WIRTINGER'S INTEGRAL INEQUALITY ON TIME SCALE

TATJANA MIRKOVIC

Abstract

In this paper, we establish a Wirtinger-type inequality on an arbitrary time scale. We give, as special cases of the time scales, new Wirtinger-type inequality in the continuous and discrete cases, respectively.

1. Introduction

A time scale, (we denote it by the symbol \mathbb{T}) is an arbitrary nonempty closed subset of the real numbers. For $t \in \mathbb{T}$ we define the forward jump operator $\sigma: \mathbb{T} \rightarrow \mathbb{T}$ by $\sigma(t):=\inf \{s \in T: s>t\}$. If $t<\sup T$ and $\sigma(t)=$ t, then t is called right-dense, and if $t>\inf T$ and $\rho(t)=t$, then t is called left-dense. Graininess function $\mu: T \rightarrow[0, \infty)$ is defined by $\mu(t):=\sigma(t)-t$ (see [2], [3], [6]).

A function $f: \mathbb{T} \rightarrow \mathbb{R}$ is called rd-continuous provided it is continuous at right-dense points in \mathbb{T} and its left-sided limits exist (finite) at left-dense points in \mathbb{T}. The set of rd-continuous functions $f: \mathbb{T} \rightarrow \mathbb{R}$ will be denoted by $\mathbb{C}_{r d}=\mathbb{C}_{r d}(\mathbb{T})=\mathbb{C}_{r d}(\mathbb{T}, \mathbb{R})$. The set of functions $f: \mathbb{T} \rightarrow \mathbb{R}$ that are differentiable and whose derivative is rd-continuous is denoted by $\mathbb{C}_{r d}^{1}=$ $\mathbb{C}_{r d}^{1}(\mathbb{T})=\mathbb{C}_{r d}^{1}(\mathbb{T}, \mathbb{R})$. We define the time scale interval $[a, b]_{\mathbb{T}}$ by $[a, b]_{\mathbb{T}}=$ $[a, b] \cap \mathbb{T}$.

In 2000, Hilscher [8] proved a Wirtinger-type inequality on time scales in the form:

Theorem 1.1. (Discrete Wirtinger Inequality, [?]) If M be positive and strictly monotone such that M^{Δ} exists and is rd-continuous, then

$$
\begin{equation*}
\int_{a}^{b}\left|M^{\Delta}(t)\right| y^{2}(\sigma(t)) \Delta t \leq \Psi^{2} \int_{a}^{b} \frac{M(t) M(\sigma(t))}{\left|M^{\Delta}(t)\right|}\left(y^{\Delta}(t)\right)^{2} \Delta t \tag{1.1}
\end{equation*}
$$

for any y with $y(a)=y(b)=0$ and such that y^{Δ} exists and is rd-continuous, where

[^0]\[

$$
\begin{equation*}
\Psi=\left(\sup _{t \in[a, b] \cap \mathbb{T}} \frac{M(t)}{M(\sigma(t))}\right)^{\frac{1}{2}}+\left[\left(\sup _{t \in[a, b] \cap \mathbb{T}} \frac{\mu(t)\left|M^{\Delta}(t)\right|}{M(\sigma(t))}\right)+\left(\sup _{t \in[a, b] \cap \mathbb{T}} \frac{M(t)}{M(\sigma(t))}\right)\right]^{\frac{1}{2}} . \tag{1.2}
\end{equation*}
$$

\]

