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Abstract

A new power series distribution called the Topp-Leone Marshall-
Olkin Weibull Poisson (TLMOWP) distribution is developed. We de-
veloped the statistical properties including the hazard rate, quantile
and moment generating functions, moments, and Shannon and Rényi
entropies. Maximum likelihood estimates of the model parameters were
also derived. A simulation study to assess consistency of the maximum
likelihood estimates was conducted. Real data examples are provided to
demonstrate the usefulness of the proposed model in comparison with
other competing non-nested models.
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1 Introduction

There is increased demand for generalized distributions in the past two decades.
Work on the generalized distributions gave birth to distributions with versa-
tility and flexibility in relation to skewness and kurtosis. The additional shape
and/or scale parameters give more weight to the tail ends of a distribution,
thereby making it more applicable to heavily tailed data. Furthermore, gener-
alized distributions are good for fitting data sets with non-monotonic hazard
rates, compared to classical distributions which are applicable to monotonic
hazard rates. Generalized distributions have wider applications in areas of
science, engineering, commerce, medicine, and environmental science.

In 1955, Topp and Leone derived a probability distribution in order to
model data that generated J-shaped failure data. They presented the Topp-
Leone distribution as a special case of the triangular distribution, which has
limited support on (0,1) whose distribution function is given by

FTL(x; b) = [1− (1− x)2]b, (1.1)
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where 0 < x < 1 and b > 0. The Topp-Leone (TL) distribution serves an im-
portant role in modeling lifetime data in areas of science, insurance and finance.
The distribution is a bounded J-shape distribution that has also motivated var-
ious researchers. Many researchers generalized the Topp-Leone distribution so
as to introduce symmetry, skewness and kurtosis to the distribution. General-
izations of the Topp-Leone distribution available in the literature include the
Topp-Leone-Marshall-Olkin-G family by Chipepa et al. (2020), Type II power
Topp-Leone generated family by Bantan et al. (2020), Topp-Leone-Weibull by
Rezaei et al. (2016), Topp-Leone generalized exponential by Sangsanit and
Bodhisuwan (2016). Extensions of the Topp-Leone distribution exhibit flexi-
bility in data modeling in relation to skewness, kurtosis and the hazard rate
function. Also, the Topp-Leone generalized distributions are not restricted to
the domain of (0,1).

Marshall and Olkin (1997) introduced the Marshall-Olkin-G family of distri-
butions with distribution function

FMO(x; δ) = 1− δG(x; ξ)

1− δG(x; ξ)
, (1.2)

where G(x; ξ) is the survival function of the baseline distribution function, ξ
is a vector of parameters from the baseline distribution, δ is a tilt parameter,
and δ = 1−δ. Some generalizations of the Marshall-Olkin distribution include
work by Alizadeh et al. (2015), where they introduced the beta Marshall-
Olkin-G (BMO-G), Lepetu et al. (2017) developed the Marshall-Olkin Log-
logistic Extended Weibull (MOLLEW) family of distributions, Santos et al.
(2014) developed the Marshall-Olkin extended Weibull family of distributions,
Marshall-Olkin Kumaraswamy-G distribution by Chakraborty et al. (2017),
Marshall-Olkin extended generalized Gompertz distribution by Lazhar et al.
(2017), Marshall-Olkin extended Burr Type III distribution by Kumar et al.
(2016) and Marshall-Olkin-Gompertz-G by Chipepa and Oluyede (2021).

From Johnson, Kotz, and Kemp (1992), a distribution with probability mass
function

P (X = x) =
axθ

x

η(θ)
; x = 0, 1, 2, ..., θ > 0, (1.3)

where ai ≥ 0 and

η(θ) =
∞∑
x=0

axθ
x

is the power series distribution associated with the function η and parameter
θ. Let N be a zero truncated discrete random variable having a power series
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distribution, whose probability mass function (pmf) is given by

P (N = n) =
anθ

n

C(θ)
, n = 1, 2, 3, ..., (1.4)

where C(θ) =
∑∞

n=1 anθ
n is finite, θ > 0 and {an}n≥1 a sequence of positive

real numbers. The power series family of distributions includes binomial, Pois-
son, geometric and logarithmic distributions from Johnson et al. (1994), see
appendix for some useful quantities for the power series distributions. Sev-
eral generalized distributions proposed in the literature involving the power
series include the odd Weibull-Topp-Leone-G power series family of distribu-
tions by Oluyede et al. (2020), complementary extended Weibull-power series
by Cordeiro and Silva (2014), the Burr XII power series by Silva and Cordeiro
(2014), the exponentiated power generalized Weibull power series family of dis-
tributions by Aldahlan et al. (2020), the T?R {Y } power series family of prob-
ability distributions by Osatohanmwen et al. (2020), extended Weibull-power
series (EWPS) distribution by Silva et al. (2013), exponentiated generalized
power series class of distributions by Oluyede et al. (2020), Weibull-power
series distributions by Morais and Barreto-Souza (2011), complementary ex-
ponential power series by Flores et al. (2013) and the Burr-Weibull power
series class of distributions by Oluyede et al. (2019).

