The 1-good-neighbor diagnosability of the Cayley graph generated by Pyramid graph

Chunlei $\mathrm{Xu}^{a, b}$
${ }^{a}$ Mongolian State University of Education, Ulaanbaatar Mongolia
${ }^{b}$ College of Mathematics, Inner Mongolia University for Nationalities, Tongliao, P.R.China

Abstract

Diagnosability of a multiprocessor system is one important study topic. A new measure for fault diagnosis of the system is called g-good-neighbor diagnosability that restrains every fault-free node containing at least g fault-free neighbors. $C J_{n}$ is the Cayley graph generated by pyramid graph. In this paper, we prove that the 1-good-neighbor diagnosability of $C J_{n}$ is $4 n-8$ for $n \geq 4$.

Key words: Pyramid graph; Cayley graph; Diagnosability

1. Introduction

Many multiprocessor systems take interconnection networks (networks for short) as underlying topologies and a network is usually represented by a graph where nodes represent processors and links represent communication links between processors. We use graphs and networks interchangeably. For the system, study on the topological properties of its network is important. Furthermore, some processors may fail in the system, so processor fault identification plays an important role for reliable computing. The first step to deal with faults is to identify the faulty processors from the fault-free ones. The identification process is called the diagnosis of the system. A system is said to be t diagnosable if all faulty processors can be identified without replacement, provided that
the number of faults presented does not exceed t. The diagnosability of a system G is the maximum value of t such that G is t-diagnosable [1].

In this paper, we prove that the 1-good-neighbor diagnosability of $C J_{n}$ is $4 n-8$.

2. Preliminaries

2.1. Definitions and Notations

A multiprocessor system is modeled as an undirected simple graph $G=(V, E)$, whose vertices (nodes) represent processors and edges (links) represent communication links. Given a nonempty vertex subset V^{\prime} of V, the induced subgraph by V^{\prime} in G, denoted by $G\left[V^{\prime}\right]$, is a graph, whose vertex set is V^{\prime} and the edge set is the set of all the edges of G with both endpoints in V^{\prime}. The degree $d_{G}(v)$ of a vertex v is the number of edges incident with v. We denote by $\delta(G)$ the minimum degrees of vertices of G. For any vertex v, we define the neighborhood $N_{G}(v)$ of v in G to be the set of vertices adjacent to $v . u$ is called a neighbor or a neighbor vertex of v for $u \in N_{G}(v)$. Let $S \subseteq V$. We use $N_{G}(S)$ to denote the set $\cup_{v \in S} N_{G}(v) \backslash S$. For neighborhoods and degrees, we will usually omit the subscript for the graph when no confusion arises. A graph G is said to be k-regular if for any vertex $v, d_{G}(v)=k$. The connectivity $\kappa(G)$ of a graph G is the minimum number of vertices whose removal results in a disconnected graph or only one vertex left. A fault set $F \subseteq V$ is called a g-good-neighbor faulty set if $|N(v) \cap(V \backslash F)| \geq g$ for every vertex v in $V \backslash F$. A g-good-neighbor cut of a graph G is a g-good-neighbor faulty set F such that $G-F$ is disconnected. The minimum cardinality of g-good-neighbor cuts is said to be the g-good-neighbor connectivity of G, denoted by $\kappa^{(g)}(G)$. For graph-theoretical terminology and notation not defined here we follow [2].

A system $G=(V, E)$ is g-good-neighbor t-diagnosable if F_{1} and F_{2} are distinguishable for each distinct pair of g-good-neighbor faulty subsets F_{1} and F_{2} of V with $\left|F_{1}\right| \leq t$ and $\left|F_{2}\right| \leq t$. The g-good-neighbor diagnosability $t_{g}(G)$ of the system G is the maximum value of t such that G is g-good-neighbor t-diagnosable.