In [4] authors extended the following theorem:
Theorem 1.2. ([4]) Suppose $\gamma \geq 1$ is an odd integer. For a positive $M \in$ $C_{r d}^{1}(\mathfrak{T})$ satisfying either $M^{\Delta}>0$ or $M^{\Delta}<0$ on \mathfrak{T}, we have

$$
\begin{equation*}
\int_{a}^{b} \frac{M^{\gamma}(t) M(\sigma(t))}{\left|M^{\Delta}(t)\right|^{\gamma}}\left(y^{\Delta}(t)\right)^{\gamma+1} \Delta t \geq \frac{1}{\Psi^{\gamma+1}(\alpha, \beta, \gamma)} \int_{a}^{b}\left|M^{\Delta}(t)\right| y^{\gamma+1}(t) \Delta t \tag{1.3}
\end{equation*}
$$

for any $y \in C_{r d}^{1}(\mathfrak{T})$ with $y(a)=y(b)=0$, where $\Psi(\alpha, \beta, \gamma)$ is the largest root of

$$
\begin{equation*}
x^{\gamma+1}-2^{\gamma-1}(\gamma+1) \alpha x^{\gamma}-2^{\gamma-1} \beta=0, \tag{1.4}
\end{equation*}
$$

whereby

$$
\alpha:=\sup _{t \in \mathfrak{T}^{k}}\left(\frac{M(\sigma(t))}{M(t)}\right)^{\frac{\gamma}{\gamma+1}}, \quad \beta:=\sup _{t \in \mathfrak{T}^{k}}\left(\frac{\mu(t)\left|M^{\Delta}(t)\right|}{M(t)}\right)^{\gamma} .
$$

2. Main Results

Let us prove the following theorem:
Theorem 2.1. Let $M \in \mathbb{C}_{r d}^{1}\left([a, b]_{\mathbb{T}}\right)^{k}$ be positive and strictly monotone such that satisfying either $M^{\Delta}>0$ or $M^{\Delta}<0$ on $\left([a, b]_{\mathbb{T}}\right)^{k}$. Then, for some integer $\eta \geq 1$ we have

$$
\begin{equation*}
\int_{a}^{b}\left|M^{\Delta}(t)\right| y^{\eta+1}(\sigma(t)) \Delta t \leq \Lambda^{\eta+1}\left(\omega, \xi_{r}, \psi\right) \int_{a}^{b} \frac{M^{\eta}(t) M(\sigma(t))}{\left|M^{\Delta}(t)\right|^{\eta}}\left(y^{\Delta}(t)\right)^{\eta+1} \Delta t \tag{2.1}
\end{equation*}
$$

for any $y \in \mathbb{C}_{r d}^{1}\left([a, b]_{\mathbb{T}}\right)^{k}$, with $y(a)=y(b)=0$, where $\Lambda\left(\omega, \xi_{r}, \psi\right)$ is the largest root of equality

$$
\begin{equation*}
x^{\eta+1}=2^{\eta} \omega x^{\eta}+\sum_{r=1}^{\eta-1} 2^{\eta-(r+1)} \xi_{r} x^{r}+2^{\eta-1} \psi \tag{2.2}
\end{equation*}
$$

whereby

$$
\begin{align*}
& \omega=\sup _{t \in\left([a, b]_{\mathbb{T}}\right)^{k}}\left(\frac{M^{\sigma}}{M}\right)^{\frac{\eta}{\eta+1}}, \quad \psi=\sup _{t \in\left([a, b]_{\mathbb{T}}\right)^{k}}\left(\frac{\mu^{\frac{1}{\eta}}\left|M^{\Delta}\right|}{M}\right)^{\eta}, \\
& \xi_{r}=\sup _{t \in\left([a, b]_{\mathbb{T}}\right)^{k}}\left(\frac{\mu^{\frac{\eta+1}{r} M^{\sigma}\left|M^{\Delta}\right|^{\frac{\eta(\eta-(r-1))}{r}}-1}}{M^{\frac{\eta(\eta-(r-1))}{r}}}\right)^{\frac{\eta}{\eta+1}}, \quad r=1, \ldots, \eta-1 . \tag{2.3}
\end{align*}
$$

We denote by

$$
\begin{equation*}
A=\int_{a}^{b}\left|M^{\Delta}(t)\right| y^{\eta+1}(\sigma(t)) \Delta t, \quad B=\int_{a}^{b} \frac{M^{\eta}(t) M(\sigma(t))}{\left|M^{\Delta}(t)\right|^{\eta}}\left(y^{\Delta}(t)\right)^{\eta+1} \Delta t . \tag{2.4}
\end{equation*}
$$

