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Abstract 
 
Based on the explicit parameterization of the set of positive semi-definite correlation matrices, 
we derive simple spherical coordinates for their extreme points. An application to the 
construction of universal copulas is included. 
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1.   Introduction 
 
A positive semi-definite matrix whose diagonal entries are equal to one is called a correlation 
matrix. The compact convex set of  nxn   correlation matrices  njirij ≤≤ ,1),( , is called 

elliptope (for ellipsoid and polytope), a terminology coined by Laurent and Poljak (1995). The 
study of the elliptope structure has generated many interesting and partly difficult problems. For 
example, the extreme points of the elliptope have not been explicitly determined, though the rank 
one and two extreme points are known and there exist characterization results on them by Ycart 
(1985), Li and Tam (1994), and Parthasarathy (2002). 
     Clearly, the elliptope is uniquely determined by the set of  nn )1(2

1 −   upper diagonal elements  

njirr ij ≤<≤= 1),( , denoted by  nE . Hürlimann (2014a), Theorem 3.1, constructs an explicit 

parameterization of the correlation matrix, which maps bijectively any  
nn

ijxx
)1(

2
1

1,1][)(
−−∈=   to  
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nij Err ∈= )( . These so-called Cartesian coordinates depend very simply on  ijx , as well as on 

products  
lkij xx   and sums of products, which additionally involve the functional quantities 

 

)1)(1(),( 22
,, llllll jijiijij xxxxyy −−== .    (1.1) 

 
The notation (1.1) will be used throughout without further mention of its definition. 
     The required preliminary results are summarized in Section 2. Combining the relatively 
simple characterization of the extreme points of correlation matrices by Ycart (1985) with our 
Cartesian coordinates, a fully explicit functional parameterization of the extreme points is 
derived in Section 3. It should be most useful in problems depending on the knowledge of 
extreme points of correlation matrices. We illustrate with an application to the construction of 
some universal n -copulas, a problem which remains unsolved in general (e.g. Devroye and 
Letac (2010), Hürlimann (2014b), Letac (2014)). 
 
 
2.  Preliminary results 
 
There are two questions related to extreme points of the elliptope, namely the existence of 
extreme points and their construction. The existence question depends upon the rank of a 
correlation matrix and has been settled by many authors (e.g. Ycart (1985), Proposition 6, Grone 
et al. (1990), Theorem 2, Li and Tam (1994), Corollary 2, Parthasarathy (2002), Corollary 2.2). 
For infinite dimensional correlation matrices the question is considered in Kiukas and Pellonpaa 
(2008). Some earlier work on extreme points in convex sets of symmetric and Hermitian 
matrices includes Christensen and Verterstrom (1979) and Loewy (1980). 
 
Theorem 2.1 (Existence of extreme points). There exist extreme points of rank m   if, and only if, 
the dimension of the elliptope satisfies the inequality  )1(2

1 +≥ mmn . 

 
     Up to now the effective construction of all extreme points has been an open problem. 
Different characterization conditions for them have been obtained by Ycart (1985), Theorem 2, 
Li and Tam (1994), Theorem 1 (b), and Parthasarathy (2002), Theorem 2.1. The characterization 
by Ycart (1985) is most appropriate to the present needs. 
 
Theorem 2.2 (Ycart’s characterization of extreme points). A  nxn   correlation matrix  

njiEr nij ≤<≤∈ 1,)( , of rank m , such that  )1(2
1 +≥ mmn , is an extreme point if, and only if, 

there exist  msniais ,...,1,,...,1,1,1][ ==−∈ , which solve the quadratic system of equations 

 

nianjiaar
m

s
is

m

s
jsisij ,...,1,1,1,

1

2

1
==∑≤<≤∑=

==
.    (2.1) 

 
     In Section 3 we combine Ycart’s characterization with the following so-called canonical 
parameterization to obtain a parameterization of the extreme points. 
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Theorem 2.3 (Cartesian coordinates of  n -dimensional elliptope). There exists a bijective 

mapping between the cube  
nn )1(

2
1

1,1][
−−   and  nE , which maps the Cartesian coordinates  

)( ijxx =   to  )( ijrr =   such that 

 
 

2,1,...,1, ≥−== nnixr inin ,       (2.2) 

3,2,...,1,,1111 ≥−=+= −−−− nniyxxxr nininnninin ,     (2.3) 

4,2,...,2,1,...,1

,
1

,
2 2

,11

≥−=−−=

∏+∑ ∏+=
+−=

−−
= +−=

−+−−+−−−

nnkkni

yxyxxxxr
n

kn
kinkin
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jn
kinjknnjinknninkin

l

l

l

l

   (2.4) 

 
Proof.  Consult Hürlimann (2014a), Theorem 3.1.  ◊ 
 
 
3.  Extreme points of correlation matrices 
 
Our main result is the following canonical parameterization of the extreme points in the convex 
compact set of all correlation matrices. 
 