Chipepa et al. (2020) aimed to find a model that could efficiently deal with
heavily skewed and tailed data, data with kurtosis differing from the base-
line distribution, and data that has non-monotonic hazard functions. Thus,
they derived the Topp-Leone Marshall-Olkin-G (TLMOG) family of distribu-
tions by combining the Topp-Leone and Marshall-Olkin Distributions from
equation (1.1) and equation (1.2) respectively. The density and distribution
functions are given by

fTLMOG(x; b, δ, ξ) =

[
2bδ2g(x; ξ)G(x; ξ)

[1− δG(x; ξ)]3

][
1− δ2G

2
(x; ξ)

[1− δG(x; ξ)]2

]b−1
(1.5)

and

FTLMOG(x; b, δ, ξ) =

[
1− δ2G

2
(x; ξ)

[1− δG(x; ξ)]2

]b
(1.6)

respectively, with b, δ > 0, δ = 1 − δ, and ξ a vector of parameters from the
baseline distribution.

Using the baseline distribution of the Weibull distribution, whose density func-
tion is,

g(x;α) = αxα−1e−x
α

, (1.7)
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and whose distribution function is,

G(x; , α) = 1− e−xα , (1.8)

where α > 0, Chipepa et al. (2020) derived the Topp-Leone Marshall-Olkin
Weibull (TLMOW) distribution, whose distribution function is,

FTLMOW (x; b, δ, α) =

[
1− δ2e−2x

α

(1− δe−xα)2

]b
, (1.9)

and whose density function is,

fTLMOW (x; b, δ, α) =
2bδ2αxα−1e−2x

α

(1− δe−xα)3

[
1− δ2e−2x

α

(1− δe−xα)2

]b−1
, (1.10)

where b, δ, α > 0. Our aim in this article is to derive a flexible and versa-
tile four-parameter Topp-Leone Marshall-Olkin Weibull Poisson (TLMOWP)
distribution.

In Section 2 we derive the TLMOWP model, as well as its statistical prop-
erties. In Section 3 we derive measures of uncertainty such as the Shannon
and Rényi Entropy. In Section 4, we derive the moments and moment gen-
erating function of the model, as well as the distribution of order statistics.
In Section 5, we derive the maximum likelihood estimates. Section 6 provides
results from a simulation study. In Section 7, we provide applications to three
data sets. Finally, in Section 8 we provide concluding remarks.

2 The Model and Statistical Properties

In this section, we derive the TLMOWP model, sub-models, expansion of
density function, and survival, hazard, and quantile functions.

2.1 The Model

Let X = X(1) = min(X1, X2, ..., XN) for X1, X2, ..., Xn identically and indepen-
dently distributed (iid) random variables following the TLMOW distribution in
(1.9). We derive the TLMOWP distribution using the conditional distribution
of X given N = n.

GX|N=n(x) = 1−
n∏
i=1

(1−G(x; ξ))

= 1− Sn(x) (2.1)
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where S(x) = 1 − G(x; ξ) is the survival function. Thus, using the TLMO-G
with the Weibull distribution as the baseline cdf, we obtain

GX|N=n(x; b, α, δ) = 1−

1−

[
1− δ2e−2x

α(
1− δe−xα

)2
]b

n

, (2.2)

where b, α, δ > 0. Hence, the distribution function of the life length of of the
whole system, X, say Fθ, is given by

Fθ(x) = 1− C (θ(S(x)))

C(θ)
, (2.3)

and the corresponding pdf is given by

fθ(x) = θg(x)
C ′(θS(x))

C(θ)
, (2.4)

where g(x) is given in (1.10), and C(θ) and C ′(θ) are from Johnson et al.
(1994). Therefore, the distribution, density and hazard rate functions of the
TLMOW-Poisson (TLMOWP) distribution are respectively given by

F (x; b, α, δ, θ) = 1−
exp

{
θ

[
1−

(
1− δ2e−2xα

[1−δe−xα ]
2

)b]}
− 1

exp(θ)− 1
, (2.5)

f(x; b, α, δ, θ) =
2bθδ2αxα−1e−2x

α

[exp(θ)− 1]
[
1− δe−xα

]3
(

1− δ2e−2x
α[

1− δe−xα
]2
)b−1

× exp

θ
1−

(
1− δ2e−2x

α[
1− δe−xα

]2
)b
 ,

(2.6)

and

h(x) =
2bθδ2αxα−1e−2x

α[
1− δe−xα

]3
(

1− δ2e−2x
α[

1− δe−xα
]2
)b−1

×
exp

{
θ

[
1−

(
1− δ2e−2xα

[1−δe−xα ]
2

)b]}

exp

{
θ

[
1−

(
1− δ2e−2xα

[1−δe−xα ]
2

)b]}
− 1

.