Using the integration by parts, whereby $y(a)=y(b)=0$, left side of inequality (2.1) become

$$
\begin{aligned}
& A=\int_{a}^{b}\left|M^{\Delta}(t)\right| y^{\eta+1}(t) \Delta t= \pm \int_{a}^{b} M^{\Delta}(t) y^{\eta+1}(t) \Delta t \\
& = \pm\left\{\left[M(t) y^{\eta+1}(t)\right]_{a}^{b}-\int_{a}^{b} M^{\sigma}(t)\left(y^{\eta+1}(t)\right)^{\Delta} \Delta t\right\} \\
& \leq \int_{a}^{b} M^{\sigma}(t)\left|y^{\eta+1}\right|^{\Delta}(t) \Delta t=\int_{a}^{b} M^{\sigma}\left|\sum_{r=0}^{\eta} y^{r}\left(y^{\sigma}\right)^{\eta-r}\right|\left|y^{\Delta}\right| \Delta t \\
& =\int_{a}^{b} M^{\sigma}\left|\left(y^{\sigma}\right)^{\eta}+y\left(y^{\sigma}\right)^{\eta-1}+y^{2}\left(y^{\sigma}\right)^{\eta-2}+\ldots+y^{\eta-1}\left(y^{\sigma}\right)+y^{\eta}\right|\left|y^{\Delta}\right| \Delta t \\
& =\int_{a}^{b} M^{\sigma}\left|\left(y+\mu y^{\Delta}\right)^{\eta}+y\left(y+\mu y^{\Delta}\right)^{\eta-1}+\ldots+y^{\eta-1}\left(y+\mu y^{\Delta}\right)+y^{\eta}\right|\left|y^{\Delta}\right| \Delta t \\
& \leq \int^{b} M^{\sigma}\left\{2^{\eta-1}|y|^{\eta}\left|y^{\Delta}\right|+2^{\eta-1} \mu\left|y^{\Delta}\right|^{\eta+1}+2^{\eta-2}|y|^{\eta}\left|y^{\Delta}\right|+2^{\eta-2} \mu|y|\left|y^{\Delta}\right|^{\eta}+\ldots+\right. \\
& \left.=\int_{a}+|y|^{\eta}\left|y^{\Delta}\right|+\mu|y|^{\eta-1}\left|y^{\Delta}\right|^{2}+|y|^{\eta}\left|y^{\Delta}\right|\right\} \Delta t \\
& \begin{array}{cl}
=\int_{a}^{b}\left\{2^{\eta} M^{\sigma}|y|^{\eta}\left|y^{\Delta}\right|+2^{\eta-2} M^{\sigma} \mu|y|\left|y^{\Delta}\right|^{\eta}+2^{\eta-3} M^{\sigma} \mu|y|^{2}\left|y^{\Delta}\right|^{\eta-1}+\right. \\
\left.\ldots+M^{\sigma} \mu|y|^{\eta-1}\left|y^{\Delta}\right|^{2}+2^{\eta-1} M^{\sigma} \mu\left|y^{\Delta}\right|^{\eta+1}\right\} \Delta t
\end{array} \\
& =2^{\eta} \int_{a}^{b}\left(\frac{M^{\eta} M^{\sigma}}{\left|M^{\Delta}\right|^{\eta}}\left|y^{\Delta}\right|^{\eta+1}\right)^{\frac{1}{\eta+1}}\left(\frac{M^{\eta} M^{\sigma}}{M}|y|^{\eta+1}\right)^{\frac{\eta}{\eta+1}} \Delta t+ \\
& 2^{\eta-2} \int_{a}^{b}\left(\frac{M^{\eta} M^{\sigma}}{\left|M^{\Delta}\right|^{\eta}}\left|y^{\Delta}\right|^{\eta+1}\right)^{\frac{\eta}{\eta+1}}\left(\frac{\mu^{\eta+1} M^{\sigma}\left|M^{\Delta}\right|^{\eta^{2}-1}\left|M^{\Delta}\right|}{M^{\eta^{2}}}|y|^{\eta+1}\right)^{\frac{1}{\eta+1}} \Delta t \\
& +2^{\eta-3} \int_{a}^{b}\left(\frac{M^{\eta} M^{\sigma}}{\left|M^{\Delta}\right|^{\eta}}\left|y^{\Delta}\right|^{\eta+1}\right)^{\frac{\eta-1}{\eta+1}}\left(\frac{\mu^{\frac{\eta+1}{2}} M^{\sigma}\left|M^{\Delta}\right|^{\frac{\eta(\eta-1)}{2}-1}\left|M^{\Delta}\right|}{M^{\frac{\eta(\eta-1)}{2}}}|y|^{\eta+1}\right)^{\frac{2}{\eta+1}} \Delta t+\ldots \\
& +2 \int_{a}^{b}\left(\frac{M^{\eta} M^{\sigma}}{\left|M^{\Delta}\right|^{\eta}}\left|y^{\Delta}\right|^{\eta+1}\right)^{\frac{3}{\eta+1}}\left(\frac{\mu^{\frac{\eta+1}{\eta-2}} M^{\sigma}\left|M^{\Delta}\right|^{\frac{3 \eta}{\eta-2}-1}\left|M^{\Delta}\right|}{M^{\frac{3 \eta}{\eta-2}}}|y|^{\eta+1}\right)^{\frac{\eta-2}{\eta+1}} \Delta t \\
& +\int_{a}^{b}\left(\frac{M^{\eta} M^{\sigma}}{\left|M^{\Delta}\right|^{\eta}}\left|y^{\Delta}\right|^{\eta+1}\right)^{\frac{2}{\eta+1}}\left(\frac{\mu^{\frac{\eta+1}{\eta-1}} M^{\sigma}\left|M^{\Delta}\right|^{\frac{2 \eta}{\eta-1}-1}\left|M^{\Delta}\right|}{M^{\frac{2 \eta}{\eta-1}}}|y|^{\eta+1}\right)^{\frac{\eta-1}{\eta+1}} \Delta t \\
& +2^{\eta-1} \int_{a}^{b}\left(\frac{M^{\eta} M^{\sigma}}{\left|M^{\Delta}\right|^{\eta}}\left|y^{\Delta}\right|^{\eta+1}\right)\left(\frac{\mu\left|M^{\Delta}\right|^{\eta}}{M^{\eta}}\right) \Delta t .
\end{aligned}
$$