Theorem 3.1 (Extreme points of n -dimensional elliptope). Let  nij Err ∈= )(   be an extreme 

point of  )}1(,2max{,1)( 2
1 +≥≥= mmnmrrank   in canonical form (2.2)-(2.4). Then, there exist 

spherical coordinates  ,,...,1,1,...,1,][0, knimkik −=−=∈ πα  such that 

 
Case 1:  2,1)( ≥= nrrank  
 

{ } 1,...,1,2,...,1,,1,...,1,1,1 −−=−==−=−∈= −− kninkrnir knikiniin εεε   (3.1) 

 
Case 2:  3,2)( ≥= nrrank  
 

,1,...,1,cos 1 −== nir iin α          (3.2) 

1,...,1,2,...,1),cos( 11 −−=−=−= −− kninkr knikin αα      (3.3) 

 
Case 3:  )1(,3)( 2

1 +≥≥= mmnmrrank  

 
,1,...,1,cos 1 −== nir iin α          (3.4) 

2,...,1,sinsincoscoscos 11121111 −=⋅+= −−− nir niiniin ααααα ,    (3.5) 

2,...,2,1,...,1,sinsincos

sinsincoscoscoscos

1
1

1

1 1
1111

−=−−=∏⋅+

∑ ∏⋅+=

=
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= =
−+−+−−
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αααααα
    (3.6) 
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2,...,1,1,...,1,sinsin)cos(

sinsincoscoscoscos

2

1
11

3

1 1
1111

−−=−−=∏⋅−+

∑ ∏⋅+=

−

=
−−−−

−

= =
−+−+−−

nmkkni

r

m

s
ksniskmnim

m

j

j

s
ksniskjnijknikin

αααα

αααααα
  (3.7) 

 
Proof.  Case 1 is shown by many authors (e.g. Ycart (1985), Remark, p. 610, Laurent and Poljak 
(1995), Theorem 2.5, Parthasarathy (2002), Remark 2.4, p. 178). For  2)( ≥= mrrank   the idea 
is to express Ycart’s equations (2.1) in spherical coordinates and make them consistent with the 
canonical form (2.2)-(2.4). Consider first Case 2. Using polar coordinates for the 1-sphere in  2R   
one solves the second equations in (2.1) setting 
 

niaa iiii ,...,1,sin,cos 21 === ϕϕ . 

 
Inserted into the first equations of (2.1) one sees that 
 

njiaaaar jijijiij ≤<≤−=+= 1),cos(2211 ϕϕ .   (3.8) 

 
On the other hand, in accordance with (2.2), there exists  1,...,1,][0,1 −=∈ nii πα , such that  

1cos iinin xr α== . Setting  nj =   in (3.8) one has  1,...,1),cos( −=−= nir niin ϕϕ . This 

matches the canonical parameterization  1cos iinr α=   if one sets  1,...,1,,0 1 −=== niiin αϕϕ . 

The remaining equations in (3.8) read 
 

njir jiij <<≤−= 1),cos( 11 αα .    (3.9) 

 
One must show that (3.9) matches exactly (2.3)-(2.4). From (2.3) one gets 
 

2,...,1,sinsincoscos 1111111,1111 −=⋅+=+= −−−−−−− nixyxxxr niinninininnninin αααα . 

 
This matches  )cos( 1111 −− −= niinr αα   from (3.9) if, and only if, one has  11 =−inx . Using this and 

Definition (1.1) one sees that 
 

1,...,1,2,...,2,0)1)(1( 2
1

2
11, −−=−==−−= −−−−− kninkxxy knninnkin . 

 
Inserting into (2.4) one obtains (3.3) for  1,...,1,2,...,2 −−=−= knink , and Case 2 is shown. 
To show Case 3 we distinguish between  3=m   and  4≥m . First, let  3=m . Solve the second 
equations in (2.1) using spherical coordinates for the 2-sphere in  3R   such that 
 

iiiiiiii aaa ϑϕϑϕϕ sinsin,cossin,cos 321 === . 

