   whenever    The shape of the PDF is upside down bathtub for     We 

also note that ( ) 0f x   as .x   

The HRF of the OPLW distribution is obtained by direct substitution in (2.5) as follows 

 
1

2 ( ) ( ) 1 ( )

( )

1 ( 1) 1
( ) ; , , , , 0.

1 ( 1)

x x x

x

e e x e
x x

e

  




     

 

 
    

 


   

 
 

  
 

Plots of the HRF of the OPLW distribution for some selected parameters values are shown in 

Figure 5. 
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Figure 5: Plots of the hazard rate function of the OPLW distribution for different values of 

    , ,  and .        

As can be seen in Figure 5, the HRF monotonically increases with modal of  as 0x   

whenever    and decreases and increases whenever    with modal of  as 

0.x   

6. Simulation study 

In this section, the performances of the MLE's estimators are discussed using their average 

bias (AB), root mean squared error (RMSE), coverage probability (CP) of 95% confidence 

intervals of the parameters, and average width (AW) of 95% confidence intervals of the 

parameters. 

Table 2 shows the comparative behavior of AB, RMSE, CP, and AW. We generated 5000 

random samples of different sizes for two sets of parameters using the following lemma. 

Lemma 6.1. Let U be a standard uniform variable between zero and one. Then, the random 

variable 
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 ( 1)

1

1 1 1
log 1 ( 1)( 1) 1 ,X W U e 

  
  

 



 
       

 
  

is said to come from the OPLW distribution with parameters , ,  and .      

For each samples of size 500,1000,1500,2000,2500n  , and 3000  combined with two 

sets of parameters: 

 ( 0.5, 1.2, 1.2, 0.5)        and ( 0.75, 0.75, 2, 2)       , for simulation 

on the basis of 5000 samples generated by using Lemma 6.1. It can be seen that, as the sample 

size increases, the RMSE and bias decrease toward zero. Moreover, the average confidence 

width decreases as the sample size increases, and the coverage probabilities of the confidence 

interval are quite close to the nominal 95% level. We conclude that the MLE's estimate and 

their asymptotic results can be used in inference applications such as hypothesis and 

confidence intervals. 

Table 2: AB, RMSE, CP, and AW for varying , , ,  and .n      

 

0.5, 1.2, 1.2, 0.5                                                          0.75, 0.75, 2, 2        

                                                                               

Par.    n            AB            RMSE         CP        AW                  AB             RMSE          CP            AW          

 

    500   0.1068  0.424  0.844  1.989   0.0736  0.182  0.986   0.842 

   1000  0.07731 0.333  0.868  1.308   0.0447  0.140  0.9804  0.566 

   1500  0.0630  0.273  0.882  1.010   0.0284  0.112  0.966   0.432               

   2000  0.0523  0.230  0.901  0.838   0.0198  0.097  0.958   0.357 

       2500  0.0361  0.192  0.903  0.691   0.0174  0.087  0.947   0.315 

   3000  0.0312  0.172  0.905  0.620   0.0118  0.073  0.940   0.270                             

 

    500  0.2260  0.730   0.918  2.873   0.0407  0.517  0.878   2.668 

   1000 0.1388  0.552   0.908  2.077   0.0505  0.456  0.896   2.171 

   1500  0.0849  0.451  0.921   1.695   0.0702  0.422  0.913   1.896              

   2000  0.0507  0.386  0.923   1.477   0.0811  0.399  0.926   1.690 

       2500  0.0534  0.348  0.929   1.323   0.0598  0.365  0.927   1.501 

   3000  0.0405  0.317  0.928   1.213   0.0673  0.348  0.931   1.383                                                 

 

    500   0.1378  0.332  0.954  1.177    0.3870  1.082  0.975  4.066 
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   1000  0.077   0.216  0.943  0.755    0.2062  0.745  0.956  2.818 

   1500  0.0475  0.165  0.935  0.579    0.1711  0.609  0.953  2.329               

   2000  0.0285  0.133  0.934  0.483    0.1568  0.538  0.947  2.028 

       2500  0.0282  0.118  0.938  0.431    0.1076  0.470  0.944  1.748 

   3000  0.0204  0.104  0.938  0.388    0.1085  0.428  0.947  1.597 

 