Applying Hölder inequality on each summand of the above inequality, except the last one, it follows

$$
\begin{aligned}
& A \leq 2^{\eta}\left\{\int_{a}^{b}\left(\frac{M^{\eta} M^{\sigma}}{\left|M^{\Delta}\right|^{\eta}}\left|y^{\Delta}\right|^{\eta+1}\right) \Delta t\right\}^{\frac{1}{\eta+1}}\left\{\int_{a}^{b}\left(\frac{M^{\eta} M^{\sigma}}{M}|y|^{\eta+1}\right) \Delta t\right\}^{\frac{\eta}{\eta+1}} \\
& +2^{\eta-2}\left\{\int_{a}^{b}\left(\frac{M^{\eta} M^{\sigma}}{\left|M^{\Delta}\right|^{\eta}}\left|y^{\Delta}\right|^{\eta+1}\right) \Delta t\right\}^{\frac{\eta}{\eta+1}}\left\{\int_{a}^{b}\left(\frac{\mu^{\eta+1} M^{\sigma}\left|M^{\Delta}\right|^{\eta^{2}-1}\left|M^{\Delta}\right|}{M^{\eta^{2}}}|y|^{\eta+1}\right) \Delta t\right\}^{\frac{1}{\eta+1}}
\end{aligned}
$$

