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Abstract

Based on the explicit parameterization of the $qiasitive semi-definite correlation matrices,
we derive simple spherical coordinates for theitreare points. An application to the
construction of universal copulas is included.
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1. Introduction

A positive semi-definite matrix whose diagonal exgrare equal to one is callectarrelation
matrix. The compact convex set ohxr correlation matrices (r;),1<i,j<n, is called
elliptope (for elipsoid and poltope), a terminology coined by Laurent and Poljak (199%he
study of the elliptope structure has generated niateyesting and partly difficult problems. For
example, the extreme points of the elliptope hastdbeen explicitly determined, though the rank
one and two extreme points are known and there eléracterization results on them by Ycart
(1985), Li and Tam (1994), and Parthasarathy (2002)
Clearly, the elliptope is uniquely determiridthe set of 3 (n-1)n upper diagonal elements

r=(r;),1<i<j<n, denoted by E, . Hurlimann (2014a), Theorem 3.1, constructs arliekp

parameterization of the correlation matrix, whicaps bijectively anyx = (x; ) D[—l,l]%(”_l)n to



r =(r;) UE,. These so-called Cartesian coordinates dependsieply on x;, as well as on

products Xx; X,, and sums of products, which additionally invallie functional quantities

Yioe = VY (X, ij) = \/(1_ Xizé)(l_ XjZ/;) . (1.1)

The notation (1.1) will be used throughout withtwther mention of its definition.

The required preliminary results are summalriae Section 2. Combining the relatively
simple characterization of the extreme points afedation matrices by Ycart (1985) with our
Cartesian coordinates, a fully explicit functionarameterization of the extreme points is
derived in Section 3. It should be most useful mbems depending on the knowledge of
extreme points of correlation matrices. We illusravith an application to the construction of
some universah -copulas, a problem which remains unsolved in gdngr.g. Devroye and
Letac (2010), Harlimann (2014b), Letac (2014)).

2. Preliminary results

There are two questions related to extreme poihtth@ elliptope, namely the existence of
extreme points and their construction. The existeguaestion depends upon the rank of a
correlation matrix and has been settled by manast(e.g. Ycart (1985), Proposition 6, Grone
et al. (1990), Theorem 2, Li and Tam (1994), Camyll2, Parthasarathy (2002), Corollary 2.2).
For infinite dimensional correlation matrices theestion is considered in Kiukas and Pellonpaa
(2008). Some earlier work on extreme points in exngets of symmetric and Hermitian
matrices includes Christensen and Verterstrom (L8i8 Loewy (1980).

Theorem 2.1 (Existence of extreme poiht3 here exist extreme points of rank if, and only if,
the dimension of the elliptope satisfies the indityyan = S m(m+1).

Up to now the effective construction of alltrexne points has been an open problem.
Different characterization conditions for them hdeen obtained by Ycart (1985), Theorem 2,
Li and Tam (1994), Theorem 1 (b), and Parthasarg@§2), Theorem 2.1. The characterization
by Ycart (1985) is most appropriate to the preserds.

Theorem 2.2 (Ycart's characterization of extreme pointsA nxr  correlation matrix
(;)0E,,1<i<j<n, of rankm, such thatn=3m(m+1), is an extreme point if, and only if,

there exista, O[-1,1]} i =1...,n,s=1,...,m, which solve the quadratic system of equations

I =S§:laisajs,lsi <jsn, §a§ =1i=1..n. (2.1)

s=1

In Section 3 we combine Ycart's charactermatwith the following so-called canonical
parameterization to obtain a parameterization efetkireme points.



Theorem 2.3 (Cartesian coordinates ofn-dimensional elliptope There exists a bijective

mapping between the cube{—l,l]%(n_l)n and E,, which maps the Cartesian coordinates
X=(x%;) to r=(r;) suchthat
rh=%,, 1=1...,n-1 n=2, (2.2)
%ﬂ:&M%m+&HMWM’i:lmm_Z n23’ (2$

k n n
Mook = Xin Xk T 2 XnmjaXooknjor [T Yinokr T Xk [T Yinekss
j=2 /=n—j+2 (=n-k+1
i=1...,n-k-1 k=2,..n-2 n=4

(2.4)

Proof. Consult Hurlimann (2014a), Theorem 341.

3. Extreme points of correlation matrices

Our main result is the following canonical parametdion of the extreme points in the convex
compact set of all correlation matrices.

