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Abstract
In this paper, the method of generating function combined with power series is applied to verify the correctness of two identities which are widely used in engineering technology.
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1 Introduction
In engineering, the following two identities are often used
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2 Solving process
As we know ,
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 can be represented as Taylor series as follows
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Let 
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and
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Take a derivative of both sides of Eq.(6) with respect to x and get 
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Multiply Eq.(6) with Eq.(7) .and gain
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Because of
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Take a derivative of both sides of Eq.(9) with respect to x and get
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Hence
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Compare Eq.(8) with Eq.(11) and get
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Take a derivative of both sides of Eq.(8) with respect to x and get
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Multiply Eq.(14) with Eq.(6) .and gain
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Because of
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Take a derivative of both sides of Eq.(16) with respect to x and get
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Hence

[image: image20.wmf]321

22

313

12(14)4(1)4(1)

248

nnnn

nn

xxxnnxnnx

¥¥

---

==

-=-=-

åå

  (18)
Add Eq.(17) to Eq.(19) and find out the item 
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So we have
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3 Conclusions
Using the method of generating function, we can obtain two identities as follows
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