(2.7)

for b, α, δ, θ > 0.
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Figure 2.1:
Plots of the pdf and hrf for the TL-MO-WP Distribution for Select Values

The plot of the pdf shows that the TLMOWP distribution can handle
data that is left or right-skewed, while the hazard function exhibits bathtub,
upside-down bathtub, and upside-down bathtub followed by bathtub shapes.

2.2 Sub-Models

In this section, we present some sub-models of the TLMOWP distribution.

� When α = 1, the TLMOWP distribution becomes the Topp-Leone Marhsall-
Olkin Exponential (TLMOE) distribution.

� When δ = 1, the TLMOWP distribution becomes the Topp-Leone Weibull
Poisson (TLWP) distribution.

� When δ = 1 and α = 1, the TLMOWP distribution becomes the Topp-
Leone Exponential Poisson (TLEP) distribution.

� When α = 2, the TLMOWP distribution becomes the Topp-Leone Marshall-
Olkin Raleigh Poisson (TLMORP) distribution.

� When δ = 1 and α = 2, the TLMOWP distribution becomes the Topp-
Leone Raleigh Poisson (TLRP) distribution.
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2.3 Expansion of Density Function

In this section, we derive the series representation for the TLMOWP probabil-
ity density function. The density function from equation (2.6) can be written
in series form as follows:

f(x; b, α, δ, θ) =
∞∑

i,j,k,m,q=0

C(j, k,m, p, q; b, θ, δ)× f(x;α). (2.8)

Therefore, the pdf of the TLMOWP distribution is a linear combination of the
Weibull distribution with weights

C(i, j, k,m, q, b, δ, θ) =
(−1)i+k+m

(
b−1
i

)(
j
k

)(
bk
m

)(−(3+2i+2m)
q

)
2bθj+1δ2+2i+2mδ

q

j!q!(eθ − 1)(2 + i+ 2m+ 1)
.

(2.9)
(See appendix for the derivation).

2.4 Quantile Function

In this section, we will derive the quantile function for the TLMOWP distribu-
tion. The quantile function for a probability distribution is useful for calculat-
ing quartiles. A quantile function is also sometimes referred to as the inverse
distribution function, since the quantile function is the inverse of monotoni-
cally increasing distribution functions. Let F (x) be the distribution function
from equation (2.5). For any value Q ∈ (0,∞), the distribution equation
F (Q) = p ∈ (0, 1). We obtain quantile values for the TLMOWP distribution
by solving the non-linear equation

Q(p) = log


δ[

1−
(

1− log[(1−p)(eθ−1)+1]
θ

) 1
b

] 1
2

+ δ



1
α

. (2.10)

2.5 Moment and Moment Generating Function

In this section, we derive the raw moments as well as the moment generating
function for the TLMOWP distribution.

The rth moment of the TLMOWP distribution is given by

µ′r = E[Xr] =

∞∫
−∞

XrfTLMOWP(X) dx. (2.11)
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Therefore, the rth moment of the TLMOWP distribution is given by

µ′r =
∞∑

i,j,k,m,q=0

(−1)i+k+m
(
b− 1

i

)(
j

k

)(
bk

m

)(
−(3 + 2i+ 2m)

q

)
2bθj+1δ2+2i+2mδ

q

j!(eθ − 1)(2 + i+ 2m+ q)

× Γ
( r
α

+ 1
)
.

(2.12)
We present plots of the skewness and kurtosis in Figures 2.2 and 2.3.

Figure 2.2:
Skewness

From the 3-D plots of skewness and kurtosis, we observe the following:

� When we fix the parameters b and δ, skewness of the TLMOWP distri-
bution increases as α and θ increase.

� When we fix the parameters α and θ, skewness of the TLMOWP distri-
bution increases as b and δ increase.

� When the parameters b and δ are fixed, the kurtosis of the TLMOWP
distribution increases as α and θ increase.

� When we fix the parameters α and θ, kurtosis of the TLMOWP distri-
bution increases as b and δ increase.
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Figure 2.3:
Kurtosis

The moment generating function (mgf) of the TLMOWP distribution is given
by

etx =
∞∑
s=0

(tx)s

s!
. (2.13)

Using the expansion, the moment generating function, Mx(t), can be written

MX(t) = E[etX ] =
∞∑
s=0

ts

s!
E[Xs]. (2.14)

Substituting s in the rth moment in (2.12)

MX(t) =
∞∑

i,j,k,m,q,s=0

(−1)i+k+m
(
b− 1

i

)(
j

k

)(
bk

m

)(
−(3 + 2i+ 2m)

q

)
Γ
( s
α

+ 1
)

× 2bθj+1δ2+2i+2mδ
q

j!s!(eθ − 1)(2 + i+ 2m+ q)
r+α
α

.

(2.15)

2.6 Distribution of Order Statistics

Order statistics play a vital role in statistics. In this section, we present the
distribution of order statistics for the TLMOWP distribution. The probability
density function of the ith order statistic is given by



10 Fastel Chipepa, Broderick Oluyede and Boikanyo Makubate

fi:n(x) =
n!f(x)

(i− 1)!(n− i)!
[F (x)]i−1 [1− F (x)]n−1 .