 
Inserting into the first equations of (2.1) one obtains 
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njiaar jijiji
s

jsisij ≤<≤−⋅+=∑=
=

1),cos(sinsincoscos
3

1
ϑϑϕϕϕϕ . (3.10) 

 
In particular, one has  1,...,1),cos(sinsincoscos −=−⋅+= nir nininiin ϑϑϕϕϕϕ . On the other 

hand, in virtue of (2.2) one can set  1cos iinin xr α==   for  1,...,1,][0,1 −=∈ nii πα . This 

matches the preceding expression if one sets  1,...,1,,0 1 −=== niiin αϕϕ . The remaining 

equations in (3.10) read 
 

njir jijijiij <<≤−⋅+= 1),cos(sinsincoscos 1111 ϑϑαααα .  (3.11) 

 
From (2.3) one has  1111111,1111 sinsincoscos −−−−−−− ⋅+=+= niinninininnninin xyxxxr αααα , with    

21 cos iinx α=−   for some  2,...,1,][0,2 −=∈ nii πα . This matches  1−inr   in (3.11)  if one sets  

2,...,1,,0 21 −===− niiin αϑϑ . Then, the remaining equations in (3.11) read 

 
11),cos(sinsincoscos 221111 −<<≤−⋅+= njir jijijiij αααααα . (3.12) 

 
One must show that this matches exactly (2.4). For  3,...,1 −= ni   one obtains 
 

},sinsincos{cossinsincoscos 2222222211211

,21,22,212122

−−−−−

−−−−−−−−−−

⋅+⋅+=
++=

niinninini

ninninnininnninnninin

x

yyxyxxxxr

αααααααα
 

 
which matches the corresponding entry in (3.12) if, and only if, one has  12 =−inx , which shows 

(3.7) for  2=k  (of course (3.6) is a void statement here). Further, this implies that 
 

1,...,1,2,...,3,0)1)(1( 2
2

2
22, −−=−==−−= −−−−− kninkxxy knninnkin . 

 
Inserting into (2.4) one obtains (taking into account the vanishing components) the remaining 
formulas in (3.7) for  2,...,3 −= nk . It remains to generalize the preceding steps for a fixed rank  

4≥m . Using spherical coordinates for the )1( −m -sphere in  mR   one solves the second 
equations in (2.1) setting 
 

.sinsin...sinsin,cossin...sinsin

...,,cossinsin,cossin,cos

122112211

321321211

−−−−− ==
===

imimiiimimimiiim

iiiiiiiii

aa

aaa

ϕϕϕϕϕϕϕϕ
ϕϕϕϕϕϕ

 

 
Inserted into the first equations in (2.1) one obtains 
 

.1,sinsin)cos(

sinsincoscoscoscos
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In virtue of (2.2) set  1cos iinin xr α==   for  1,...,1,][0,1 −=∈ nii πα . This matches the 

corresponding expression for  inr   in (3.13) if one sets  1,...,1,,0 111 −=== niiin αϕϕ . The 

formula (3.4) is shown. From (2.3) one gets 
 

1111111,1111 sinsincoscos −−−−−−− ⋅+=+= niinninininnninin xyxxxr αααα , 

 
with    21 cos iinx α=−   for some  2,...,1,][0,2 −=∈ nii πα . This matches the expression for  1−inr   

in (3.13)  if one sets  2,...,1,,0 2212 −===− niiin αϕϕ . The formula (3.5) follows. Proceeding in 

the same manner, one obtains from (2.4) for  ,1,...,1,2,...,2 −−=−= knimk  the expressions 
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where the fact that  1cos +− = ikkinx α   for some  1,...,1,][0,1 +−=∈+ kniik πα , has been used. This 

choice matches the corresponding equations for  kinr −   in (3.13) if one sets  

1,...,1,2,...,2,,0 111 −−=−=== +++− knimkikikkkn αϕϕ . This shows the formula (3.6). It remains 

to show that the remaining equations in (3.13) for  ijr   with  21 +−<<≤ mnji   match exactly 

the corresponding expressions in (2.4). First, one has 
 

.sinsin}sinsincos{cos
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2
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11111111
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1 1
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This matches the corresponding expression in (3.13) if, and only if, one has  11 =+−minx , which 

shows (3.7) for  1−= mk . Further, this implies that 
 

1,...,1,2,...,,0)1)(1( 2
1

2
11, −−=−==−−= +−−+−+−− kninmkxxy mknnminmnkin . 