Proposition 2.1. ([4]) For any given system G, $t_{g}(G) \leq t_{g^{\prime}}(G)$ if $g \leq g^{\prime}$.
In a system $G=(V, E)$, a faulty set $F \subseteq V$ is called a conditional faulty set if it does
not contain all of neighbors of any vertex in G. A system G is conditional t-diagnosable if every two distinct conditional faulty subsets $F_{1}, F_{2} \in V$ with $\left|F_{1}\right| \leq t,\left|F_{2}\right| \leq t$, are distinguishable. The conditional diagnosability $t_{c}(G)$ of G is the maximum number of t such that G is conditional t-diagnosable.

Theorem 2.2. ([5]) For a system $G=(V, E), t(G)=t_{0}(G) \leq t_{1}(G) \leq t_{c}(G)$.

2.2. Pyramid graph

In this section, its definition and some useful properties are introduced.
In the permutation $\left(\begin{array}{cccc}1 & 2 & \ldots & n \\ p_{1} & p_{2} & \ldots & p_{n}\end{array}\right), i \longrightarrow p_{i}$. For the convenience, we denote the permutation $\left(\begin{array}{cccc}1 & 2 & \ldots & n \\ p_{1} & p_{2} & \ldots & p_{n}\end{array}\right)$ by $p_{1} p_{2} \ldots p_{n}$. Every permutation can be denoted by a product of cycles [6]. For example, $\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right)=(132)$. Specially, $\left(\begin{array}{cccc}1 & 2 & \ldots & n \\ 1 & 2 & \ldots & n\end{array}\right)=(1)$. The product $\sigma \tau$ of two permutations is the composition function τ followed by σ, that is, $(12)(13)=(132)$. For terminology and notation not defined here we follow [6].

Let $[n]=\{1,2, \cdots, n\}$, and let S_{n} be the symmetric group on $[n]$ containing all permutations $p=p_{1} p_{2} \cdots p_{n}$ of $[n]$. It is well known that $\{(1 i): 2 \leq i \leq n\}$ is a generating set for S_{n}. So $\{(1, i): 2 \leq i \leq n\} \cup\{(i, i+1): 2 \leq i \leq n-1\}$ is also a generating set for S_{n}. Pyramid graph is the graph $(V, E), V=\{1,2, \cdots, n\}, E=\{(1 i),(2 j) \mid i=2,3, \cdots, n, j=$ $3,4, \cdots, n\}$. The n-dimensional Cayley graph generated by Pyramid graph $C J_{n}$ is the graph with vertex set $V\left(C J_{n}\right)=S_{n}$ in which two vertices u, v are adjacent if and only if $u=v(1, i), 2 \leq i \leq n$, or $u=v(2, j+1), 2 \leq j \leq n-1$. It is easy to see from the definition that $C J_{n}$ is a $(2 n-3)$-regular graph on n ! vertices.

Note that $C J_{n}$ is a special Cayley graph. $C J_{n}$ has the following useful properties.
Proposition 2.3. For any integer $n \geq 3, C J_{n}$ is $(2 n-3)$-regular, vertex transitive.
Proposition 2.4. For any integer $n \geq 3, C J_{n}$ is bipartite.

Proof. Suppose $n \geq 3, C J_{n}$ is not bipartite. There must exist a cycle $v_{1} v_{2} \cdots v_{t} v_{1}$, where t is odd. According to the definition of $C J_{n}$, There exist $s_{1}, s_{2}, \cdots, s_{t} \in Q$, where Q is the generating set of $C J_{n}$, such that $v_{2}=v_{1} s_{1}, v_{3}=v_{2} s_{2}, v_{4}=v_{3} s_{3}, \cdots, v_{1}=v_{t} s_{t}$. Therefore, $s_{1} s_{2} \cdots s_{t}=(1) \in S_{n}$. (1) is the even permutation, which contradict to t is odd. So we have $C J_{n}$ is bipartite.

Proposition 2.5. For any integer $n \geq 3$, the girth of $C J_{n}$ is 4 .

Proof. According to Proposition 2.4, $C J_{n}$ is bipartite, there is no 3 -cycle in $C J_{n}$, but $(1),(a b),(a b)(c d),(c d),(1)$ is a 4-cycle in $C J_{4}$, where $(a b),(c d) \in Q$.

Theorem 2.6. ([7]) Every nonidentity permutation in the symmetric group is uniquely (up to the order of the factors) a product of disjoint cycles, each of which has length at least 2.

