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Abstract

Galois Theory, a wonderful part of mathematics with historical roots date back to the solution

of cubic and quantic equations in the sixteenth century. However, beside understanding

the roots of polynomials, Galois Theory also gave birth to many of the central concepts of

modern algebra, including groups and fields. In particular, this theory is further great due to

primarily for two factors: first, its surprising link between the group theory and the roots of

polynomials and second,the elegance of its presentation. This theory is often descried as one

of the most beautiful parts of mathematics. Here I have specially worked on field extensions.

To understand the basic concept behind fundamental theory, some necessary Theorems,

Lammas and Corollaries are added with suitable examples containing Lattice Diagrams and

Tables. In principle, I have presented and solved a number of complex algebraic problems

with the help of Galois theory which are designed in the context of various rational and

complex numbers.

1 Introduction and Preliminaries

Evariste Galois (French pronunciation: [evarist galwa]) (October 25, 1811-?May 31, 1832)

was a French mathematician born in Bourg-la-Reine. While still in his teens, he was able to

determine a necessary and sufficient condition for a polynomial to be solvable by radicals,

thereby solving a long-standing problem. His work laid the foundations for Galois theory and

group theory, two major branches of abstract algebra, and the subfield of Galois connections.

He was the first to use the word ”group” (French: groupe) as a technical term in mathematics

to represent a group of permutations [1].

Galois’ most significant contribution to mathematics by far is his development of Galois

theory. He realized that the algebraic solution to a polynomial equation is related to the

structure of a group of permutations associated with the roots of the polynomial, the Galois

group of the polynomial. He found that an equation could be solved in radicals if one can

find a series of subgroups of its Galois group, each one normal in its successor with abelian

quotient, or its Galois group is solvable [2]. This proved to be a fertile approach, which later

mathematicians adapted to many other fields of mathematics besides the theory of equations

to which Galois originally applied it. Field extension is the focal ambition to work. So it

would be a very good idea to start with the definition of field extensions.

1.1 Field extensions

A field L is an extension of another field K if K is a subfield of L.
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Definition 1.1. A field extension is a monomorphism i : K → L where K and L are

fields.

K is the small field, L the large field.

1.2 Simple extensions

A simple extension is an extension L:K having the property that L = K(α) for some α ∈ L.

Polynomials are known to all.It is important to know about the specific group of polynomials

and properties which are needed in my field extension.

A polynomial

f(t) = a0 + a1 + ...+ ant
n

over a field K is monic if an = 1.

Definition 1.2 Let K(α) : K be a simple extention.If there exists a non-zero polynomial p

over K such that p(α) = 0 then α is an algebraic element over K and the extension is simple

algebraic extension.

Definition 1.3 Let L : K be the field extension, and suppose that α ∈ L is algebraic over

K.Then the minimum polynomial of over K is the unique monic polynomial m over K of

the smallest degree such that m(α) = 0.

An example could be the best thing to clear the definitions. For example, i ∈ C is algebraic

over R. If we let m (t) = t2 + 1 then m(i) = 0.Clearly m is monic. The only monic polyno-

mials over R of smaller degree are those of the form t+ r(r ∈ R) or 1.But i cannot be zero

of any of these. Hence the minimum polynomial of i over R is t2 + 1.

Two theorems are going to present with no proofs that are closely related to this project.

Theorem.1.1 If K is any field and m is any irreducible monic polynomial over K, then

there exists an extension K(α) : K such that α has minimum polynomial m over K.

Theorem.1.2 Suppose K and L are fields and i : K → L is an isomorphism.Let K(α),

L(β) be simple algebraic extensions of K and L respectively, such that α has minimum

polynomial mα(t) over K and β has minimum polynomial mβ(t) over L.Suppose further

thatmβ = i(mα(t)).Then there exists an isomorphism j : K(α) → L(β) such that j|K =

iandj(α) = β.

Definition 1.4. The degree [L : K] of a field extension L : K is the dimension of L consid-

ered as a vector space over K. Example 1.1. The complex numbers C are 2-dimensional

over the real numbers R, 1, i being a basis.Hence [C : R] = 2.

Definition 1.5. If K,L,M are fields and K ⊆ L ⊆M, then L is the Intermediate Field.

Theorem.1.3 If K,L,M are fields and K ⊆ L ⊆M, then

[M : K] = [M : L][L : K]

Example 1.2Suppose we wish to find [Q(
√

2,
√

3) : Q]. It is easy to see that {1,
√

2} is a ba-

sis for Q(
√

2) over Q. It is a little harder to see that {1,
√

3} is a basis for Q(
√

2,
√

3) over Q(
√

2).Hence
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[Q(
√

2,
√

3) : Q] = [Q(
√

2,
√

3) : Q(
√

2)][Q
√

2 : Q] = 2.2 = 4. [2]

1.3 Splitting fields

Definition 1.6.If K is a field and f is a polynomial over K then f splits over K if it can be

expressed as a product of linear factors

f(t) = k(t− α1)....(t− αn)

where k, α1...αn ∈ K.

Example 1.3 Let f(t) = (t2 − 3)(t3 + 1) over Q. We can construct a splitting field for f as

follows: inside C f splits into linear factors

f(t) = (t+
√

3)(t−
√

3)(t+ 1)(t− −1 + i
√

3

2
)(t− −1− i

√
3

2
)

so there exists a splitting field inside C, namely

Q(
√

3,
−1 + i

√
3

2
)

This is clearly the same as Q(
√

3, i).

1.4 Discriminant

The discriminant of X2 + aX + b = (X − r)(X − r′) is (r − r′)2 = r2 − 2rr′ + r′2 =

(r+r′)2−4rr′ = a2−4b; which is the usual discriminant of a monic quadratic polynomial.In

low-degree cases, explicit formulas for discriminants of some trinomials are

disc(X2 + aX + b) = a2 − 4b;

disc(X3 + aX + b) = −4a3 − 27b2;

disc(X4 + aX + b) = −27a4 + 256b3;

disc(X5 + aX + b) = 256a5 + 3125b4

Example 1.4 The discriminant of X3 −X − 1 is -23, the discriminant of X3 − 3X − 1

is 81, and the discriminant of X3 − 4X − 1 is 229. [2]

1.5 Normality

Definition 1.7. An extension L:K is normal if every irreducible polynomial f over K which

has at least one zero in L splits in L.
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1.6 Separability

Definition 1.8. An irreducible polynomial f over a field K is separable over K if it has no

multiple zero in a splitting field. This means that in any splitting field f takes the form

k(t− σ1)...(t− σn)

where the σi are all different.

Lemma 1.1. Let L:K be a separable algebraic extension and let M be an intermediate

field. Then M:K and L:K are separable.