Therefore,

fi:n(x) =
2bn!

(i− 1)!(n− i)!

n−i∑
p=0

∞∑
p,r,s,t,u,v,w=0

(
n− i
p

)(
p+ i− 1

q

)(
q

r

)(
b− 1

s

)

×
(
t

u

)(
bu

v

)(
−(3 + 2s+ 2v)

w

)
· δ

w
θt+1δ2+2s+2v(r + 1)t(−1)p+q+r+s+t+u+v+1

(eθ − 1)q+1t!(2 + 2s+ 2v + w)

× g (x;α) , (4.15)

where g(x;α) is the Weibull distribution with parameter α > 0. Thus, the
distribution of the ith order statistic from the TLMOWP distribution is a
linear combination of the Weibull distribution with parameter α, where

2bn!

(i− 1)!(n− i)!

n−i∑
p=0

∞∑
p,r,s,t,u,v,w=0

(
n− i
p

)(
p+ i− 1

q

)(
q

r

)(
b− 1

s

)

×
(
t

u

)(
bu

v

)(
−(3 + 2s+ 2v)

w

)
· δ

w
θt+1δ2+2s+2v(r + 1)t(−1)p+q+r+s+t+u+v+1

(eθ − 1)q+1t!(2 + 2s+ 2v + w)
(4.16)

are the coefficients. (See appendix for derivation)
The rth moment of the ith order statistic is given by

E [Xr
i:n] =

2bn!

(i− 1)!(n− i)!

n−i∑
p=0

∞∑
p,q,r,s,t,u,v,w=0

(
n− i
p

)(
p+ i− 1

q

)(
q

r

)(
t

u

)(
bu

v

)

×
(
−(3 + 2s+ 2v)

w

)
(−1)p+q+r+s+t+u+v+w+1θt+1δ2+2s+2vδ

w
(r + 1)t

(eθ − 1)q+1t!(2 + 2s+ 2v + w)
· Egw(Xr),

(4.17)
where Egw(Xr) is the rth moment of the Weibull distribution with parameter
α.

3 Uncertainty Measures

In this section, we present the Shannon entropy (Shannon, 1948) and the Rényi
entropy (Rényi, 1961) for the TLMOWP distribution. Entropy plays an impor-
tant role in information theory since it is a good measure of uncertainty. The
entropy of a random variable is defined in terms of its probability distribution
function.
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3.1 Shannon Entropy

Shannon entropy for the TLMOWP distribution is defined to be

H [fTLMOWP(X)] = E [− log (fTLMOWP(X; b, α, δ, θ))] . (3.1)

Therefore, Shannon entropy for TLMOWP distribution can be rewritten
as

H[f(X; b, δ, α, θ)] = log

[
(eθ − 1)

2bθδ2α

]
+ 6

∑
i,j,k,m,q=0

(−1)i+k+m+1

(eθ − 1)j!

(
b− 1

i

)(
j

k

)(
bk

m

)

×
(
−(3 + 2i+ 2m)

q

)
bθj+1δ2+2i+2mδ

a+q

2 + i+ 2m+ q + a
− (b− 1)

×
∞∑

d,i,j,k,m,q=0

∞∑
c=1

(−1)i+k+m+12αbθj+1δ2(1+i+m+c)

j!(eθ − 1)(2 + i+ 2m+ q + d+ 2c)c

× δ
q+d
(
b− 1

i

)(
j

k

)(
bk

m

)(
−(3 + 2i+m)

q

)(
−2c

d

)

− θ

[
1−

∞∑
d,f,g,i=0

∞∑
j,k,m,q=0

∞∑
c=1

(−1)2f+i+k+m
(
b−1
i

)(
j
k

)(
bk
m

)(−(3+2i+m)
q

)(
b
f

)(−2f
g

)
j!(eθ − 1)(2 + i+ 2m+ q + 2f + g)

× 2αbθj+1δ2(1+i+m+c+f)δ
q+g
]
. (3.2)

3.2 Rényi Entropy

Rényi entropy (1961) is an extension of Shannon entropy defined to be

IR(ν) =
1

1− ν
log

 ∞∫
0

[
fTLMOWP(x;b,α,δ,θ)

]ν
dx

 , ν > 0, ν 6= 1. (3.3)

Rényi entropy tends to Shannon entropy as ν → 1. Assume that f(x) is the
pdf of the TLMOWP distribution with parameters b, α, δ and θ. Consequently,
Rényi entropy from (3.3) can be expressed as

IR(ν) =
1

1− ν

[
2bθδ2α

(eθ − 1)

]ν ∞∑
i,j,k=0

∞∑
m=0

∞∑
p=0

(−1)i+k+m(θν)jδ2i+2mδ
p

j!α[2i+ 2ν + 2m+ p]ν−1+
1
α
(1−ν)