    500  -0.0650  0.380  0.866  1.561   -0.2452  0.628  0.846   2.985 

   1000 -0.0650  0.281  0.896  1.104   -0.1351  0.499  0.889   2.255 

   1500 -0.0403  0.231  0.915  0.900   -0.1061  0.429  0.903   1.850               

   2000 -0.0196  0.120  0.926  0.787   -0.0946  0.376  0.910   1.584 

       2500 -0.0247  0.181  0.921  0.701   -0.0642  0.344  0.921   1.421 

   3000 -0.0154  0.163  0.931  0.643   -0.0622  0.310  0.924   1.277    

  

7. Applications  

In this section, we fit the ( , , , )OPLW      distribution to three real data sets and compare 

it with some of the other distributions, such as the Weibull–Weibull (WW) distribution 

proposed by Bourguignon et al. [8], power Lindley (PL) distribution introduced by Ghitany et al. 

[10],  and the Weibull (W) distribution. The densities accordingly are given by 

1 1
1( ; , , , ) 1 , , , , , 0,

xe x
x

WWf x x e e x


 

   
         

          
 

  

2
1( ; , ) (1 ) , , , 0,

1

x

PLf x x x e x
  

   


   


 

1

( ; , ) , , , 0,

k
k k

W

k k
f x e k x  

 

  
 
  

  
 

 

The first data set represents the vinyl chloride obtained from clean up gradient monitoring 

wells in mg/l, which was examined and analyzed by Bhaumik et al. [7]. The values of this data 

set are 5.1, 1.2, 1.3, 0.6, 0.5, 2.4, 0.5, 1.1, 8, 0.8, 0.4, 0.6, 0.9, 0.4, 2, 0.5, 5.3, 3.2, 2.7, 2.9, 2.5, 

2.3, 1, 0.2, 0.1, 0.1, 1.8, 0.9, 2, 4, 6.8, 1.2, 0.4, 0.2. 

The second data set represents the tensile strength, measured in GPa, of 69 carbon fibers 

tested under tension at gauge lengths of 20 mm, see Bader & Priest [5]. Its values are given 

as: 

1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.997, 2.006, 

2.021, 2.027, 2.055, 2.063, 2.098, 2.140, 2.179, 2.224, 2.240, 2.253, 2.270, 2.272, 2.274, 

2.301, 2.301, 2.359, 2.382, 2.382, 2.426, 2.434, 2.435, 2.478, 2.490, 2.511, 2.514, 2.535,    
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2.554, 2.566, 2.570, 2.586, 2.629, 2.633, 2.642, 2.648, 2.684, 2.697, 2.726, 2.770, 2.773,    

2.800, 2.809, 2.818, 2.821, 2.848, 2.880, 2.954, 3.012, 3.067, 3.084, 3.090, 3.096, 3.128,    

3.233, 3.433, 3.585, 3.585. 

The third data set represents the waiting times (in minutes) before service of 100 bank 

customers, which was examined and analyzed by Ghitany et al. [10]. The values of this data 

set are:  

0.8, 0.8, 1.3, 1.5, 1.8, 1.9, 1.9, 2.1, 2.6, 2.7, 2.9, 3.1, 3.2, 3.3, 3.5, 3.6, 4.0, 4.1, 4.2, 4.2, 4.3, 4.3, 

4.4, 4.4, 4.6, 4.7, 4.7, 4.8, 4.9, 4.9, 5.0, 5.3, 5.5, 5.7, 5.7, 6.1, 6.2, 6.2, 6.2, 6.3, 6.7, 6.9, 7.1, 7.1, 

7.1, 7.1, 7.4, 7.6, 7.7, 8.0, 8.2, 8.6, 8.6, 8.6, 8.8, 8.8, 8.9, 8.9, 9.5, 9.6, 9.7, 9.8, 10.7, 10.9, 11.0, 

11.0, 11.1, 11.2, 11.2, 11.5, 11.9, 12.4, 12.5, 12.9, 13.0, 13.1, 13.3, 13.6, 13.7, 13.9, 14.1, 15.4, 

15.4, 17.3, 17.3, 18.1, 18.2, 18.4, 18.9, 19.0, 19.9, 20.6, 21.3, 21.4, 21.9, 23.0, 27.0, 31.6, 33.1, 

38.5. 