Minimum polynomial is new term to us. To know about it we need to follow the Eisentein’s

Irreducibility Criterion.

Eisentein’s Irreducibility Criterion

Let

f(t) = a0 + a1t+ .......+ ant
n

be a polynomial over Z. Suppose that there is a prime q such that

(1)q . an
(2)q | ai(i = 0, 1, ........n− 1)

(3)q2 . a0.
Then f is irreducible over Q

Example 1.5 Consider f(t) = 2
9
t5 + 5

3
t4 + t3 + 1

3
over Q. This is irreducible if and only

if 9f(t) = 2t5 + 15t4 + 9t3 + 3 is irreducible over Q.Eisentein’s Criterion applies with q=3,

showing that f is irreducible. [2]

2 Galois Theory

Definition 2.1. Let K be a subfield of the field L.An automorphism α of K-automorphism

of L if α(k) = k for all k ∈ K.

A simple but effective theorem would be the next one.

Theorem.2.1 If L:K is a field extension then set of all K-automorphisms of L forms a

group under composition of maps.

The next example will give us a rough idea about our problem.

Definition 2.2. The Galois group Γ(L : K) of the extension L : K is the group of all

K-automorphisms of L under composition of maps.

Example 2.1 The extension C : R .Suppose that α is an R-automorphism of C. Let

j = α(i) where i =
√
−1. Then

j2 = (α(i))2 = α(i2) = α(−1) = −1

since α(r) = r for all r ∈ R.Hence either j = i or j = −i. Now for any x, y ∈ R we have

α(x+ iy) = α(x) + α(i)α(y)
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= x+ jy

Thus we have two candidates for R-automorphisms:

α1 : x+ iy → x+ iy

α2 : x+ iy → x− iy

Now α1 is the identity, and thus is an R-automorphism of C.The map α2 is known as complex

conjugation and can be shown to be an R-automorphism as follows:

α2((x+ iy) + (u+ iv)) = (x+ iy)− (u+ v)i

= α2(x+ iy) + α2(u+ iv)

α2((x+ iy)(u+ iv)) = α2(xu− yv + i(xv + yu))

= xu− yv − i(xv + yu)

= (x− iy)(u− iv)

= α2(x+ iy)α2(u+ iv)

Thus α2 is an automorphism. And

α2(x+ 0i) = x− 0i = x

so that α2 is an R-automorphism. Obviously α2
2 = α1,so that the Galois group Γ(C : R) is

a cyclic group of order 2.

If L:K is a field extension then a field M such that K ⊆M ⊆ L is called an intermediate

field.Each intermediate field M associates the group M∗ = Γ(L : M). Thus K∗is the whole

Galois group.

Lemma 2.1. If H is a subgroup of Γ(L : K) then H† is a subfield of L containing K. With

the above notation,H† is a fixed field of H.

Theorem.2.2Let G be a finite subgroup of the group of automorphisms of a field K and let

K0 be the fixed field of G. then

[K : K0] = |G|

Example 2.2 Let K = Q(α) where α = e
2πi
5 ∈ C. Now α5 = 1 and Q(α) consists of all

elements

a+ bα + cα2 + dα3 + eα4 (1)

Where a, b, c, d, e ∈ Q. The Galois group of Q(α) : Q is easy to find, for if σ is a Q-

automorphism of Q(α) then (σ(α))5 = σ(α5) = σ(1) = 1, so that σ(α) = α, α2, α3, or α4.

This gives 4 candidates for Q-automorphisms:

σ1 : a+ bα + cα2 + dα3 + eα4 → a+ bα + cα2 + dα3 + eα4

σ2 : → a+ cα + dα2 + eα3 + bα4
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σ3 : → a+ dα + eα2 + bα3 + cα4

σ4 : → a+ eα + bα2 + cα3 + dα4

It is easy ti check that these are all Q-automorphisms.Hence the Galois group Q(α) : Q

has order 4.The fixed field of this Galois group is easy to complete: it turns out to be Q.There

we have [Q(α) : Q] = 4. At first sight this might seem wrong for (1) expresses each element

in terms of 5 basis elements;the degree should be 5.In support of this contention, α is a zero

of t5−1. t5−1 is not the minimum polynomial of α over Q,since it is reducible.The minimum

polynomial is in fact

t4 + t3 + t2 + t+ 1

which has degree 4. Equation (1) holds, but the elements of the supposed ’basis’ are linearly

dependent :

α4 + α3 + α2 + α + 1

Hence every element of Q(α) can be expressed uniquely in the form

a+ bα + cα2 + dα3

where a, b, c, d ∈ Q.

Sufficient background knowledge has been acquired to get in the fundamental theorem.

The property given below will be very useful for the theorem.

Let L:K be a field extension with Galois group G, which consists of all K-automorphisms

of L. Let F be the set of intermediate fields M, and g the set of all subgroups H of G.We

have defined two maps
∗ : F→ g

† : g→ F

as follows : if M ∈ F then M∗ is the group of all M-automorphisms of L. If H ∈ g then

H† is the fixed field of H.We have observed that the maps ∗ and † reverse inclusions that

M ⊆M∗†, and H ⊆ H†∗. [2]

2.1 Fundamental Theorem of Galois Theory

If L:K is a finite separate normal field extension of degree n, with Galois group G;and if f,g,
∗,† are defined as above, then:

(1) The Galois group G has order n.

(2) The maps ∗ and † are mutual inverses and set up an order-reversing 1-1 correspondence

between f and g.

6



(3) If M is an intermediate field then

[L : M ] = |M∗|

[M : K] = |G|/|M∗|.

(4) An intermediate field M is a normal extension of K if and only if M∗ is a normal

subgroup of G(in the usual sense of group theory).

(5) If an intermediate field M ia normal extension of K then the Galois group of M:K

is isomorphic to the quotient group G/M∗

Theorem 2.3 (Dedekind). Let f(X) ∈ Z[X] be monic irreducible over Q of degree n.

For any prime p not dividing disc f, let the monic irreducible factorization of f(X) mod p be

f(X) ≡ π1(X)...πk(X) mod p

and set di = degπi(X), so d1 + ... + dk = n. The Galois group of f(X) over Q, viewed as a

subgroup of Sn, contains a permutation of type (d1, ..., dk). [2]

3 Problems

3.1 Problem A

1.Let f(t) = t4 − 5 over Q, and let K be a splitting field for f such that K ⊆ C.In C we can

factorize f as follows:

f(t) = (t− ξ)(t+ ξ)(t− iξ)(t+ iξ)

where ξ = 4
√

5 is real and positive.Clearly therefore K = Q(ξ, i).There characteristic is 0 and

K is a splitting field, so that K:Q is finite,separable, and normal.