×
(
bν − ν
i

)(
j

k

)(
bk

m

)(
−(3ν + 2i+ 2m)

p

)
Γ

(
1− ν
α

+ ν − 1

)
(3.4)

for ν > 0 and ν 6= 1.
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4 Estimation

In this section, we use the maximum likelihood method to provide a basis for
estimation of the parameters, b, α, δ, and θ. We denote the parameter vector
for the TLMOWP distribution as Θ = [b, α, δ, θ]T . The log-likelihood function,
L, for a single observation from the TLMOWP distribution is given by

L = log(2) + log(b) + log(θ) + 2 log(δ) + log(α) + (α− 1) log(x)− 2xα − log(eθ − 1)

−3 log(1− δe−xα) + (b− 1) log

{
1− δ2e−2x

α

[1− δe−xα]2

}
+ θ

[
1−

{
1− δ2e−2x

α

[1− δe−xα
]2
}b]

.

(5.1)
The score function associated with the log-likelihood function is U(Θ) =[
∂L
∂b
, ∂L
∂α
, ∂L
∂δ
, ∂L
∂θ

]T
. The first-order partial derivatives of the log-likelihood func-

tion are given in the appendix section.

5 Simulation Study

In this section, we determine the reliability of the parameters of the TLMOWP
distribution by performing multiple Monte-Carlo simulations of sample size
n = 25, 50, 100, 200, 400, 800 using R. We consider 1000 samples for the
parameter values given in Table 5.1 and Table 5.2. Table 5.1 and Table 5.2 list
the mean maximum likelihood estimates of the TLMOWP parameters along
with their associated bias and root mean square errors (RMSE). The bias and
RMSE are given by

Bias(θ̂) =

N∑
i=1

θ̂i

N
− θ, (6.1)

and

RMSE(θ̂) =

√√√√√ N∑
i=1

(θ̂i − θ)2

N
, (6.2)

respectively.
From Tables 5.1 and 5.2, we can see that in all cases the RMSE and bias

decreases within a sufficiently sized tolerance as the sample size increases.
Furthermore, the mean value of the parameters is tending towards the true
value. Hence, we can conclude that estimation of parameters is consistent
under the TLMOWP model.
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Table 5.1:
Simulation Results: Mean, RMSE and Average Bias (Set 1)

b = 1.00, δ = 0.01, α = 1.00, θ = 0.01 b = 1.0, δ = 0.1, α = 1.0, θ = 0.5
n Mean RMSE Bias Mean RMSE Bias
25 1.843489 3.097031 0.843489 3.870500 21.411908 2.870500
50 1.446717 1.597276 0.446717 1.521597 5.297191 0.521597
100 1.223600 0.659300 0.223600 1.128091 0.752150 0.128091
200 1.086978 0.265911 0.086978 1.049350 0.402809 0.049350
400 1.076036 0.201140 0.076036 1.025239 0.239318 0.025239
800 1.001685 0.014811 0.001685 1.014153 0.171294 0.014153
25 0.013984 0.011706 0.003984 0.166036 0.276563 0.066036
50 0.012677 0.009227 0.002677 0.145694 0.112544 0.045694
100 0.011518 0.004843 0.001518 0.142870 0.094887 0.042870
200 0.011209 0.003235 0.001209 0.133027 0.081933 0.033027
400 0.010985 0.002699 0.000985 0.126679 0.059867 0.026679
800 0.010247 0.001135 0.000247 0.120595 0.048488 0.020595
25 0.954881 0.200440 -0.045119 1.275077 0.900785 0.275077
50 0.960478 0.148973 -0.039522 1.155374 0.625781 0.155374
100 0.972630 0.108779 -0.027370 1.121939 0.488281 0.121939
200 0.980893 0.066908 -0.019107 1.085300 0.362137 0.085300
400 0.981837 0.061137 -0.018163 1.031612 0.162606 0.031612
800 0.999014 0.015110 -0.000986 1.017462 0.114379 0.017461
25 0.142985 0.397621 0.132985 1.589740 1.736631 1.089740
50 0.113219 0.337011 0.103219 1.497565 1.589730 0.997565
100 0.075056 0.162904 0.065056 1.453125 1.532443 0.953125
200 0.049199 0.127904 0.039199 1.226390 1.257832 0.726390
400 0.046310 0.088076 0.036310 1.073216 0.990926 0.573216
800 0.039803 0.059860 0.029803 0.936695 0.821942 0.436695

