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The field strength of vertical electric dipole above atmospheric surface duct
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Abstract 

          .The paper presents a method which allows the calculation of the atmospheric distortion of radar pulse , provided that the influence of the atmosphere is to transfer the transmitted signal through a duct .the polarization of the primary source whose moment varies arbitrarily in time,  is chosen in such a way that it allows the exact determination of the electric field strength at some field point above the duct layer .From the physical point of view. Cahniard s idea is applicable as it is based on evaluating the field in a series of image sources of the primary source . The step – function solution of the problem can then be determined as an infinite integrals over finite integrals. Two cases would be istinguished on the basis of the distance between the receiving and transmitting ends and whether it is greater or lesser than the total reflection distance. 
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1. Introduction 

Historically, in the problem of electromagnetic radiation from a vertical magnetic  dipole situated at a certain height h above a plane earth , all field quantities are usually assumed to vary harmonically in time .,calculated the electromagnetic radiation from an electric vertical dipole , located above the plane interface of two media .Many writers Wait [1] .Moore [2] and Durrani [3] have considered this problem , the aim of the present work is to extend the study – state to transient excitation when no restrictions on the distance between receiving and transmitting ends are made . two integral transforms are applied to analyze the transient field of vertical electric dipole above a dielectric layer the distinction of different cases where the distance between the receiving and transmitting end are greater and lesser than the total reflection distance studied Abo Seliem [4] .

The problem has been studied by Arutaki and Chiba [5] and Abo Seliem [6] .This Integral is estimated by using the steepest descent method , along the count our Γ and around the branch –cuts , from the obtained results the Saddel point method show that the reflected waves and integrals Abo Seliem [7], the component of electric field strength is also arbitrary for the excitation function F(t) = t at some fixed but arbitrary position from the point of observation in the half-space .The problem has been studied by Abo-seliem [7] and this integrad is extended by using the steepest descent method along the contour 
[image: image1.wmf]G

 and around the branch – cuts . from the obtained results ,the Saddle point method show that the reflected waves an integrals.
2. Formulation of the problem 

As shown in Fig. 1 , the duct model of Kahen and Eckart [8] . A dielectric layer is assumed of relative permittivity ε 1 over laying an infinitely conducting plane earth which is confined by the plane z = 0 of a rectangular coordinate system . The source of the field is assumed to be a vertical electric dipole in the medium 1 at the point x = y =0 , z =d > 0 whose moment is given by .
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t being the time variable and 
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the three dimensional –distribution. Regarding F(t) , we make the assumptions F(t) = 0 for t 
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 of this vertical magnetic dipole has only horizontal component and co -forms to following wave equation.
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where 
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v

denotes the phase velocity in the medium i. .The application of a Laplace transform in time and a two – dimensional Fourier transform in horizontal coordinates x , y leads under consideration of the initial , boundary and transform of  
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 being the variable in the transform space we get for 
[image: image10.wmf]¥

p

p

z

h

  

3. Method of Solution

The solution point is the wave equation for the electrical field 
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in the two media 
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Fig.  (1) Geometry of the problem

Where j2 = -1 ,
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 in the medium 1 This an integral representation results of the Laplace transform of electric field in terms of two – dimensional inverse Fourier integral .
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with the reflection coefficient at the upper duct boundary is C 12= 
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and β are variables in the transform space of the two – dimensional Fourier transform f(s) is the Laplace transform of F(t).The components 
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which precedes the square brackets in (3), with  
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, also, in the duct 
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, it follow that by using polar coordinate ,we get
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And 
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By using Bessel representation , where 
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 is the Bessel function of order zero next, we transform 
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4- Discussion of the integrals

Referring to equation (5)the first term of the integral represents the direct wave originating from the source and traveling towards the observating point  the second with  
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Where 
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 (i=1,2) that it. The integrand has four values corresponding to the four combinations of sings
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and the Riemman surface has four sheets. We demand that the path of integration the convergence of our integral should be an the permissible sheet only,  we put  
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Fig. (2) Branch cuts , the steepest descent paths and the poles in the positive λ- plane

We treat the far field, so that the Hankel function can be transform into the asymptotic expansion ,the 
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The above integral cannot be solved exactly , I we applied then the Saddle point method, in order to change the integral paths which it the steepest descent through 
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Where 
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5-Evaluation of the integral along the contour and around the branch cuts.

As
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 The above integral cannot be solved exactly , we applied to the saddle point method ,in order to change the integral path 
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According 
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And the integral path strides over the two branch cuts in the complex  plane , we obtain the 
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The steepest descent through the branch point
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 is considered Brekhovsikh[10], the trace of the steepest descent is obtained from 
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 and the real part of exponent decreases most rapidly along this path, we deform the function of 
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And
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 is the coefficient equivalent to the reflection one at the surface in the duct .If the height duct is h=20m and the difference of relative permutations in the boundary 
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,the height of the primary source and the point of observation are taken as z=d=15m ,the 
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Figures describes the relationship between Im ׀y ׀and t at    t < 6 x 10 -3  s .The absolute value of the z-component of the electric field strength  increasing with increase the time . The absolute value of the z-component of the electric field strength is increasing when the spherical distance between the source and the point of observation is very small.(
[image: image104.wmf]E



 EMBED Equation.3  [image: image105.wmf]R

1

a

). We note that The absolute value of the of the electric field strength is dependent of  R . At   t > 6 x 10 -3 s .The absolute value of the electric field strength  is constant for each values of R = 5 km ,10 km, 15 km , 20 km and  25 km . 
We note that :-  the saturation curve when the time increase.                                                            

Figure (3-4): describes the relationship between Log ׀Abs׀y׀׀and t.
1-
At time < 5 x 10-3 s .The value of Log of the electric field strength is negative (-ve) value  .

2-
At  time(t) < 6x 10-3 s  . Log value of the electric field strength increasing by increase the time  .

3-
At  time(t) >  6x 10-3 s  . Log value of the electric field strength is constant (+ve) for all value of .

[image: image106.emf]6 7 8 9 10

t

-0.0012

-0.001

-0.0008

-0.0006

-0.0004

-0.0002

Re



y



p



25000

p



20000

p



15000

p



10000

p



5000


Fig.(3) describes the relationship between Re׀y׀and t
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Fig.(4) describes the relationship between Im׀y ׀and t

The real value of the electric field strength is constant taken negative (-ve) value for all values of R .Figure (3-4.): describes the relationship between imaginary value of the electric field strength  and the time .In this figure (saturation relationship) where value of  imaginary is constant at varying time for each value of R but we note that  at R = 5 km and 10 km  the saturation curves are negative  (-ve) value  . But for R = 15 km, 20 km and 25 km  the saturation curve are positive (+ ve) value .
8.  Conclusion

 We give the exact solution the integral represent of the physical point of view , also, the integral is evaluated by two mathematical methods : Residue and Saddle point method . A disadvantage of the method is not it cannot be used to calculated the potential in the dielectric half – space outside the layer in similar manner .
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