2.We shall find the degree of K:Q.We have

[K : Q] = [Q(ξ, i) : Q(ξ)][Q(ξ) : Q]

The minimum polynomial of i over Q(ξ) is t2 + 1 since i2 + 1 = 0 but i 6∈ R ⊇ Q(ξ).So

[Q(ξ, i) : Q(ξ)] = 2. Now ξ is a zero of f over Q , and f is irreducible by Eisenstein’s

criterion.Hence f is the minimum polynomial of ξ over Q and [Q(ξ) : Q] = 4. Therefore

[K : Q] = 2.4 = 8

3.We shall find the elements of the Galois group of K:Q.Now i varies from i to -i.So there

must be two automorphisms.By a direct check,we see that there is Q-automorphism σ of K

such that

σ(i) = i, σ(ξ) = iξ
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and another, τ, such that

τ(i) = −i, τ(ξ) = ξ.

Product of these yield 8 distinct Q-automorphism of K, as follows:

automorphism effect on ξ effect on i

1 ξ i

σ iξ i

σ2 −ξ i

σ3 −iξ i

τ ξ -i

στ iξ -i

σ2τ −ξ -i

σ3τ −iξ -i

other products do not give new automorphisms, since σ4 = 1, τ 2 = 1, στ = σ3τ, τσ2 =

σ2τ, τσ3 = στ. ( The last two relations follow from the first three.)

Now any Q-automorphism of K sends i to some zero of t2 + 1,so i →+
− i ; similarly ξ

is mapped to ξ, iξ, or −iξ.All possible combinations of these(8 in number) appears in the

above list, so these are precisely the Q-automorphisms of K.

4.The abstract structure of the Galois group G can be found.From the generator-relation

presentation

G =< σ, τ : σ4 = τ 2, τσ = σ3τ >

it follows that G is the dihedral group of order 8, which we shall write as D8

5. It is an easy exercise to find the subgroups of G.If we let Cn denote the cyclic group

of order n, and × the direct product, then the subgroups are as follows:

Order 8:G G ∼= D8

Order 4:{1,σ,σ2,σ3} S ∼= C4

{1,σ2,τ ,σ2τ} T ∼= C2 ×C2

{1,σ2,στ ,σ3τ} U ∼= C2 ×C2

Order 2:{1,σ2 } A ∼= C2

{1,τ } B ∼= C2

{1,στ } C ∼= C2

{1,σ2τ } D ∼= C2

{1,σ3τ } E ∼= C2

Order 1:{1 } I ∼= C1

6 The inclusion relations between the subgroups of G can be summed up by the following

lattice diagram:
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S UT

A

I

CB ED

7 Under the Galois correspondence we obtain the intermediate fields. Since the corre-

spondence reverses inclusions this gives a lattice diagram of fields as follows:

K = I†

A† C†B†

S†

Q = G†

E†D†

U †T †

8 We now describe the elements of these intermediate fields.

There are three obvious subfields of K degree 2 over Q,namelyQ(i), Q(
√

5), Q(i
√

5).These

are clearly the fixed fields S†, T †and U † (respectively).The other fixed fields are less obvi-

ous.To illustrate a possible approach we shall find C†. Now any element of K can be expressed

in the form

x = a0 + a1ξ + a2ξ
2 + a3ξ

3 + a4i+ a5iξ + a6iξ
2 + a7iξ

3 where a0, ...., a7 ∈ Q.

Then

στ(x) = a0 + a1iξ − a2ξ2 − a3iξ3 − a4i+ a5(−i)iξ − a6i(iξ)2 − a7i(iξ)3

= a0 + a5ξ − a2ξ2 − a7ξ3 − a4i+ a1iξ + a6iξ
2 − a3i(iξ3

Therefore x is fixed by στ (and hence by C) if and only if a0 = a0, a1 = a5, a2 =

−a2, a3 = −a7, a4 = −a4, a5 = a1, a6 = a6, a7 = −a3. Therefore a0 and a6 are arbitrary,

a2 = 0 = a4, a1 = a5, anda3 = −a7.It follows that

x = a0 + a1(1 + i)ξ + a6iξ
2 + a3(1− i)ξ3
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= a0 + a1{(1 + i)ξ}+
a6
2
{(1 + i)ξ}2 − a3

2
{(1 + i)ξ}3

= a0 + a1{(1 + i)ξ}+
a6
2

(1 + i)2ξ2 − a3
2

(1 + i)3ξ3

= a0 + a1{(1 + i)ξ}+
a6
2

(1 + i)(1 + i)ξ2 − a3
2

2i(1 + i)ξ3

which means that

C† = Q((1 + i)ξ).

Now again

x = a0 + a1ξ + a2ξ
2 + a3ξ

3 + a4i+ a5iξ + a6iξ
2 + a7iξ

3 where a0, ...., a7 ∈ Q.

Then

σ2(x) = a0 − a1ξ + a2ξ
2 − a3ξ3 + a4i− a5iξ + a6iξ

2 − a7iξ3 where a0, ...., a7 ∈ Q.

Therefore x is fixed by σ2 (and hence by C) if and only if a0 = a0, a1 = −a1, a2 = a2, a3 =

−a3, a4 = a4, a5 = −a5, a6 = a6, a7 = −a7. Therefore a0, a2, a4 and a6 are arbitrary.It follows

that

x = a0 + a2ξ
2 + a4i+ a6iξ

2

x = (a0 + a2ξ
2) + i(a4 + a6ξ

2)

which means that

A† = Q(i,
√

5).

Similarly we have

B† = Q(ξ).

D† = Q(iξ).

E† = Q((1− i)ξ).
It is now easy to verify the inclusion relations determined by the lattice diagram of section

7.

9 If we check by hand that these are indeed the only intermediate fields.

10 The normal subgroups of G are G,S,T,U,A,I. By the theory,G†, S†, T †, U †, A†, I† should

be the only normal extensions of Q which are contained in K.Since these are all splitting

fields over Q,for the polynomial t, t2 + 1, t2 − 5, t2 + 5, t4 − 4t2 − 5, t4 − 5 (respectively)they

are normal extensions of Q. On the other hand B† : Q is not normal, since t4− 5 has a zero,

namely ξ in B† but does not split in B†. Similarly C†, D†, E† are not normal extensions of

Q.

11 The intermediate field A† is a normal extension of Q then the Galois group of A† : Q

is isomorphic to the quotient group G/A. Now G/A is isomorphic to C2 ×C2.We calculate

directly the Galois group of A†. Since A† = Q(i,
√

5) there are 4 Q-automorphisms
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automorphism effect on i effect on
√

5

1 i
√

5

α i −
√

5

β −i
√

5

αβ −i −
√

5

and since α2 = β2 = 1 and αβ = βα, this group is C2 ×C2 as expected.