Table 5.2:
Simulation Results: Mean, RMSE and Average Bias (Set 2)

b = 1.0, δ = 0.1, α = 1.0, θ = 1.5 b = 1.00, δ = 0.01, α = 1.00, θ = 0.50
n Mean RMSE Bias Mean RMSE Bias
25 2.792206 12.694827 1.792206 1.712998 2.776500 0.712998
50 1.814854 5.855332 0.814854 1.540414 5.861355 0.540414
100 1.233464 1.085688 0.233464 1.237808 0.736014 0.237808
200 1.153543 0.516273 0.153542 1.127867 0.317205 0.127867
400 1.105255 0.305964 0.105255 1.099338 0.216721 0.099338
800 1.087791 0.234418 0.087791 1.018735 0.018735 0.018735
25 0.131138 0.132985 0.031138 0.012147 0.012617 0.002147
50 0.138438 0.115495 0.038438 0.011723 0.007965 0.001723
100 0.141833 0.110302 0.041833 0.011400 0.008701 0.001400
200 0.145513 0.118560 0.045513 0.010809 0.003882 0.000809
400 0.135397 0.104514 0.035397 0.010381 0.002594 0.000381
800 0.122123 0.077060 0.022123 0.009189 0.000811 -0.000811
25 1.207604 0.711097 0.207604 0.990924 0.195055 -0.009076
50 1.067594 0.512852 0.067594 0.974919 0.146616 -0.025081
100 1.034464 0.400540 0.034464 0.977473 0.123684 -0.022527
200 0.991656 0.251724 -0.008344 0.982021 0.083168 -0.017979
400 0.972777 0.163998 -0.027223 0.985595 0.062634 -0.014405
800 0.969457 0.122721 -0.030543 1.023479 0.023479 0.023479
25 2.152334 1.597134 0.652334 0.599887 0.411314 0.099887
50 2.158237 1.446099 0.658237 0.551596 0.287312 0.051596
100 2.135010 1.480205 0.635010 0.540552 0.282067 0.040552
200 2.040846 1.426922 0.540846 0.532534 0.213519 0.032534
400 1.852365 1.312707 0.352365 0.532896 0.078254 0.032896
800 1.686933 1.076211 0.186933 0.499949 0.000051 -0.000051

6 Application

In this section, we use the R package to fit three real data sets to the TL-
MOWP model. In order to offer a meaningful comparison, we also fit the data
to six other distributions: the Topp-Leone Marshall-Olkin Exponentiated Pois-
son (TLMOEP), Topp-Leone Marshall-Olkin Weibull (TLMOW), Beta Lind-
ley Poisson (BLP), Burr XII Poisson (BXIIP), Exponentiated Power Lindley
Poisson (EPLP), and Exponentiated Weibull Poisson (EWP) distributions.
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The distributions have the following density functions:

fTLMOEP (x; b, δ, θ) =
2bθδ2e−2x

[exp(θ)− 1]
[
1− δe−x

]3
(

1− δ2e−2x[
1− δe−x

]2
)b−1

× exp

{
θ

[
1−

(
1− δ2e−2x[

1− δe−x
]2
)]}

,

(7.1)

where b, δ, θ > 0,

fBLP (x, β, θ, a, b) =
θβ2(1 + x)e−βxeω(1− eω)a−1(eω − eθ)b−1

B(a, b)(β + 1)(eθ − 1)
(1− eθ)2−a−b

(7.2)
where

ω = θ

[
1−

(
1 +

βx

β + 1

)
e−βx

]
(7.3)

and β, θ, a, b > 0,

fBXIIP (x; s, k, c, λ) =
cks−cλ

1− e−λ
[
1 +

(x
s

)c]−k−1
exp

{
−λ
[
1−

(
1 +

(x
s

)c)−k]}
(7.4)

where s, k, c, λ > 0,

fEPLP (x;α, β, ω, θ) =
αβ2ωθ

(β + 1)(eθ − 1)
(1 + yα)yα−1e−βy

α

[
1−

(
1 +

βyα

β + 1

)
e−βy

α

]ω−1
× exp

{
θ

[
1−

(
1 +

βyα

β + 1

)
e−βy

α

]ω}
,

(7.5)
where α, β, ω, θ > 0, and

fEWP (x;α, β, θ, γ) =
αγθβγxγ−1

eθ − 1
e−(βx)

γ

(1− e−(βx)γ))a−1eθ(1−e−(βx)γ )α , (7.6)

where α, β, γ, θ > 0. See (1.10) for the density function of the TLMOW distri-
bution.

We considered the values of the -2log-likelihood (-2logL), Akaike Informa-
tion Criterion (AIC) given by AIC = 2p − 2 log(L) (Akaike,1973), Consis-

tent Akaike Information Criterion (CAIC) given by AICC = AIC + 2p(p+1)
n−p−1

(Cavanaugh,1997), Bayesian Information Criterion (BIC) given by BIC =
p log(n) − 2 log(L) (Wit et al.,2012), two-sample Cramer von Mises crite-
rion (W ∗) (Anderson,2009), two-sample Anderson-Darling test (A∗) (Ander-
son,2009), sum of squares error (SS), and the p-value for the Kolmogorov-
Smirnov (K-S) test. In the preceding sentence, L is the value of the maximum
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likelihood estimate for the distribution parameters, n is the size of the data set,
and p is the number of parameters being estimated. These values were used
as a measure of the goodness of fit between the data sets and the statistical
models.