Theorem 3.1 (Extreme points of-dimensional elliptope Let r =(r;)JE, be an extreme
point of rank(r) =m=1, n2max{2,£m(m+1)} in canonical form (2.2)-(2.4). Then, there exist
spherical coordinatesr, 0[0,77], k=1...m-1i=1...,n—k, such that

Case i rank(r)=1 n=2
r,=¢ 0{-12, i=1..n-1 r,_ =¢&¢&_., k=1..,n-2i=1..,n-k-1 (3.1)
Case 2 rank(r)=2, n=3
r, =cosa,, i=1..n-1 (3.2)
.., =COS@,—a,.,), k=L...n-2i=1..n-k-1 (3.3
Case 3 rank(r)=m=3, n=im(m+1)
r, =cosa,, i=1..n-1 (3.4)
r,, = COsa,, cosa,,, +cosa,, $ina,; sina,,,, i=1...n-2, (3.5)
k-1 j
lpk = COSA; COSA,_ + 2.COSA;;,, COSA, iy qi| sina, sina, _,,
= = (3.6)

i=1...n—-k-1 k=2,..m-2

n—ks?

k
+C0sa, ,, LI sina; sina
s=1



m-3

i .
.-, =COSa;, cosa,_,, + _Z COSA;,; COSA, 4 (J1sina,sina,
j=1 s=1
) (3.7)
m_ - - -
+C0S@,4 — Q) ] SINA SING,_, 1=1...,n—-K-1 k=m-1..n-2
s=1

Proof. Case 1 is shown by many authors (e.g. Ycart (198&nark, p. 610, Laurent and Poljak
(1995), Theorem 2.5, Parthasarathy (2002), Remadrkp2 178). Forrank(r) =m=> 2the idea

is to express Ycart's equations (2.1) in sphercardinates and make them consistent with the
canonical form (2.2)-(2.4). Consider first Cas&J&ing polar coordinates for the 1-sphereRi
one solves the second equations in (2.1) setting
a, =cosg,, a,=sing,, i=1..,n.
Inserted into the first equations of (2.1) one dbas

rj =a,a;,, +a,3,, =cos@, —¢,), l<i<j<n. (3.8)

On the other hand, in accordance with (2.2), thedsts a,, 0[0,77],i =1,...,n— 1 such that
r, =X, =cosa,,. Setting j=n in (3.8) one hasr, =cos@ —-¢,), i=1...n— 1This
matches the canonical parameterizatign=cosa,, if one sets¢, =0,¢, =a,,,i =1...n— 1
The remaining equations in (3.8) read

r, =cos@, —a;), lsi<j<n. (3.9)
One must show that (3.9) matches exactly (2.3)}(Erbm (2.3) one gets
rin—l = Xin Xn—ln + Xin—lyin—ln = COSCY”_ Cosan—ll + Xin—l |3ina’il Sinan—ll’ I = :L""n -2.

This matchesr, _, =cos@,, —a,,, )from (3.9) if, and only if, one has,,_, = . Using this and
Definition (1.1) one sees that

Yoina =y 0= )A-x2 1) =0, k=2,.,n-2 i=1..,n-k-1.
Inserting into (2.4) one obtains (3.3) fdc=2,....n-2,i =1,....n—-k - , dnd Case 2 is shown.
To show Case 3 we distinguish between=3 and m= 4 First, let m= 3 Solve the second
equations in (2.1) using spherical coordinatesHer2-sphere inR® such that

a, =Ccosy;, a, =sing, cosd, a, =sing, sind,.

Inserting into the first equations of (2.1) oneadbs



r = iaisajs = cosp, cosp; +sing, sing; [€osg, -7;), 1<i<j<n. (3.10)
s=1

In particular, one has,, =cosg, cosg,, +sing, sing, [tos¢, —F,), i=1...,n-1. On the other
hand, in virtue of (2.2) one can set, =x, =cosa,, for a,0[0,7],i=1..n-1. This
matches the preceding expression if one sé{s=0,¢, =a,,,i =1...n— . THe remaining
equations in (3.10) read

r, =cosa; cosa;, +sina; sina, [tos@, -F,), l<i<j<n. (3.11)
From (2.3) one hasr

= X Xnan + X0 1Yin1n = COST; €COSA, 4 + X, [SiNa;; sina, ,; , with

in-1
X,., = cosa,, for some a,,0[0,71],i =1,...,n— 2 This matchesr,_ in (3.11) if one sets
J.,=074J =a,,i=1...,.n—2. Then, the remaining equations in (3.11) read

r, =cosa, cosa, +sina; sina;, [€os@;, -a,;,), 1<i<j<n-1. (3.12)