Theorem 2.7. ([8]) Let H be a simple connected graph with $n=|V(H)| \geq 3$. If H^{1} and H^{2} are two different labelled graphs obtained by labelling H with $\{1,2, \cdots, n\}$, then $\operatorname{Cay}\left(H^{1}, S_{n}\right)$ is isomorphic to $\operatorname{Cay}\left(H^{2}, S_{n}\right)$.

We can partition $C J_{n}$ into n subgraphs $C J_{n}^{1}, C J_{n}^{2}, \ldots, C J_{n}^{n}$, where every vertex $u=$ $x_{1} x_{2} \ldots x_{n} \in V\left(C J_{n}\right)$ has a fixed integer i in the last position x_{n} for $i \in[n]$. It is obvious that $C J_{n}^{i}$ is isomorphic to $C J_{n-1}$ for $i \in[n]$. Let $v \in V\left(C J_{n}^{i}\right)$, then $v(1 n)$ and $v(2 n)$ are called outside neighbors of v. And we can easily verified for any $v \in V\left(H_{i}\right)$ the outside neighbors must be in two different $V\left(H_{j}\right)(j \neq i, j \in\{1,2, \cdots, n\})$.

Proposition 2.8. Let $C J_{n}^{i}$ be defined as above. Then there are $2(n-2)$! independent cross-edges between two different H_{i} 's.

Proof. The number of edges between any two $H_{i}, H_{j}(i \neq j)$ is $\frac{n!}{\binom{n}{2}}=2(n-2)$!, where n ! is the number of edges among all $H_{1}, H_{2}, \cdots, H_{n},\binom{n}{2}$ is the total number of pair $\left(H_{i}, H_{j}\right)(i \neq j)$.

Proposition 2.9. Let $C J_{n}$ be the cayley graph generated by pyramid graph. If two vertices u, v are adjacent, there is no common neighbor vertex of these two vertices, i.e., $|N(u) \cap N(v)|=0$. If two vertices u, v are not adjacent, there are at most three common neighbor vertices of these two vertices, i.e., $|N(u) \cap N(v)| \leq 3$.

Proof. If u, v are adjacent, then the one is odd permutation, another is even permutation in S_{n}. Without loss of generality, let u is odd permutation, v is even permutation, then the neighbour of u must be the even permutation in S_{n}, and the the neighbour of v must be the odd permutation in S_{n}. Therefore, $|N(u) \cap N(v)|=0$.

If u, v are not adjacent, it is sufficent to prove the impossibility of $|N(u) \cap N(v)| \geq$ 4. Suppose $\{(a i),(b j),(c k),(d l)\} \subseteq N(u) \cap N(v),|\{(a i),(b j),(c k),(d l)\}|=4$. With-
out loss of generality, let $u=(1)$, since $(1),(a i), v,(b j),(1)$ is a 4 -cycle, $v=(a i)(b j)$. $(1),(c k), v,(x y),(1)$ is also a 4-cycle, where is $(x y) \in E\left(J_{n}\right)$, then $v=(c k)(x y)$. We consider the following cases.

Case 1 If $(a i)$ is disjoint to $(b j)$, then $v=(c k)(x y)=(a i)(b j), x$ is equal to one element of $\{a, b, i, j\}$, without loss of generality, let $x=a$, then $y=i$, we have $(c k)=(b j)$, which contradict to $|\{(a i),(b j),(c k),(d l)\}|=4$. The rest of subcases can be proved similiarly.
case 2 If $(a i)$ is joint to $(b j)$, without loss of generality, let $a=b,(a i)(b j)=(a i)(a j)=$ $(a j i)$. Then $(c k)(x y)=v=(a j i)$. By Theorem 2.6, x is equal to one element of $\{c, k\}$, or y is equal to one element of $\{c, k\}$. Let $x=c$, then $(c k)(x y)=(c k)(c y)=(c y k)=v=(a j i)$. So c is equal to one element $\{a, i, j\}$. Without loss of generality, let $c=a$, then $y=j$ and $k=i$. Therefore, we have $(c k)=(a i)$, it contradict to $|\{(a i),(b j),(c k),(d l)\}|=4$. The rest of subcases can be proved similiarly. The rest of subcases can be proved similiarly.