The next example is completely different from the above.

3.2 Problem B

Let Q( 4
√

2, ξ8), where ξ8 = e
2πi
8 is a root of unity of order 8,whose minimum polynomial

over Q is X4 + 1. Both Q( 4
√

2) and Q(ξ8) have degree 4 over Q. Since ξ28 = i,Q( 4
√

2, ξ8) is a

splitting field over Q of (X4 − 2)(X4 + 1) and therefore is Galois over Q.We would like to

find out its Galois group.We have the following field diagram.

Q( 4
√

2, ξ8)

Q

Q(ξ8)Q( 4
√

2)

4

≤ 4 ≤ 4

4

Thus [Q( 4
√

2, ξ8) : Q] is at most 16.We will see that degree is not 16: there are some

hidden algebraic relation between 4
√

2 and ξ8.

Any σ ∈ G†((Q( 4
√

2, ξ8)/Q) is determined by its values

(1.1) σ(ξ8) = ξa8(a ∈ (Z/8Z)×)) and σ( 4
√

2) = ib 4
√

2(b ∈ Z/4Z).

There are 4 choices each for a and b. Taking independent choices of a and b, there are

at most 16 automorphisms in the Galois group.But the choices of a and b can not be made

independently because ξ8 and 4
√

2 are linked to each other:

(1.2) ξ8 + ξ−18 = e
2πi
8 + e

−2πi
8 = 2cos(π

4
) =
√

2 = ( 4
√

2)2

This says
√

2 belongs to both Q(ξ8) and Q( 4
√

2). Here is a field diagram which emphasizes

the common subfield Q(
√

2) in Q( 4
√

2) and Q(ξ8), This subfield is the source of (1.2)
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Q( 4
√

2, ξ8)

Q(
√

2)

Q(ξ8)Q( 4
√

2)

Q

Q(i)

2

≤ 4 ≤ 4

2

2

2

2

Rewriting ξ8 + ξ−18 =
√

2 as ξ28 −
√

2ξ8 + 1 = 0, ξ8 has degree at most 2 over Q( 4
√

2). Since

ξ8 is not real, isn’t inside Q( 4
√

2), so it has degree 2 over Q( 4
√

2). Therefore [Q( 4
√

2, ξ8) : Q] =

2.4 = 8 and the degrees marks as ” 6 4” in the diagram both equal 2.

Returning to the Galois group.(1.2) tells us the effect of σ ∈ G†(Q( 4
√

2)/Q) on 4
√

2

partially determines it on ξ8, and conversely: (σ( 4
√

2))2 = σ(ξ8) + σ(ξ8)
−1, which in the

notation of (1.1) is the same as

(1.3) (−1)b =
ξa8+ξ

−a
8√
2

This tells us that if a ≡ 1, 7 mod 8 then (−1)b = 1, so b ≡ 0, 2 mod 4, while if a ≡ 3, 5

mod 8 then (−1)b = −1, so b ≡ 1, 3 mod 4.For example σ can’t both fix 4
√

2(b = 0) and send

ξ8 to ξ38(a = 3) because (1.3) would not hold.

This simplest way to understand Q( 4
√

2) is to use a different set of generators.Since

ξ8 = e
2πi
8 = e

πi
4 = (1 + i)/

√
2),

Q(
4
√

2, ξ8) = Q(
4
√

2, i)

and from the second representation we know its Galois group over Q is isomorphic to

D4 with independent choices of where to send 4
√

2 ( to any fourth root of 2) and i ( to any

square root of -1) rather than 4
√

2 and ξ8.A different choice of field generators can make it

easier to what Galois group looks like. We see immediately from the second representation

that [Q( 4
√

2, ξ8) : Q] = 8

Now we are moving to a very simple exercise problem.

3.3 Problem C

1.Let f(t) = (t2 − 2)(t2 − 5) over Q, and let K be a splitting field for f such that K ⊆ R. In

R we can factorize f as follows:

f(t) = (t−
√

2)(t+
√

2)(t−
√

5)(t+
√

5)
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where
√

2 and
√

5 are real and positive.Clearly therefore K = Q(
√

2,
√

5).The characteristic

is 0 and K is a splitting field, so that K:Q is finite, separable, and normal.

2.We shall find the degree of K:Q.We have

[K : Q] = [Q(
√

2,
√

5) : Q(
√

2)][Q(
√

2) : Q]

The minimum polynomial of
√

2 over Q is t2−2 since (
√

2)2−2 = 0 but
√

2 ∈ R ⊇ Q(
√

2).

So [Q(
√

2,
√

5) : Q(
√

2)] = 2. Now
√

2 is a zero of f over Q , and f is irreducible over Q(
√

2)

.Hence f is the minimum polynomial of
√

2 over Q and [Q(
√

2) : Q] = 2. Therefore

[K : Q] = 2.2 = 4

3.We shall find the elements of the Galois group of K:Q.By a direct check,we see that

there is Q-automorphism σ of K such that

σ1(
√

2) and σ2(
√

5)

Product of these yield 4 distinct Q-automorphism of K, as follows:

σ1(
√

2) σ2(
√

5)√
2

√
5√

2 −
√

5

−
√

2
√

5

−
√

2 −
√

5

other products do not give new automorphisms,

Now any Q-automorphism of K sends
√

2 to some zero of t2−2, so
√

2→+
−
√

2 ; similarly√
5 is mapped to

√
5,−
√

5. All possible combinations of these(4 in number) appears in the

above list, so these are precisely the Q-automorphisms of K.

4.The abstract structure of the Galois group G can be found. From the generator-relation

presentation

G =< σ1(
√

2), σ2(
√

5) : (σ1(
√

2))2 = 2, (σ2(
√

5))2 = 5 >

it follows that G is the cyclic group of order 2, which we shall write as G ' C2 × C2

5. It is an easy exercise to find the subgroups of G.If we let Cn denote the cyclic group

of order n, and × the direct product, then the subgroups are as follows:

Order 4:G G ∼= C2 ×C2

Order 2:{1,σ1(
√

2) } S ∼= C2

{1,σ2(
√

5) } T ∼= C2

{1,σ1(
√

2)σ2(
√

5) } U ∼= C2

Order 1:{1 } I ∼= C1

6 The inclusion relations between the subgroups of G can be summed up by the following

lattice diagram:
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G

S UT

I

7 Under the Galois correspondence we obtain the intermediate fields. Since the corre-

spondence reverses inclusions this gives a lattice diagram of fields as follows:

K = I†

S† U †T †

G†

8 We now describe the elements of these intermediate fields.

There are three obvious subfields of K degree 2 over Q, namelyQ(
√

2), Q(
√

5), Q(
√

2.
√

5).These

are clearly the fixed fields S†, T †and U † (respectively).The other fixed fields are less obvious.