One must show that this matches exactly (2.4). Fod,...,n—3 one obtains

I’in—2 = Xin Xn—2n + Xin—lxn—Zn—lyin—z,n + Xi n-2 yin—2,n—1yin—2,n

= cosa,, €0sa, _,, +Sina, sina, _,, Qcosa,, cosa, _,, + X,_, [$ina,, sina, _,,},

which matches the corresponding entry in (3.12anid only if, one hasx,,_, = ,Wwhich shows
(3.7) for k= 2 (of course (3.6) is a void statement here). Furtinés implies that

Yorns =y Q=X ,)A- X2 ,) =0, k=3..,n=2, i=1..,n-k-1.

n—kn—

Inserting into (2.4) one obtains (taking into aatbthe vanishing components) the remaining
formulas in (3.7) fork =3,...,n— 21t remains to generalize the preceding steps fitxed rank

m= 4. Using spherical coordinates for tlimm— -dphere in R™ one solves the second
equations in (2.1) setting

a, =Cosp,, @, =sing,cosP,, a,=sing,sing,cosp,, ..,
&y =SNG, Sing,,..sing,, ,C0SP,.,, &, =sing,;sing,,...sing,,_,sing, .

Inserted into the first equations in (2.1) one otga
m-3 . i
= cos¢ilcos¢j1 + [Zlcosaw+1 COSQj,,y ql'|ls|n¢is sm¢>jS
(= S=

m-2 (313)
+CoS@, s~ Pina) E'lein¢is sing,,, l<i<j<n



In virtue of (2.2) set r, =x, =cosa,, for a,0[0,7,i=1..n-1. This matches the
corresponding expression for,, in (3.13) if one sets¢,=0,¢,=0a,,i =1...n— 1The
formula (3.4) is shown. From (2.3) one gets

r.in—l = Xin Xn—ln + Xin—lyin—l,n = COSCYil Cosa’n—ll + Xin—l Eina’ilsina’n—ll’
with  x,,_, =cosa;, for some a,, J[0,7],i =1...,n— 2 This matches the expression fqf_,

in (3.13) if one setsy,_,,=0,¢, =0a,,,i =1....n— 2ZThe formula (3.5) follows. Proceeding in
the same manner, one obtains from (2.4) kor 2,...m-2,i =1,....n—k - th& expressions

k n n
Mk = X0 Xnokn T 2 XnmjsrXookmejr [T Yinokr T Xk T[] Yinoks
j=2 /=n-j+2 /=n-k+1

k-1

i . L .
=C0sa;, Cosa,_,, + Zlcosaij 2 COSA, iy mlsmaiS sina, ., *+cosa,, ., mlsmaiS sina,
j= S= S=

n-ks?

where the fact thatx,_, =cosa,,, for some a,,,U[0,7],i =1,...,n-k+ 1 has been used. This
choice matches the corresponding equations forr, _, in (3.13) if one sets
Doacrr =0 Py = Ay, K=2,...m=2,i =1,....,n—-k -1. This shows the formula (3.6). It remains
to show that the remaining equations in (3.13) fpr with 1<i<j<n-m+ 2 match exactly
the corresponding expressions in (2.4). First, lnase

m-1 n n
rin—m+1 = Xin Xn—m+1n + z Xin—j+1xn—m+1n—j+1 |_| yin—m+:L( + Xin—m+1 I_l yin—m+1,é/
j=2 r=n—j+2 /=n-m+2
m-3 i .
= C0sq;, Cosa, +2.€080;,, COSA, 14 LT] SING SING,
j:]_ s=1

n-m+11 n-m+ls

n-m+ls*

- - m_z - .
+{COS aim—l Cosa’n—rmlm—l + Xin—m+1 |Elnaim—l SIna’n—m+1m—1} |:rllSIna'is sing
S=

This matches the corresponding expression in (3f1@nd only if, one hasx,_.., = ,lwhich
shows (3.7) fork = m—1Further, this implies that

yin—k,n—m+1 :\/(1_ Xii—m+l)(1_ Xr?—kn—m+1) :O, k=m,...,n—2, I :L'--an_k_l-

Inserting into (2.4) fork=m,...n-2, i=1...,.n—k- lone obtains similarly to the above the
remaining formulas in (3.7). Theorem 3.1 is shown.