Therefore, $|N(u) \cap N(v)| \leq 3$.

Proposition 2.10. Let $C J_{n}$ be the Cayley graph generated by n-dimension Pyramid graph, then $\kappa\left(C J_{n}\right)=2 n-3$.

Proof. Let $F=N_{C J_{n}}((1))$, since (1) is an isolated vertex in $C J_{n}-F$, then F is a vertex cut, $|F|=2 n-3$. Therefore, $\kappa\left(C J_{n}\right) \leq 2 n-3$.

Then we will prove that for any $F \subseteq V\left(C J_{n}\right),|F| \leq 2 n-4, F$ is not vertex cut of $C J_{n}$.

If $n=3, C J_{3}$ is just complete bipartite graph $K_{3,3}$. Obviously, for any $F \subseteq V\left(C J_{3}\right)$, $|F| \leq 2, F$ is not vertex cut. But F consist of all even permutations, $|F|=3, F$ is a vertex cut, so $\kappa\left(C J_{3}\right)=3$.

If $n=4, F=\{(12),(13),(14),(23),(24)\}, C J_{4}-F$ is not connected, so we have $\kappa\left(C J_{4}\right) \leq 5$.

We divide into four cases to prove, for any $F \subseteq V\left(C J_{4}\right),|F| \leq 4, F$ is not vertex cut. For the simplicity of proof, let $\left|F_{1}\right| \geq\left|F_{2}\right| \geq\left|F_{3}\right| \geq\left|F_{4}\right|$.

Case 1 If $\left|F_{1}\right|=4$, then $\left|F_{2}\right|=\left|F_{3}\right|=\left|F_{4}\right|=0$. Since for any two $H_{i}, H_{j}(i, j=$ $2,3,4, i \neq j$), there are 4 cross-edges between them. Therefore, $C J_{4}\left[H_{2} \cup H_{3} \cup H_{4}\right]$ is connected. Furthermore, for any $u \in V\left(H_{1}-F_{1}\right)$, there are 2 outside neighbours in $V\left(H_{2}\right) \cup V\left(H_{3}\right) \cup V\left(H_{4}\right)$. So we have $C J_{4}-F$ is connected.

Case 2 If $\left|F_{1}\right|=3$, then $1 \geq\left|F_{2}\right| \geq\left|F_{3}\right| \geq\left|F_{4}\right|$. There are 4 cross-edges between H_{3}, H_{4}, so $C J_{4}\left[H_{3}, H_{4}\right]$ is connected. For any $u \in V\left(H_{1}-F_{1}\right)$, there are two neighbours in $V\left(H_{2}\right) \cup V\left(H_{3}\right) \cup V\left(H_{4}\right)$, and one of them must be in $V\left(H_{3}\right)$ or $V\left(H_{4}\right)$, so $C J_{4}\left[\left(H_{1}-\right.\right.$ $\left.\left.F_{1}\right) \cup H_{3} \cup H_{4}\right]$ is connected. And for any $v \in V\left(H_{2}-F_{2}\right)$, there are 2 neighbours in the two of $V\left(H_{1}\right) \cup V\left(H_{3}\right) \cup V\left(H_{4}\right)$, and one of them must be in $V\left(H_{3}\right)$ or $V\left(H_{4}\right)$, so $C J_{4}\left[\left(H_{2}-F_{2}\right) \cup H_{3} \cup H_{4}\right]$ is connected. Therefore, $C J_{4}-F$ is connected.