$$
\begin{align*}
& +\ldots+\left\{\int_{a}^{b}\left(\frac{M^{\eta} M^{\sigma}}{\left|M^{\Delta}\right|^{\eta}}\left|y^{\Delta}\right|^{\eta+1}\right) \Delta t\right\}^{\frac{2}{\eta+1}}\left\{\int_{a}^{b}\left(\frac{\mu^{\frac{\eta+1}{\eta-1}} M^{\sigma}\left|M^{\Delta}\right|^{\frac{2 \eta}{\eta-1}-1}\left|M^{\Delta}\right|}{M^{\frac{2 \eta}{\eta-1}}}|y|^{\eta+1}\right) \Delta t\right\}^{\frac{\eta-1}{\eta+1}} \tag{2.5}\\
& +2^{\eta-1} \int_{a}^{b}\left(\frac{M^{\eta} M^{\sigma}}{\mid M^{\left.\right|^{\eta}}}\left|y^{\Delta}\right|^{\eta+1}\right)\left(\frac{\mu\left|M^{\Delta}\right|^{\eta}}{M^{\eta}}\right) \Delta t \\
& =2^{\eta} \omega B^{\frac{1}{\eta+1}} A^{\frac{\eta}{\eta+1}}+2^{\eta-2} \xi_{1} B^{\frac{\eta}{\eta+1}} A^{\frac{1}{\eta+1}}+2^{\eta-3} \xi_{2} B^{\frac{\eta-1}{\eta+1}} A^{\frac{2}{\eta+1}}+\ldots \\
& +2 \xi_{\eta-2} B^{\frac{3}{\eta+1}} A^{\frac{\eta-2}{\eta+1}}+\xi_{\eta-1} B^{\frac{2}{\eta+1}} A^{\frac{\eta-1}{\eta+1}}+2^{\eta-1} \psi B,
\end{align*}
$$

i.e.

$$
\begin{equation*}
A \leq 2^{\eta} \omega B^{\frac{1}{\eta+1}} A^{\frac{\eta}{\eta+1}}+\sum_{r=1}^{\eta-1} 2^{\eta-(r+1)} \xi_{r} B^{\frac{\eta-(r-1)}{\eta+1}} A^{\frac{r}{\eta+1}}+2^{\eta-1} \psi B . \tag{2.6}
\end{equation*}
$$

After some calculations one obtains it holds the following inequality

$$
\begin{aligned}
& \left(\frac{A}{B}\right)^{\frac{1}{\eta+1}} \leq 2^{\eta} \omega+2^{\eta-2} \xi_{1}\left(\frac{B}{A}\right)^{\frac{\eta-1}{\eta+1}}+2^{\eta-3} \xi_{2}\left(\frac{B}{A}\right)^{\frac{\eta-2}{\eta+1}}+\ldots \\
& \quad+2 \xi_{\eta-2}^{\eta\left(\frac{B}{A}\right)^{\frac{2}{\eta+1}}+\xi_{\eta-1}\left(\frac{B}{A}\right)^{\frac{1}{\eta+1}}+2^{\eta-1} \psi\left(\frac{B}{A}\right)^{\eta+1}}, \\
& \left(\frac{A}{B}\right)^{\frac{1}{\eta+1}} \leq 2^{\eta} \omega+\sum_{r=1}^{\eta-1} 2^{\eta-(r+1)} \xi_{r}\left(\frac{B}{A}\right)^{\frac{\eta-r}{\eta+1}}+2^{\eta-1} \psi\left(\frac{B}{A}\right)^{\frac{\eta}{\eta+1}} .
\end{aligned}
$$

By introducing $C=\left(\frac{A}{B}\right)^{\frac{1}{\eta+1}}$, we get

$$
C \leq 2^{\eta} \omega+\sum_{r=1}^{\eta-1} 2^{\eta-(r+1)} \xi_{r} C^{r-\eta}+2^{\eta-1} \psi\left(\frac{B}{A}\right)^{-\eta}
$$

i.e.