Remarks 3.1. Case 2 has also been solved by Ycart (1985), Goylp. 611. In Cases 2 and 3
one must ensure that the correlation matrices far@n®& m. This is fulfilled provided the vectors



a' =(a;,8,,--a,),i =1...,m, defined in the proof of Theorem 3.1, are lineanyependent. It

is well-known that this holds if, and only if, thdeterminant of the Gram matrix
G; =(<a&,a; >) is non-zero. This is always satisfied up to salegenerate cases. For example,

if m=2, it suffices thata, # 0,77 for some index O{1,...,n— 1}

4. Application to the construction of universal copulas

A n-dimensional copula is calledh-universalif every n-dimensional valid correlation matrix
can be realized as a rank correlation matrixthere exists an-variate uniform distribution with
this rank correlation structure. In the literat@@niversal copulas are better known under the
naming comprehensive or inclusive copulas (seeNetsen (2006)). Although the existence of
3-universal copulas has been settled by severhbesit{e.g. Joe (1997), Exercise 4.17, pp. 137-
138, Kurowicka and Cooke (2006), Section 4.4.6,0p,1Devroye and Letac (2010)), the
effective construction of 3-universal copulas isrendifficult. Harlimann (2014d) constructs an
analytical 3-universal copula that is based onhilvariate linear circular copula in Perlman and
Wellner (2011). The latter copula seems to haven iegependently obtained by Kurowicka et
al. (2000), which called it ,elliptical copula“. Agointed out by Letac (2014), the linear circula
copula is a special case of probability distribnsicstudied by Gasper (1971). This 2-universal
copula can be used to construcuniversal copulas for rank two extremal correlatroatrices.
Reduced to its essential steps, the presentatiketayg (2014) has an elementary appeal.

Let B, OR? be the unit disk andC, =[-11]° the centered square. Consider the linear
circular copula density with uniform [-1,1] margin$,V defined by

1
, (u,v)OB,,
Puy,UV) =4 27/1-u? -V ’ (4.1)

0, (uwv)OC,-B,.

A crucial step towards the main result below isfilwing elementary result.

Lemma 4.1 (n-universal rank two extreme linear circular coplul&iven is the extreme
correlation matrix of rank two of the form

r=(r;)=(cos@, —a;)), a D[O,Zﬂ],lsi, j<n.

Then, there exist a random vector(X,, X,,..., X,
X;,i=1...,n, and rank two correlation matrix = (r; .)

Jwith  uniform [-1,1] margins

Proof. Consider the random vectdiX,, X,, ..., X,, defined by

n

X, =cos@;) +sin(a,) vV, i=1...n,



where the random paifU,V as the linear circular copula density (4.1).adle the variables
X;,i=1...,n, are uniform [-1,1] random variables. Moreoverrotigh application of the

Jacobian transformation method, one sees that thebabpility density of
(X, X;),1<i<j<n,isgiven by

L . (xY)OE,,
p(xi,xj)(xy y) = 2”\/(1_ri12)(1_ Xz)_(y_rij X)2 J (4.2)

0, (uwv)OC,- Erij ,

where the support Erij :{(x,y)‘x2+y2—2rijxy<1—rij2} is the inner of an ellipse, and
r, =cos@; —a;) coincides with the correlation coefficient of thmair (X, X;) (e.g.
Kurowicka et al. (2000), Perlman and Wellner (20 Hrlimann (2014d), Section 3}.

Theorem 4.1 ( n -universal rank two copu)aGiven is a rank two correlation matrix
r=(r;),1<i,j<n. Then, there exist a random vect¢K,, X,,..., X, With uniform [-1,1]

n

margins X;,i=1...,n, and rank two correlation matrix = (r; . )

Proof. This follows through application of the theoref@arathéodory (1911) and Steinitz
(1914). Any valid correlation matrix (of rank tweg a finite convex combination of extreme
correlation matrices (of rank two). Since the resolds for the extreme correlation matrices of
rank two by Lemma 4.1, the result follows.

One notes that Theorem 4.1 settles the existenestiqn for n-universal copulasn= 345
Indeed, correlation matrices of dimensions= 3#have maximum rank two by Theorem 2.1.
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