Case 3 If $\left|F_{1}\right|=2$, then $2 \geq\left|F_{2}\right| \geq\left|F_{3}\right| \geq\left|F_{4}\right|$.
Subcase 3.1 If $\left|F_{2}\right|=2$, then $\left|F_{3}\right|=\left|F_{4}\right|=0 . H_{1}-F_{1}$ and $H_{2}-F_{2}$ are bipartite graph $K_{1,3}$ or $K_{2,2}$. Obviously $C J_{4}\left[H_{1}-F_{1}\right]$ and $C J_{4}\left[H_{2}-F_{2}\right]$ are connected, there are 4 cross-edges between H_{3} and H_{4}, so $C J_{4}\left[H_{3} \cup H_{4}\right]$ are connected. For any $u \in$ $V\left(H_{1}-F_{1}\right)$, there are two neighbours in the two of $V\left(H_{2}\right) \cup V\left(H_{3}\right) \cup V\left(H_{4}\right)$, one of them must in $V\left(H_{3}\right)$ or $V\left(H_{4}\right)$, therefore, $C J_{4}\left[\left(H_{1}-F_{1}\right) \cup H_{3} \cup H_{4}\right]$ is connected. Similiarly, $C J_{4}\left[\left(H_{2}-F_{2}\right) \cup H_{3} \cup H_{4}\right]$ is connected too. So $C J_{4}-F$ is connected.

Subcase 3.2 If $\left|F_{2}\right|=1$, according to inequality $4>2>1$, that is, the number of cross-edges between any two H_{i} and $H_{j}(i \neq j)$ is bigger than the number of $\left|F_{i}\right|(i=$ $1,2,3)$, so $C J_{4}\left[\left(H_{1}-F_{1}\right) \cup H_{4}\right], C J_{4}\left[\left(H_{2}-F_{2}\right) \cup H_{4}\right], C J_{4}\left[\left(H_{3}-F_{3}\right) \cup H_{4}\right]$ are connected. Therefore, $C J_{4}-F$ is connected.

Case 4 If $\left|F_{1}\right|=1$, then $1 \geq\left|F_{2}\right| \geq\left|F_{3}\right| \geq\left|F_{4}\right|$. According to inequality $4>1$, that is, the number of between any two H_{i} and $H_{j}(i \neq j)$ is bigger than the number of $\left|F_{i}\right|(i=1,2,3,4)$. Therefore, $C J_{4}-F$ is connected.

Combin these four cases, we have $\kappa\left(C J_{4}\right)=5$.
Suppose $\kappa\left(C J_{n-1}\right)=2(n-1)-3=2 n-5$, then for any $F \subseteq V\left(C J_{n}\right), F$ is not vertex cut.

When $n \geq 5$, we divide into three cases to prove $\kappa\left(C J_{n}\right)=2 n-3$.
Case 1 If $\left|F_{i}\right| \leq 2 n-6(i=1,2, \cdots, n)$, then F is not vertex cut of $H_{i}(i=1,2, \cdots, n)$, so $C J_{n}\left[H_{i}-F_{i}\right](i=1,2, \cdots, n)$ are connected, and $2(n-2)!>2(2 n-6)$, therefore, $C J_{n}-F$ is connected.

Case 2 If there exist $i \in 1,2, \cdots, n$, such that $\left|F_{i}\right|=2 n-5$, without loss of generality, let $\left|F_{1}\right|=2 n-5$, then $\left|F_{i}\right| \leq 1(i=2,3, \cdots, n)$. Since $\kappa\left(C J_{n}\right)=2(n-1)-3=2 n-5>$ 1, $C J_{n}\left[H_{i}-F_{i}\right](i=2,3, \cdots, n)$ are connected. $2(n-2)!>1$, that is, the number of crossedges between two H_{i} and H_{j} is much bigger than $\left|F_{i}\right|$, so $C J_{n}\left[\left(H_{2}-F_{2}\right) \cup\left(H_{3}-\right.\right.$
$\left.\left.F_{3}\right) \cap \cdots \cup\left(H_{n}-F_{n}\right)\right]$ is connected.
If F_{1} is just the vertex cut of H_{1}, it produce several connected subgraphs $D_{1}, D_{2}, \cdots, D_{k}$ when we delete F_{1} from H_{1}. For any $j \in\{1,2, \cdots, n\}$, every vertex of D_{j} have two neighbours belonging to $V\left(H_{i}\right)(i=2,3, \cdots, n)$, and $2>1$, therefore, $C J_{n}-F$ is connected. If F_{1} is not vertex cut of H_{1}, similiarly with disccuse above, $C J_{n}-F$ is connected.