The AIC, CAIC, and BIC are used to compare the amount of information
lost as a result of adding parameters between models, with the CAIC providing
more accurate results, even in small samples. Hence, models with lower AIC,
CAIC, and BIC are preferred. Similarly, models with lower SS, W ∗, and A∗

are preferred. For the K-S test, the best model is the one with the largest
p-value.

Additionally, we performed a likelihood ratio test with the best fit pa-
rameters for nested models. That is, we will test the null hypothesis that the
TLMOEP distribution is the true distribution against the alternate hypothesis
that it is the TLMOWP distribution. The likelihood statistic, λ, was calcu-
lated using the difference of the -2log(L) values between the two distributions
in question. The test statistic is the value of the χ2 distribution with score λ
and degrees of freedom given by the difference in number of parameters. Since
the TLMOEP distribution has 3 parameters, and the TLMOWP distribution
has 4 parameters, df = 1.

For each data set, we calculated the covariance matrix for the maximum log-
likelihood parameter estimates. The entries in a covariance matrix represent
the covariances of the row and column parameters. A corollary of this is that
the main diagonal shows the variances of the parameters (Park,2018). By
definition, the covariance matrices for the TLMOWP distribution are of size
4×4, based on the four parameters of the distribution. Let I−1(Θ) denote the
covariance matrix.

Glass Fiber Data

The first data set given in Table 6.1 is a collection of 63 measurements of the
strength of 1.5 centimeter glass fibers from Smith and Naylor (1987).

0.55 0.93 1.25 1.36 1.49 1.52 1.58 1.61 1.64 1.68 1.73
1.81 2.00 0.74 1.04 1.27 1.39 1.49 1.53 1.59 1.61 1.66
1.68 1.76 1.82 2.01 0.77 1.11 1.28 1.42 1.50 1.54 1.60
1.62 1.66 1.69 1.76 1.84 2.24 0.81 1.13 1.29 1.48 1.50
1.55 1.61 1.62 1.66 1.70 1.77 1.84 0.84 1.24 1.30 1.48
1.51 1.55 1.61 1.63 1.67 1.70 1.78 1.89

Table 6.1:
Glass Fiber Data Set

Table 6.1 shows the estimated parameters, along with the standard error in
parentheses, for the glass fiber data set for each of the seven distributions being
compared, as well as the goodness of fit statistics corresponding to them. From
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Figure 6.1, we can see that the TLMOWP model is the best model under the
Cramer von-Mises, Anderson-Darling, and sum of square error criteria since its
W ∗, A∗, and SS values are lower than any of the other distributions. However,
if we consider the values of the AIC, CAIC, and BIC the TLMOW model seems
to be outperforming the TLMOWP model. These are not the only criteria that
can be used, hence the need for the K-S p-value, W ∗, A∗, and SS. These values
show that the TLMOWP model is better than the TLMOW model for this
particular data set.

Figure 6.1:
Estimates of Models for Glass Fiber Data Set

Estimates Statistics
Model a b α β δ θ ω −2 logL AIC CAIC BIC W ∗ A∗ SS p

TLMOWP -
1.0410

(0.3005)
2.4245

(0.2931) -
183.59

(177.45)
4.3727

(2.4092) - 23.6 31.6 32.3 40.2 0.0872 0.4988 0.0766 0.4901

TLMOEP -
3.5777

(0.7174) - -
28.0340

(24.1111)
165.07

(272.24) - 28.8 34.8 35.2 41.2 0.1979 1.0941 0.1840 0.1453

TLMOW -
0.9990

(0.2997)
2.4890

(0.1983) -
46.5775

(30.4731) - - 24.6 30.6 31.0 37.0 0.0953 0.5508 0.0843 0.4599

BLP
0.6270

(0.4835)
212.73

(16.8359) -
1.0992

(0.2785) -
19.3516

(11.2307) - 28.3 36.3 37.0 44.9 0.1716 0.9592 0.1664 0.1762

EPLP - -
4.5205

(1.0644)
0.2508

(0.1934) -
2.5089

(1.6337)
0.5640

(0.3362) 25.6 33.6 34.3 42.2 0.1148 0.6525 0.0987 0.4226

EWP - -
5.5015

(1.3951)
0.6467

(0.05085) -
2.7822

(1.5679)
0.5782

(0.3425) 26.0 34.0 34.7 42.5 0.1293 0.7283 0.1093 0.3711
c k s λ −2 logL AIC CAIC BIC W ∗ A∗ SS p

BXIIP
5.8540

(0.6605)
11.9921
(197.38)

5.0439
(14.2096)

63.2451
(260.15) 30.5 38.5 39.1 47.0 0.2393 1.3140 0.2109 0.108

In order to compare the TLMOWP and the TLMOEP, we will test the
hypothesis:

H0 :TLMOEP (b, δ, θ)

Ha :TLMOWP (b, α, δ, θ).

Since these are nested models, we will make use of the likelihood ratio test
where the value of the likelihood ratio statistic is λ = 28.8− 23.6 = 5.2. This
follows a χ2 distribution with 1 degree of freedom. The likelihood ratio test
has p-value

χ2
1(5.2) = 0.022587 < 0.05.