$$
\begin{equation*}
C^{\eta+1} \leq 2^{\eta} \omega C^{\eta}+\sum_{r=1}^{\eta-1} 2^{\eta-(r+1)} \xi_{r} C^{r}+2^{\eta-1} \psi \tag{2.7}
\end{equation*}
$$

whence follows the desired inequality,

$$
A \leq \Lambda^{\eta+1}\left(\omega, \xi_{r}, \gamma\right) \leq B
$$

3. Application

Corollary 3.1. In the case of $\mathbb{T}=\mathbb{R}$, the inequality (1.3) reduces to

$$
\begin{equation*}
\int_{a}^{b}\left|M^{\prime}(t)\right| y^{\eta+1}(t) d t \leq\left(2^{\eta}\right)^{\eta+1} \int_{a}^{b} \frac{M^{\eta+1}(t)}{\left|M^{\prime}(t)\right|^{\eta}}\left(y^{\prime}(t)\right)^{\eta+1} d t \tag{3.1}
\end{equation*}
$$

Proof: In the case of $\mathbb{T}=\mathbb{R}$ it is $f^{\Delta}(t)=f^{\prime}(t), \sigma(t)=t$ and $\mu(t)=0$, so $\omega=1, \xi_{r}=0$ and $\psi=0$. By substitute this values in the equalities (2.2) we obtain $x^{\eta+1}=2^{\eta} x^{\eta}$. i.e. $x^{\eta}\left(x-2^{\eta}\right)=0$. Since $\int_{a}^{b} f(t) \Delta t=\int_{a}^{b} f(t) d t$, follows inequality (3.1).

Remark 3.2. Specially, in the case of $\eta=1$, the largest root of the (1.3) is 2 , so the inequality (1.3) becomes

$$
\begin{equation*}
\int_{a}^{b}\left|M^{\prime}(t)\right| y^{2}((t)) d t \leq 4 \int_{a}^{b} \frac{M^{2}(t)}{\left|M^{\prime}(t)\right|}\left(y^{\prime}(t)\right)^{2} d t \tag{3.2}
\end{equation*}
$$

what was proved in [6].
Corollary 3.3. Let $\mathbb{T}=h \mathbb{Z}$. For a positive sequence $\left\{M_{n}\right\}_{0 \leq n \leq N+1}$ satisfying either $\Delta M>0$ or $\Delta M<0$ on $[0, N] \cap h \mathbb{Z}$, we have

$$
\sum_{n=0}^{N}\left|\Delta_{h} M_{n}\right| y_{n}^{\eta+1} \leq \Omega^{\eta}\left(\omega, \xi_{r}, \psi\right) \sum_{n=0}^{N} \frac{M_{n}^{\eta} M_{n+1}}{\left|\Delta_{h} M_{n}\right|^{\eta}}\left(\Delta_{h} y_{n}\right)^{\eta+1},
$$

for any sequence $\left\{y_{n}\right\}_{0 \leq n \leq N+1}$ with $y_{0}=y_{N+1}=0$, where $\Omega\left(\omega, \xi_{r}, \psi\right)$ is the smallest root of the inequality

$$
\begin{equation*}
(1+2 \omega) 2^{\eta-1} x^{\eta}=\sum_{r=1}^{\eta-1} 2^{\eta-(r+1)} \xi_{r} x^{r}+2^{\eta-1} \psi \tag{3.3}
\end{equation*}
$$

when

$$
\begin{align*}
& \omega=\sup _{0 \leq n \leq N}\left(\frac{M_{n+h}}{M_{n}}\right)^{\frac{\eta}{\eta+1}}, \\
& \xi_{r}=\sup _{0 \leq n \leq N}\left(\frac{h^{\frac{\eta+1}{r}} M_{n+h}\left|\Delta_{h} M_{n}\right|^{\frac{\eta(\eta-(r-1))}{r}}-1}{M_{n}}\right)^{\frac{\eta}{\eta+1}}, r=1, \ldots, \eta-1, \tag{3.4}\\
& \psi=\sup _{0 \leq n \leq N}\left(\frac{h^{\frac{1}{\eta}}\left|\Delta_{h} M_{n}\right|}{M_{n}}\right)^{\eta} .
\end{align*}
$$