Now any element of K can be expressed in the form

x = a0 + a1
√

2 + a2
√

5 + a3
√

2
√

5 where a0, ...., a3 ∈ Q.

It is now easy to verify the inclusion relations determined by the lattice diagram of section

7.

9 If we check by hand that these are indeed the only intermediate fields.

10 The normal subgroups of G are G,S,T,U,I.By the theory, G†, S†, T †, U †, I† should be

the only normal extensions of Q which are contained in K.Since these are all splitting fields

over Q.for the polynomial t, t2−5, t2−2, t2−(
√

2+
√

5)t+
√

2
√

5, (t2−2)(t2−5) (respectively).

They are normal extensions of Q.

Now If we multiply another polynomial of degree two with the previous problem then

the next problem will be the solution.

14



3.4 Problem D

1.Let f(t) = (t2 − 2)(t2 − 3)(t2 − 5) over Q, and let K be a splitting field for f such that

K ⊆ R. In R we can factorize f as follows:

f(t) = (t−
√

2)(t+
√

2)(t−
√

3)(t+
√

3)(t−
√

5)(t+
√

5)

where
√

2,
√

3 and
√

5 are real and positive. Clearly therefore K = Q(
√

2,
√

3,
√

5).There

characteristic is 0 and K is a splitting field, so that K:Q is finite, separable, and normal.

2.We shall find the degree of K:Q.We have

[K : Q] = [Q(
√

2,
√

3,
√

5) : Q(
√

2,
√

3)][Q(
√

2,
√

3) : Q(
√

2)][Q(
√

2) : Q]

The minimum polynomial of
√

2 over Q is t2−2 since (
√

2)2−2 = 0 but
√

2 ∈ R ⊇ Q(
√

2).

So [Q(
√

2,
√

3) : Q(
√

2)] = 2. Now
√

2 is a zero of f over Q , and f is irreducible over

Q(
√

2).Hence f is the minimum polynomial of
√

2 over Q and [Q(
√

2) : Q] = 2. Similarly

we have [Q(
√

2,
√

3,
√

5) : Q(
√

2,
√

3)] = 2. Therefore

[K : Q] = [Q(
√

2,
√

3,
√

5) : Q] = 2.2.2 = 8

3.We shall find the elements of the Galois group of K:Q.By a direct check,we see that

there is Q-automorphism σ of K such that

σ1(
√

2) , σ2(
√

3) and σ3(
√

5)

Product of these yield 8 distinct Q-automorphism of K, as follows:

σ1(
√

2) σ2(
√

3 σ3(
√

5)√
2

√
3

√
5√

2
√

3 −
√

5√
2 −

√
3

√
5√

2 −
√

3 −
√

5

−
√

2
√

3
√

5

−
√

2
√

5 −
√

5

−
√

2 −
√

5
√

5

−
√

2 −
√

5 −
√

5

other products do not give new automorphisms,

Now any Q-automorphism of K sends
√

2 to some zero of t2−2, so
√

2→+
−
√

2 ; similarly√
3 is mapped to

√
3,−
√

3 and
√

5 is mapped to
√

5,−
√

5. All possible combinations of

these(8 in number) appears in the above list, so these are precisely the Q-automorphisms of

K.

4.The abstract structure of the Galois group G can be found.From the generator-relation

presentation
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G =< σ1(
√

2), σ2(
√

3), σ3(
√

5) : (σ1(
√

2))2 = 2, (σ2(
√

3))2 = 3, (σ3(
√

5))2 = 5 >

it follows that G is the cyclic group of order 2, which we shall write as G ' C2 ×C2 ×C2

5. It is an easy exercise to find the subgroups of G. If we let Cn denote the cyclic group

of order n, and × the direct product, then the subgroups are as follows:

Order 8:G G ∼= C2 ×C2 ×C2

Order 4:{1,σ1(
√

2), σ2(
√

3), σ1(
√

2)σ2(
√

3)) } S ∼= C2 ×C2

{1,σ2(
√

3), σ3(
√

5), σ2(
√

3)σ3(
√

5)) } T ∼= C2 ×C2

{1,σ1(
√

2), σ3(
√

5), σ1(
√

2)σ3(
√

5)) } U ∼= C2 ×C2

{1,σ1(
√

2), σ2(
√

3)σ3(
√

5), σ1(
√

2)σ2(
√

3)σ3(
√

5)) } A ∼= C2 ×C2

{1,σ2(
√

3), σ1(
√

2)σ3(
√

5), σ1(
√

2)σ2(
√

3)σ3(
√

5)) } B ∼= C2 ×C2

{1,σ3(
√

5), σ1(
√

2)σ2(
√

3), σ1(
√

2)σ2(
√

3)σ3(
√

5)) } C ∼= C2 ×C2

{1,σ1(
√

2)σ2(
√

3), σ1(
√

2)σ3(
√

5), σ2(
√

3)σ3(
√

5)) } D ∼= C2 ×C2

Order 2:{1,σ1(
√

2) } E ∼= C2

{1,σ2(
√

3) } F ∼= C2

{1,σ3(
√

5) } J ∼= C2

{1,σ1(
√

2)σ2(
√

3) } L ∼= C2

{1,σ2(
√

3)σ3(
√

5) } M ∼= C2

{1,σ1(
√

2)σ3(
√

5) } N ∼= C2

{1,σ1(
√

2)σ2(
√

3)σ3(
√

5) } O ∼= C2

Order 1:{1 } I ∼= C1

6 The inclusion relations between the subgroups of G can be summed up by the following

lattice diagram:

G

S UT

E

I

JF

BA DC

ML ON

7 Under the Galois correspondence we obtain the intermediate fields. Since the corre-

spondence reverses inclusions this gives a lattice diagram of fields as follows:
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K = I†

E† J†F †

S†

Q = G†

U †T †

M †L† O†N †

B†A† D†C†

8 We now describe the elements of these intermediate fields.

There are seven obvious subfields of K degree 2 over Q,namelyQ(
√

5), Q(
√

2), Q(
√

3), Q(
√

3
√

5), Q(
√

2
√

5), Q(
√

2
√

3), Q(
√

2
√

3)Q(
√

5).These

are clearly the fixed fields S†, T †, U †, A†, B†, C† and D† (respectively).The other fixed fields

are less obvious.To illustrate a possible approach we shall find C†. Now any element of K

can be expressed in the form

x = a0+a1
√

2+a2
√

3+a3
√

5+a4
√

2
√

3+a5
√

3
√

5+a6
√

2
√

5+a7
√

2
√

3
√

5 where a0, ...., a7 ∈ Q.