For each distribution and for each data set, we derive the maximum likelihood 

estimates (MLEs), the maximized log likelihood (Log L), the Kolmogorov‒Smirnov statistics (K–

S) with its respective p-value, the Akaike Information Criterion (AIC), and the Bayesian 

Information Criterion (BIC). The K–S test is valid to test the goodness of fit of underlying 

distributions to the failure data, as shown by Bagheri et al. [6]. The results of fitting the data 

are presented in Table 3, 4, and 5. The fitted densities and the empirical distribution versus 

the fitted CDFs for the data set are shown in Figures 6,7 and 8. They indicate that the OPLW 

distribution fits the data better than the other distributions, except that the PL distribution 

was almost the same for the second data set. The K–S test statistic takes the smallest value 

with the largest value of its corresponding p-value for the OPLW distribution. Moreover, this 

conclusion is confirmed from the log likelihood for all the fitted models. 

Table 3: Parameter estimates, KS statistics, P-value, log likelihood, AIC, and BIC for vinyl chloride. 

Dist.      MLE                          K-S                 p-value             -log(L)              AIC                BIC          

OPLW     

ˆ 4.1830

ˆ 0.0315

ˆ 0.0004

ˆ 13.3718

















       0.0789    0.9728       55.07             118.1          124.2 

 

WW     

ˆ 0.7389

ˆ 0.0144

ˆ 49.3021

ˆ 0.0064

















          0.0929    0.905       55.5             119          125.1 

 

PL     
ˆ 0.9139

ˆ 0.8832








           0.0923     0.9086    55.6               115.2             118.3 

W      
ˆ 1.8879

ˆ 1.0102k

 


            0.0889           0.9288      55.4                 114.8             117.9 



18 
 
 

 

 

 

 

Figure 6: Plots of fitted models of the vinyl chloride data. 

 

Table 4: Parameter estimates, KS statistic, P-value, log likelihood, AIC, and BIC for carbon fiber tensile strength. 

Dist.      MLE                          K-S                 p-value             -log(L)              AIC                BIC          

OPLW     

ˆ 0.5683

ˆ 0.1694

ˆ 0.0003

ˆ 13.5703

















       0.0454    0.9977         48.9              105.8          114.7 
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WW     

ˆ 0.6895

ˆ 0.0760

ˆ 51.1272

ˆ 0.0072

















          0.0576    0.9661       49.7             107.4          116.3 

 

PL     
ˆ 0.0497

ˆ 3.8678








           0.0443     0.9984     49.1             102.2             106.7 

 
 

W      
ˆ 2.6509

ˆ 5.5049k

 


            0.05626           0.9725      49.6                 103.2          107.7 

 

 

 

 

Figure 7: Plots of fitted models of the carbon fiber tensile strength data. 
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Table 5: Parameter estimates, KS statistics, P-value, log likelihood, AIC, and BIC for the waiting times. 

Dist.      MLE                          K-S                 p-value             -log(L)              AIC                BIC          

OPLW     

ˆ 0.5956

ˆ 0.0484

ˆ 0.0004

ˆ 12.5014

















      0.0428    0.9912       317.5        642.9          653.3 

 

WW     

ˆ 0.7245

ˆ 0.0298

ˆ 33.9681

ˆ 0.0039

















          0 0.0594   0.8726       318.9             645.8          664.2 

 

PL     
ˆ 0.1530

ˆ 1.0832








           0.0516     0.9525    318.3                640.6             645.8 

W      
ˆ 10.9553

ˆ 1.4585k

 


          0.0573           0.8975     318.7                 641.5             646.7 

 

 

 



21 
 
 

 

Figure 8: Plots of fitted models of the waiting time data. 

8. Concluding remarks  

The purpose of this paper was to define a new family of lifetime distributions called 

the odd power Lindley-G (OPL-G) distributions, which generates many lifetime mixture 

distributions. The properties of the OPL-G family of distributions were derived in flexible and 

useful forms, including density, survival function, hazard rate function, quantile function, 

distribution of order statistics, and maximum likelihood estimates. Several models were 

introduced as special cases of the proposed class. The odd power Lindley Weibull (OPLW) 

distribution was introduced as an example of the proposed class.  Simulation of the OPLW was 

carried out to check the reliability and performance of the MLE estimates. The OPLW 

distribution was applied to three data sets in order to show the flexibility and advantages of 

the proposed class of distributions, and the results were compared with those obtained using 

some existing distributions. 
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