Proof. Starting from the inequality

$$
(1+C)^{\eta+1} \leq C^{\eta+1}+(\eta+1) C^{\eta}+2^{\eta-1} C^{\eta}
$$

it is obtained

$$
C^{\eta+1} \geq(1+C)^{\eta+1}-(\eta+1) C^{\eta}-2^{\eta-1} C^{\eta}
$$

Involving this result in (1.2) proves it holds

$$
(1+C)^{\eta+1}-(\eta+1) C^{\eta}-2^{\eta-1} C^{\eta}-2^{\eta} \omega C^{\eta}-\sum_{r=1}^{\eta-1} 2^{\eta-(r+1)} \xi_{r} C^{r}-2^{\eta-1} \psi \leq 0
$$

Since

$$
(1+C)^{\eta+1} \geq(\eta+1) C^{\eta}
$$

last inequality becomes

$$
(1+2 \omega) 2^{\eta-1} C^{\eta} \geq \sum_{r=1}^{\eta-1} 2^{\eta-(r+1)} \xi_{r} C^{r}+2^{\eta-1} \psi
$$

Since, for $\mathbb{T}=h \mathbb{Z}=\{h k: k \in \mathbb{Z}\}$ is $\sigma(t)=t+h, \mu(t)=h, f^{\Delta}(t)=$ $\Delta_{h} f(t)=\frac{f(t+h)-f(t)}{h}, \int_{a}^{b} f(t) \Delta t=\sum_{t \in[0, N] \cap h \mathbb{Z}} \mu(t) f(t)$, so that

$$
A=\sum_{n=0}^{N}\left|\Delta_{h} M_{n}\right| y_{n}^{\eta+1}, \quad B=\sum_{n=0}^{N} \frac{M_{n}^{\eta} M_{n+1}}{\left|\Delta_{h} M_{n}\right|^{\eta}}\left(\Delta_{h} y_{n}\right)^{\eta+1}
$$

whence follows the desired inequality.

References

[1] R. Agarwal, M. Bohner, Basic calculus on time scales and some of its applications, Results Math., (1999) 35(12), 3-22.
[2] R. Agarwal, M. Bohner, A. Peterson, Inequalities on time scales: a survey, Math. Inequal. Appl. 4 (2001), 537-557.
[3] R. Agarwal, M. Bohner, D. O'Regan, A. Peterson, Dynamic equations on time scales: A survey, J. Comput. Appl. Math. 141 (2002) 1-26.
[4] R. Agarwal, M. Bohner, D. O'Regan, S. Saker, Some dynamic Wirtingeritype inequalities and their application, Pacific J. Math, Vol. 252, No 1, 2011.
[5] P. Beesack, Integral inequalities of the Wirtinger type, Duke Math. J. 25 (1958) 477-498.
[6] M. Bohner, A. Peterson, Dynamic Equations on time scales, An Introduction with applications, Birkhäuser, Boston, MA, USA, 2001.
[7] W. Coles, A general Wirtinger-type inequality, Duke Math. J. 27 (1960) 133-138.
[8] R. Hilscher, A time scales version of a Wirtinger-type inequality and applicationsk, J. Comput. Appl. Math. 141 (2002) 219-226.
[9] M. Mitrinovic, P. Vasic, An integral inequality ascribed to Wirtinger, and its variations and generalizations, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. (1969) 247-273.

[^0]: 2010 Mathematics Subject Classification. Primary 34N05; Secondary 26D10.
 Key words and phrases. Wirtinger-type inequality, Time Scale, Dynamic Inequalities.