Case 3 If there exist $i \in\{1,2, \cdots, n\}$, such that $\left|F_{i}\right|=2 n-4$. Without loss of generality, let $\left|F_{1}\right|=2 n-4$, then $\left|F_{i}\right|=0(i=2,3, \cdots, n)$. For every vertex of $H_{1}-F_{1}$, it must exist two neighbours belonging to $H_{i}(i=2,3, \cdots, n)$. Therefore, $C J_{n}-F$ is connected.

Sum up in conclusions, $\kappa\left(C J_{n}\right)=2 n-3$.

3. The 1-good-neighbor connectivity for the Cayley graph generated by n-dimensional Pyramid graph

In this section, we shall show the 1-good-neighbor connectivity of the Cayley graph $C J_{n}$ generated by n-dimensional Pyramid graph .

Theorem 3.1. For $n \geq 4$, the 1-good-neighbor connectivity $C J_{n}$ is $4 n-8$, i.e., $\kappa^{(1)}\left(C J_{n}\right)=$ $4 n-8$.

Proof. Let $A=\{(1),(12)\}, F_{1}=N_{C J_{n}}(A), F_{2}=F_{1} \cup A$. Since $C J_{n}-F_{1}$ is disconnected (K_{2} and $C J_{n}-F_{2}$), F_{1} is a vertex cut. It is sufficient to prove for any $v \in V \backslash F_{1}$, $\left|N(v) \cap V \backslash F_{1}\right| \geq 1$. Obviously, for any $v \in V\left(K_{2}\right), \delta(v)=1$. By Prosition 2.10, there is at most 3 common vertices between v and (1) or v and (12), so for any $v \in V \backslash F_{2}$, $\delta\left(C J_{n}-F_{2}\right) \geq 2 n-3-3>0$ when $n \geq 4$. Therefore, F_{1} is a 1 -good neighbour cut, $\kappa^{(1)}\left(C J_{n}\right) \leq 4 n-8$.

We prove for any $F,|F| \leq 4 n-9, F$ is not a 1-good neighbour cut of $C J_{n}$.
If $n=3, C J_{3}=K_{3,3}$. Obiviously, $|F| \leq 2, F$ is not a vertex cut. When $|F|=3$, there are two cases in the following. If the three vertices in one part, it produce three isolated vertices. If the three vertices in two parts, F is not a vertex cut.
If $n=4, C J_{4}$ can be partitioned into $H_{1}, H_{2}, H_{3}, H_{4}, H_{i} \cong K_{3,3}(i=1,2,3,4)$, there are 4 crossedges between H_{i} and $H_{j}(i \neq j, i, j=1,2,3,4)$.

If $F_{1}\left|=6,0 \leq\left|F_{i}\right| \leq 1(i=2,3,4)\right.$. By inequality $4>1+1=2, C J_{4}-F$ is connected.

If $\left|F_{1}\right|=5,0 \leq\left|F_{i}\right| \leq 2(2,3,4)$. If $u \in V\left(H_{1}-F_{1}\right)$ is an isolated vertex, then F is not satisfied to definition of 1-good neighbour cut. If $u \in V\left(H_{1}-F_{1}\right)$ is not an isolated vertex, by inequality $4>2, C J_{4}-F$ is not connected.

If $\left|F_{1}\right|=4,0 \leq\left|F_{i}\right| \leq 3(i=2,3,4)$. By inequality $4>3, H_{2}-F_{2}, H_{3}-F_{3}, H_{4}-F_{4}$ are connected. If $u, v \in V\left(H_{1}-F_{1}\right)$ are isolated vertices, then F is not a 1-good neighbour cut. If $u, v \in V\left(H_{1}-F_{1}\right)$, then u, v are adjacent, by Proposition 2.9, there is no common neighbour. For both u and v, there are 4 outside neighbours, and by inequality $4>3$, $C J_{4}\left[H_{1}-F_{1}\right] \cup C J_{4}\left[\left(H_{2}-F_{2}\right) \cup\left(H_{3}-F_{3}\right) \cup\left(H_{4}-F_{4}\right)\right]$ is connected. Therefore, $C J_{4}-F$ is connected.