So we have

S† = Q(
√

5).

T † = Q(
√

2).

U † = Q(
√

3).

A† = Q(
√

3
√

5).

B† = Q(
√

2
√

5).

C† = Q(
√

2
√

3).

D† = Q(
√

2
√

3
√

5).

E† = Q(
√

3,
√

5).

F † = Q(
√

2,
√

5).

J† = Q(
√

2,
√

3).

L† = Q(
√

5,
√

2
√

3).

M † = Q(
√

2,
√

3
√

5).

N † = Q(
√

3,
√

2
√

5).

O† = Q(
√

2
√

3,
√

2
√

5).

It is now easy to verify the inclusion relations determined by the lattice diagram of section

7.

9 If we check by hand that these are indeed the only intermediate fields.

10 The normal subgroups of G are G,S,T,U,E,F,J,I.By the theory,G†, S†, T †, U †, E†, F †, J†, I†

should be the only normal extensions of Q which are contained in K. Since these are all
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splitting fields over Q, for the polynomial t, t2−5, t2−2, t2−3, t4−8t2+15, t4−7t2+10, t4−
5t2 + 6, (t2− 2)(t2− 3)(t2− 5) (respectively). They are normal extensions of Q.On the other

hand A† is not normal since t2− 15 has a zero in
√

3
√

5. Similarly B†, C†, D†, L†,M †, N †, O†

are not normal extension of Q .

3.5 Problem E

1.Let f(t) = (t4 + 1) over Q, and let K be a splitting field for f such that K ⊆ C. In C we

can factorize f as follows:

f(t) = (t2 + t− 1)(t2 − t− 1)

Now for (t2 + t− 1) we get

t =
−1±

√
1 + 4

2
=
−1±

√
5

2
= −1

2
±
√

5

2

and for

(t2 − t− 1) we get

t =
1±
√

1 + 4

2
=

1±
√

5

2
=

1

2
±
√

5

2

So we get

f(t) = (t− (−1

2
+

√
5

2
))(t− (−1

2
−
√

5

2
))(t− (

1

2
+

√
5

2
))(t− (

1

2
−
√

5

2
))

where 1
2

and
√
5
2

are real and positive.Clearly therefore K = Q(1
2
±
√
5
2

) = Q(
√

5).There

characteristic is 0 and K is a splitting field, so that K:Q is finite,separable, and normal.

2.We shall find the degree of K:Q.We have

[K : Q] = [Q(
√

5) : Q]

The minimum polynomial of
√

5 over Q is t2 − 5 since (
√

5)2 − 5 = 0 but
√

5 ∈ R ⊇
Q(
√

5). So [Q(
√

5) : Q] = 2. Now
√

5 is a zero of t2−5 over Q. Hence t2−5 is the minimum

polynomial of
√

5 over Q Therefore

[K : Q] = 2

3.We shall find the elements of the Galois group of K:Q.By a direct check,we see that

there is only one Q-automorphism σ of K such that

σ(
√

5) =
√

5, σ(
1

2
+

√
5

2
) =

1

2
+

√
5

2

18



Now any Q-automorphism of K sends
√

5 to some zero of t2−5, so
√

5→−+
√

5 ; similarly
1
2

+
√
5
2

is mapped to 1
2

+
√
5
2
, 1
2
−
√
5
2

. All possible combinations of these(2 in number) appears

in the above list,so these are precisely the Q-automorphisms of K.

4.The abstract structure of the Galois group G can be found.

it follows that G is the cyclic group of order 2, which we shall write as G ' C/2

5. It is an easy exercise to find the subgroups of G.If we let Cn denote the cyclic group

of order n, and × the direct product, then the subgroups are as follows:

Order 2:G G ∼= C2

Order 1:{1 } I ∼= C1

6 The inclusion relations between the subgroups of G can be summed up by the following

lattice diagram:

G

I

7 Under the Galois correspondence we obtain the intermediate fields. Since the corre-

spondence reverses inclusions this gives a lattice diagram of fields as follows:

K = I†

Q = G†

8 We now can see that no elements of these intermediate field.

There are no subfields of K over Q,

3.6 Problem F

1.Let f(t) = (t4 − 3t2 + 4) over Q,and let K be a splitting field for f such that K ⊆ C.In C

we can factorize f as follows:

f(t) = (t2 −
√

7t+ 2)t2 +
√

7t+ 2))

Now for t2 −
√

7t+ 2 we get

t =

√
7±
√

7 + 4.2

2
=

√
7±
√
−1

2
= −
√

7

2
± i

2

and for
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t2 +
√

7t+ 2 we get

t =
−
√

7±
√

7 + 4.2

2
=
−
√

7±
√
−1

2
=
−
√

7

2
± i

2

So we get

f(t) = (t− (

√
7

2
+
i

2
))(t− (

√
7

2
− i

2
))(t− (

−
√

7

2
+
i

2
))(t− (

−
√

7

2
− i

2
))

where
√
7
2
and 1

2
are real and positive.Clearly therefore K = Q(

√
7
2

+ 1
2
, i) = Q(

√
7, i).There

characteristic is 0 and K is a splitting field, so that K:Q is finite,separable, and normal.

2.We shall find the degree of K:Q.We have

[K : Q] = [Q(
√

7, i) : Q(
√

7)][Q(
√

7) : Q]

The minimum polynomial of i over Q is t2 + 1 since (i)2 + 1 = 0 but i 6∈ R ⊇ Q(
√

7).

So [Q(
√

7, i) : Q(
√

7)] = 2. Now
√

7 is a zero of t2 − 7 over Q , and t2 − 7 is irreducible by

Eisenstein’s criterion.Hence t2 − 7 is the minimum polynomial of√
7 over Q and [Q(

√
7) : Q] = 2. Therefore

[K : Q] = 2.2 = 4

3.We shall find the elements of the Galois group of K:Q.By a direct check,we see that

there is Q-automorphism σ of K such that

σ(i) = i, σ(

√
7

2
+

1

2
) =

√
7

2
+ i

1

2

and another ,τ ,such that

τ(i) = −i, τ(

√
7

2
+

1

2
) =

√
7

2
− i1

2

Product of these yield 4 distinct Q-automorphism of K, as follows:

automorphism effect on
√
7
2

+ 1
2

effect on i

1
√
7
2

+ 1
2

i

σ
√
7
2

+ i1
2

i

τ
√
7
2
− i1

2
-i

στ
√
7
2

+ 1
2

-i

other products do not give new automorphisms,since σ2 = 1, τ 2 = 1

Now any Q-automorphism of K sends i to some zero of t2+1,so i→+
− i ;similarly

√
7
2

+ 1
2

is

mapped to
√
7
2

+ 1
2
,
√
7
2

+ i1
2
,
√
7
2
− i1

2
.All possible combinations of these(4 in number) appears

in the above list,so these are precisely the Q-automorphisms of K.