 
Inserting into (2.4) for  1,...,1,2,..., −−=−= kninmk , one obtains similarly to the above the 
remaining formulas in (3.7). Theorem 3.1 is shown.  ◊ 
 
 
Remarks 3.1.  Case 2 has also been solved by Ycart (1985), Corollary, p. 611. In Cases 2 and 3 
one must ensure that the correlation matrices are of rank m . This is fulfilled provided the vectors  
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miaaaa niii
T
i ,...,1),,...,,( 21 == , defined in the proof of Theorem 3.1, are linearly independent. It 

is well-known that this holds if, and only if, the determinant of the Gram matrix  
),( ><= jiij aaG   is non-zero. This is always satisfied up to some degenerate cases. For example, 

if  2=m , it suffices that  πα ,0≠i   for some index }1,...,1{ −∈ ni . 

 
 
4.  Application to the construction of universal copulas 
 
A  n -dimensional copula is called  n -universal if every n -dimensional valid correlation matrix 
can be realized as a rank correlation matrix, i.e. there exists a n -variate uniform distribution with 
this rank correlation structure. In the literature 2-universal copulas are better known under the 
naming comprehensive or inclusive copulas (see e.g. Nelsen (2006)). Although the existence of 
3-universal copulas has been settled by several authors (e.g. Joe (1997), Exercise 4.17, pp. 137-
138, Kurowicka and Cooke (2006), Section 4.4.6, p.102, Devroye and Letac (2010)), the 
effective construction of 3-universal copulas is more difficult. Hürlimann (2014d) constructs an 
analytical 3-universal copula that is based on the bivariate linear circular copula in Perlman and 
Wellner (2011). The latter copula seems to have been independently obtained by Kurowicka et 
al. (2000), which called it „elliptical copula“. As pointed out by Letac (2014), the linear circula 
copula is a special case of probability distributions studied by Gasper (1971). This 2-universal 
copula can be used to construct n -universal copulas for rank two extremal correlation matrices. 
Reduced to its essential steps, the presentation by Letac (2014) has an elementary appeal. 

     Let  2
2 RB ⊂   be the unit disk and  [ ]2

2 1,1−=C   the centered square. Consider the linear 
circular copula density with uniform [-1,1] margins  VU ,   defined by 
 









=),(),( vup VU

.),(,0

,),(,
12

1

22

222

BCvu

Bvu
vu

−∈

∈
−−π    (4.1) 

 
A crucial step towards the main result below is the following elementary result. 
 
Lemma 4.1 ( n -universal rank two extreme linear circular copula) Given is the extreme 
correlation matrix of rank two of the form 
 

[ ] njirr ijiij ≤≤∈−== ,1,2,0)),(cos()( πααα . 

 
Then, there exist a random vector  )...,,,( 21 nXXX   with  uniform [-1,1] margins  

niX i ,...,1, = , and rank two correlation matrix  )( ijrr = . 

 
Proof.  Consider the random vector  )...,,,( 21 nXXX   defined by 

 
niVUX iii ,...,1,)sin()cos( =⋅+⋅= αα , 
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where the random pair  ),( VU   has the linear circular copula density (4.1). Clearly, the variables  

niX i ,...,1, = , are uniform [-1,1] random variables. Moreover, through application of the 

Jacobian transformation method, one sees that the probability density of    
njiXX ji ≤≤≤1),,( , is given by 

 









=),(),( yxp
ji XX

,),(,0

,),(,
)()1)(1(2

1

2

222

ij

ij

r

r

ijij

ECvu

Eyx
xryxr

−∈

∈
−−−−π   (4.2) 

 

where the support  { }222 12),( ijijr rxyryxyxE
ij

−<−+=   is the inner of an ellipse, and  

)cos( jiijr αα −=   coincides with the correlation coefficient of the pair  ),( ji XX  (e.g. 

Kurowicka et al. (2000), Perlman and Wellner (2011), Hürlimann (2014d), Section 3).  ◊ 
 
Theorem 4.1 ( n -universal rank two copula) Given is a rank two correlation matrix  

njirr ij ≤≤= ,1),( . Then, there exist a random vector  )...,,,( 21 nXXX   with  uniform [-1,1] 

margins  niX i ,...,1, = , and rank two correlation matrix  )( ijrr = . 

 
Proof.  This follows through application of the theorem of Carathéodory (1911) and Steinitz 
(1914). Any valid correlation matrix (of rank two) is a finite convex combination of extreme 
correlation matrices (of rank two). Since the result holds for the extreme correlation matrices of 
rank two by Lemma 4.1, the result follows.   ◊ 
 
One notes that Theorem 4.1 settles the existence question for  n -universal copulas, 5,4,3=n . 
Indeed, correlation matrices of dimensions  5,4,3=n   have maximum rank two by Theorem 2.1. 
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