Suppose $|F| \leq 4 n-13, F \subseteq V\left(C J_{n}\right), F$ is not a 1-good neighbour cut of $C J_{n-1}$.
We can partition $C J_{n}$ into $H_{1} \cdot H_{2}, \cdots, H_{n}, H_{i} \cong C J_{n-1}(i=1,2, \cdots, n)$. Let $F=$ $F_{1} \cup F_{2} \cup \cdots \cup F_{n}, F_{i} \cap F_{j}=\emptyset(i, j=1,2, \cdots, n, i \neq j)$, and $\left|F_{1}\right| \geq\left|F_{2}\right| \geq \cdots \geq\left|F_{n}\right|$. We divide cases in the following.

Case 1 If $\left|F_{i}\right| \leq 4(n-1)-9=4 n-13$, then by assumption, $H_{i}-F_{i}(i=1,2, \cdots, n)$ is connected. And by inequality $2(n-2)!>4 n-13$, so $C J_{n}-F$ is connected.

Case 2 If $4 n-11 \geq\left|F_{1}\right| \geq 4 n-12$, then $0 \leq\left|F_{i}\right| \leq 2(i=2,3, \cdots, n)$. By inequality $2(n-2)!>2+2=4$ if $n \geq 5, C J\left[H_{i}\right](i=2,3, \cdots, n$ is connected. By inequality $2(n-2)!>4 n-11+2=4 n-9$ if $n \geq 5$. Then $C J_{n}-F$ is connected.
Case 3 If $4 n-9 \geq\left|F_{1}\right| \geq 4 n-10$, then $0 \leq\left|F_{i}\right| \leq 1(i=2,3, \cdots, n)$. For any $H_{i}, H_{j}(i, j=2,3, \cdots, n)$, there are $2(n-2)$! cross-edges between them, by inequality $2(n-2)!>1+1=2, C J_{n}\left[H_{i}-F_{i}\right](i=2,3, \cdots, n)$ is connected. For any $u \in V\left(H_{1}-F_{1}\right)$, there are two outside vertices adjacented to it. By inequality $2>1, C J_{n}-F$ is connected. Therefore, $\kappa^{(1)}\left(C J_{n}\right)=4 n-8$.

Acknowledgement. I am very grateful for the guidance and sharing from Wang Shiying who is a Professorof Henan Normal University. This work is supported by Inner Mongolia University for Nationalities Research Funded Project(NMDYB17155).

References

[1] A.T. Dahbura, G.M. Masson, An $O\left(n^{2.5}\right)$ Fault identification algorithm for diagnosable systems, IEEE Transactions on Computers 33 (6) (1984) 486-492.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, New York, 2007.
[3] Sheldon B. Akers, Balakrishnan Krishnamurthy, A group-theoretic model for symmetric interconnection networks, IEEE Transactions on Computers 38 (4) (1989) 555-566.
[4] Shao-Lun Peng, Cheng-Kuan Lin, Jimmy J.M. Tan, Lih-Hsing Hsu, The g-good-neighbor conditional diagnosability of hypercube under PMC model, Applied Mathematics and Computation 218 (21) (2012) 10406-10412.
[5] Mujiangshan Wang, Yubao Guo, Shiying Wang, The 1-good-neighbor diagnosability of Cayley graphs generated by transposition trees under the PMC model and MM^{*} model, International Journal of Computer Mathematics, DOI: 10.1080/00207160.2015.1119817.
[6] Thomas W. Hungerford, Algebra, Springer-Verlag, New York, 1974.
[7] Thomas W. Hungerford, Algebra, Springer-Verlag, New York, 1974.
[8] Mujiangshan Wang, Wenguo Yang, Yubao Guo, Shiying Wang, Conditional Fault Tolerance in a Class of Cayley Graphs, International Journal of Computer Mathematics, 3 (1) (2016) 67-82.
[9] F. Barsi, F. Grandoni, P. Maestrini, A Theory of Diagnosability of Digital Systems , IEEE Transactions on Computers, 25(6)(1976) 585-593.