4.The abstract structure of the Galois group G can be found.From the generator-relation

presentation
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G =< σ, τ : σ2 = τ 2 >

it follows that G is the Cyclic group of order 4, which we shall write as C4

5. It is an easy exercise to find the subgroups of G.If we let Cn denote the cyclic group

of order n, and × the direct product, then the subgroups are as follows:

Order 4:G G ∼= C2 ×C2

Order 2:{1,σ } S ∼= C2

{1,τ } T ∼= C2

{1,στ } U ∼= C2

Order 1:{1 } I ∼= C1

6 The inclusion relations between the subgroups of G can be summed up by the following

lattice diagram:

G

S UT

I

7 Under the Galois correspondence we obtain the intermediate fields. Since the corre-

spondence reverses inclusions this gives a lattice diagram of fields as follows:

K = I†

S† U †T †

Q = G†

8 We now describe the elements of these intermediate fields.

There are three obvious subfields of K degree 2 over Q,namely Q(
√
7
2

+ 1
2
), Q(

√
7
2

+

i1
2
), Q(

√
7
2
− i1

2
).These are clearly the fixed fields S†, T †and U † (respectively).The other fixed

fields are less obvious. Now any element of K can be expressed in the form

x = a0 + a1(

√
7

2
+

1

2
) + a2(

√
7

2
+ i

1

2
) + a3(

√
7

2
− i1

2
) where a0, ...., a3 ∈ Q.
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We have

S† = Q(

√
7

2
+

1

2
).

T † = Q(
√
7
2

+ 1
2
, i).

U † = Q(−
√
7

2
+ 1

2
, i).

It is now easy to verify the inclusion relations determined by the lattice diagram of section

7.

9 If we check by hand that these are indeed the only intermediate fields.

10 The normal subgroups of G are G,T,U,I.By the theory,G†, T †, U †, I† should be the

only normal extensions of Q which are contained in K.Since these are all splitting fields over

Q.for the polynomial t, t2− (
√
7
2
− i1

2
), t2− (

√
7
2

+ i1
2
), t2 + t+ 1 (respectively)they are normal

extensions of Q.On the other hand S† : Q is not normal,since (t2 − (
√
7
2

+ 1
2
)2) has a zero,

namely (−
√
7

2
+ 1

2
) in S† but does not split in S†.

Similarly by fixing

σ(−
√

7

2
+

1

2
) = −

√
7

2
+ i

1

2

and

τ(−
√

7

2
+

1

2
) = −

√
7

2
− i1

2

we the Polynomials t, t2 − (−
√
7
2

+ i1
2
)2, t2 − (−

√
7
2
− i1

2
)2, t2 − t+ 1, (respectively).

They are also normal extensions of Q.

3.7 Problem G

We determine the Galois group of X4 +8X+12 over Q. This is reducible mod p for all small

p, so the reduction mod p test doesn’t help us prove the polynomial is irreducible over Q.

(In fact, the polynomial factors mod p for all p, so the reduction mod p test really doesn’t

apply. It’s not an artifact of only looking at small primes.) Let’s look at how the polynomial

factors into irreducibles modulo different primes:

X4 + 8X + 12 ≡ (X + 1)(X3 + 4X2 +X + 2) mod 5;

X4 + 8X + 12 ≡ (X2 + 4X + 7)(X2 + 13X + 9) mod 17 :

These are only consistent with X4 + 8X + 12 being irreducible over Q. By the irreducibility

of the polynomial, the Galois group of X4 + 8X + 12 over Q has size divisible by 4. The

discriminant of X4 + 8X + 12 is 331776 = 5762, a rational square, so the Galois group is

a subgroup of A4 and therefore has size 4 or 12. From the factorization of the polynomial

mod 5 above, the Galois group contains a permutation of the roots whose cycle type is (1, 3),

which is a 3-cycle, so the Galois group has order divisible by 3, and thus its size is 12. So

the Galois group of X4 + 8X + 12 over Q is isomorphic to A4 : the even permutations of

the roots extend to automorphisms of the splitting field over Q, while the odd permutations
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do not. Let’s list all the subfields of the splitting field of X4 + 8X + 12 over Q. Here is the

lattice (upside down) of subgroups of A4.

{(1)}

〈(124)〉〈(123)〉 〈(134)〉〈(14)(23)〉〈(13)(24)〉〈(12)(34)〉 〈(234)〉

V

A4

3
3 3 3

3

2
2

2

The corresponding subfield lattice of K = Q(r1, r2, r3, r4) is as follows.

K

Q(r3)Q(r4) Q(r2)Q(r1 + r4)Q(r1 + r3)Q(r1 + r2) Q(r1)

Q(r1r2 + r3r4)

A4

3
3 3 3

3

2
2

2

The normal subgroups of A4 are 1, V , and A4, so the only subfield of K that is Galois

over Q other than K and Q is Q(r1r2 +r3r4). Since [K : Q(r1)] = 3 is prime and r2 6∈ Q(r1),

we have K = Q(r1; r2), so [Q(r1; r2) : Q] = 12. The sums r1 + r2, r1 + r3, and r1 + r4 are

roots of X6− 48X2− 64 and r1r2 + r3r4 is a root of X3− 48X− 64. Roots of X3− 48X− 64

are squares of roots of X6 − 48X2 − 64.

3.8 Problem G

We compute the Galois group ofX4−X−1 over Q using Dedekind Theorem .This polynomial

is irreducible mod 2, so it is irreducible over Q. Let its roots be r1, r2, r3, r4. The extension

Q(r1)/Q has degree 4, so the Galois group of X4 −X − 1 over Q has order divisible by 4.
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Since the Galois group embeds into S4, its size is either 4,8, 12, or 24. The discriminant of

X4 −X − 1 is −283, which is not a rational square, so the Galois group is not a subgroup

of A4. This eliminates the possibility of the Galois group having order 12, because the only

subgroup of S4 with order 12 is A4. (Quite generally, the only subgroup of index 2 in Sn is

An for n ≥ 2.) There are subgroups of S4 with orders 4, 8, and (of course) 24 outside of A4,

so no other size but 12 is eliminated yet. We will use Dedekind Theorem to show the Galois

group has order divisible by 3, and this will prove the Galois group is S4 since 4 and 8 are

not divisible by 3. Using Dedekind Theorem with p = 7,

X4 −X − 1 ≡ (X + 4)(X3 + 3X2 + 2X + 5) mod 7 :

This is an irreducible factorization, so the Galois group of X4 − X − 1 over Q contains

a permutation of the roots with cycle type (1, 3), which means there is a 3-cycle in the

Galois group. Any 3-cycle has order 3. This Galois group computation has an application

to constructible numbers. A necessary condition for a complex number to be constructible

(using only an unmarked straightedge and compass) is that the number has 2-power degree

over Q. This necessary condition is not sufficient: if r is a root of X4 −X − 1 then [Q(r) :

Q] = 4 and we will show r is not a constructible number by showing there is no quadratic

field in Q(r). Let K be a splitting field of X4 − X − 1 over Q, so the permutations of its

roots by G†(K/Q) is an isomorphism with S4. The subgroup G†(K/Q(r)) corresponds to

a sub-group of S4 fixing one of the four numbers, which is a group isomorphic to S3. (The

subgroups of any Sn fixing one number are all conjugate to each other, and in fact are all of

the subgroups of index n in Sn.)

K

Q(r)

Q

{(1)}

S3

S4

6

4

6

4

There is no subgroup of S4 strictly between S3 and S4 : if there were it would be a

subgroup of index 2 and thus has to be A4, but S3 6⊂ A4. (There is no subgroup of order 6

in A4.) So by the Galois correspondence, there is no field properly between Q and Q(r).

3.9 Problem H

A splitting field K/Q for p(X) = X3 − 2 over Q and determine [K : Q]. By the Eisenstein

Criterion , p(X) is irreducible over Q. One root of p(X) is 3
√

2 ∈ R so we adjoin this to Q to
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form an extension Q( 3
√

2)/Q of degree 3. Now

p(X) = (X − 3
√

2)(X2 +
3
√

2X + (
3
√

2)2)

and the second factor has the non-real complex roots 3
√

2ζ3,
3
√

2ζ23 lying in the extension

Q( 3
√

2ζ3)/Q( 3
√

2) of degree 2. So the splitting subfield of X3 − 2 in C over Q is Q( 3
√

2, ζ3)

with [Q( 3
√

2, ζ3) : Q] = 6.

An alternative strategy would have been to adjoin one of the other roots 3
√

2ζ3 or 3
√

2ζ23
first. We could also have begun by adjoining ζ3 to form the extension Q(ζ3)/Q but none of

the roots of p(X) lie in this field so the extension Q( 3
√

2, ζ3)/Q(ζ3) of degree 3 is obtained

by adjoining one and hence all of the roots. Figure shows all the subfields of the extension

Q( 3
√

2, ζ3)/Q

CR

Q( 3
√

2, ζ3)

Q( 3
√

2ζ23 )

Q

Q( 3
√

2ζ3) Q(ζ3)Q( 3
√

2)

2

3

2

3

2

3

2
3

∞

2

∞

We will build up the list of monomorphisms in stages. First consider monomorphisms

that fix 3
√

2 and hence fix the subfield Q( 3
√

2).These form the subset

MonoQ( 3√2)(Q((
3
√

2, ζ3),C) ⊆MonoQ(Q(
3
√

2, ζ3),C).

We know that Q(( 3
√

2, ζ3) = Q( 3
√

2)(ζ3) and that ζ3 is a root of the irreducible cyclotomic

polynomial Φ3(X) = X2+X+1 ∈ Q( 3
√

2)[X]. So there are two monomorphisms id, a0 fixing

Q( 3
√

2), where ?0 has the effect

α0 :

(
3
√

2 7→ 3
√

2

ζ3 7→ ζ23

)
.

Next we consider monomorphisms that send 3
√

2 to 3
√

2ζ3. This time we have 2 distinct

ways to extend to elements of MonoQ(Q( 3
√

2, ζ3),Q( 3
√

2, ζ3)) since again we can send ζ3 to

either ζ3 or ζ23 The possibilities are
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α1 :

(
3
√

2 7→ 3
√

2ζ3

ζ3 7→ ζ3

)
,

α′1 :

(
3
√

2 7→ 3
√

2ζ3

ζ3 7→ ζ23

)
.

Finally we consider monomorphisms that send 3
√

2 to 3
√

2ζ23 . There are again two possi-

bilities

α2 :

(
3
√

2 7→ 3
√

2ζ23
ζ3 7→ ζ3

)
,

α′2 :

(
3
√

2 7→ 3
√

2ζ23
ζ3 7→ ζ23

)
.

These are all 6 of the required monomorphisms. It is also the case here that

MonoQ(Q(
3
√

2, ζ3),C) = MonoQ(Q(
3
√

2, ζ3),Q(
3
√

2, ζ3)) = AutQ(Q(
3
√

2, ζ3)),

so these form a group. It is a nice exercise to show that AutQ(Q( 3
√

2, ζ3)) ∼= S3, the sym-

metric group on 3 objects. It is also worth remarking that [AutQ(Q( 3
√

2, ζ3))] = [Q( 3
√

2, ζ3) :

Q]

First take the 3 roots of the polynomial X3 − 2 for which E is the splitting field over Q;

these are 3
√

2, 3
√

2ζ3,
3
√

2ζ23 which we number in the order they are listed. Then the monomor-

phisms id, α0, α1, α
′
1, α2, α

′
2 extend to automorphisms of E,each of which permutes these 3

roots in the following ways given by cycle notation:

α0 = (23), α1 = (123), α′1 = (12), α2 = (132), α′2 = (13)
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K = Q( 3
√

2, ζ3)

Q( 3
√

2ζ23 )

Q

Q( 3
√

2ζ3) Q(ζ3)Q( 3
√

2)

2

3

2

3

2

3

2
3

G†(K/Q)

G†(K/Q( 3
√

2ζ23 ))

{id}

G†(K/Q( 3
√

2ζ3)) G†(K/Q(ζ3))G†(K/Q( 3
√

2))

3

2

3

2

3

2

3
2

Figure The Galois Correspondence for K = Q( 3
√

2, ζ3)/Q

We find that

G†(K/Q(ζ3)) = {id, α1, α2} ∼= {id, (123), (132)}
G†(K/Q( 3

√
2)) = {id, α0} ∼= {id, (23)}

G†(K/Q( 3
√

2ζ3)) = {id, α′2} ∼= {id, (13)}
G†(K/Q( 3

√
2ζ23 )) = {id, α′1} ∼= {id, (12)}

Notice that {id, (123), (132)} C S3 and so Q(ζ3)/Q is a normal extension.Of course Q(ζ3) is

the splitting field of X3 − 1 over Q. [3] [4] [7] [8]
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4 Conclusion

Galois Theory is a showpiece of Mathematical unification,bringing together several different

branches of the subject and creating a powerful machine for the study of problems of con-

siderable historical and mathematical importance. Here, some problems are are presented in

the context of Galois theory to illustrate the importance of this theory with respect to field

extensions.
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