Therefore, we reject the null hypothesis and can conclude that the TL-
MOWP distribution performs significantly better than the TLMOEP distri-
bution for the glass fiber data set at the 5% significance level.

Figure 6.2 shows a plot of the fitted density functions superimposed over a
histogram of the glass fiber data, as well as a plot of the observed probabilities
of the different distributions against the expected probability. The plots show
that the TLMOWP distribution provides the best fit for the data.
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Figure 6.2:
Histogram with Fitted Densities and Sum of Square Errors for Glass Fiber
Data

Figure 6.3:
Experimental CDF and Kaplan-Meier Survival Plot for Glass Fiber Data

Figure 6.3 shows that the TLMOWP distribution provides a good fit for
the glass fiber data set since the green lines representing the theoretical values
match the black lines representing the data.
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Figure 6.4:
Experimental Hazard Rate Function for Glass Fiber Data

The hazard rate function plot for the glass fiber data is increasing mono-
tonically as shown in Figure 6.4.

The asymptotic covariance matrix for the glass fibers data set is given by

I−1(Θ̂) =


0.09032 −0.07355 45.4138 0.1583
−0.07355 0.08590 35.9201 −0.3352
−45.4138 35.9201 31488 102.08

0.1583 −0.3352 102.08 5.8040

 . (7.8)

Thus, the two-sided 95% asymptotic confidence intervals for b, α, δ, and θ
for the glass fiber data set are respectively given by 1.0410± 0.5890, 2.4245±
0.5744, 183.59± 347.7921, and 4.3727± 4.7218.

Kevlar Data

The second data set given in Table 6.2 contains 101 observations from Barlow,
Toland, and Freeman (1984) representing the failure time in hours of kevlar
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49/epoxy strands held under consistent pressure.

0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.04 0.05 0.06 0.07 0.07 0.08 0.09 0.09
0.10 0.10 0.11 0.11 0.12 0.13 0.18 0.19 0.20 0.23 0.24 0.24 0.29 0.34 0.35
0.36 0.38 0.40 0.42 0.43 0.52 0.54 0.56 0.60 0.60 0.63 0.65 0.67 0.68 0.72
0.72 0.72 0.73 0.79 0.79 0.80 0.80 0.83 0.85 0.90 0.92 0.95 0.99 1.00 1.01
1.02 1.03 1.05 1.10 1.10 1.11 1.15 1.18 1.20 1.29 1.31 1.33 1.34 1.40 1.43
1.45 1.50 1.51 1.52 1.53 1.54 1.54 1.55 1.58 1.60 1.63 1.64 1.80 1.80 1.81
2.02 2.05 2.14 2.17 2.33 3.03 3.03 3.34 4.20 4.69 7.89

Table 6.2:
Kevlar Data Set

Figure 6.5 contains the estimated parameters, along with the standard er-
ror in parentheses, for the kevlar data set for each of the seven distributions, as
well as their corresponding goodness-of-fit statistics. Figure 6.5 shows that the
TLMOWP model is superior to all of the other distributions under the -2logL
criterion. If we consider the values of the AIC, CAIC, and BIC statistics, it
seems that the TLMOW model is outperforming the TLMOWP model. How-
ever, the values for W ∗, A∗, SS, and the K-S p-value show that the TLMOWP
model is superior

Figure 6.5:
Estimates of Models for Kevlar Data Set

Estimates Statistics
Model a b α β δ θ ω −2 logL AIC CAIC BIC W ∗ A∗ SS p

TLMOWP -
1.0705

(0.2678)
0.7063

(0.1420) -
13.9417
(8.0463)

5.1813
(2.3586) - 202.9 210.9 211.4 221.4 0.1152 0.7096 0.1165 0.7215

TLMOEP -
0.7110

(0.08009) - -
24.5313

(17.0023)
3.8805

(1.6147) - 209.8 215.8 216.0 223.6 0.0937 0.7414 0.0703 0.8229

TLMOW -
1.0503

(0.2726)
0.7539

(0.09013) -
2.6198

(0.8346) - - 204.5 210.5 210.7 218.3 0.1353 0.8156 0.1321 0.6207

BLP
0.7090

(0.1693)
0.5159

(0.5235) -
2.2512

(1.8595) -
0.7317

(1.2986) - 204.8 212.8 213.2 223.3 0.1082 0.7091 0.1030 0.6819

EPLP - -
0.7894

(0.2025)
1.7951

(0.6112) -
1.1683

(1.2586)
0.9385

(0.3828) 204.4 212.4 212.9 222.9 0.1349 0.8141 0.1292 0.6921

EWP - -
0.8717

(0.2410)
1.3032

(0.7400) -
1.2662

(1.2008)
0.8589

(0.3681) 204.6 212.6 213.0 223.1 0.1408 0.8416 0.1347 0.6639
c k s λ −2 logL AIC CAIC BIC W ∗ A∗ SS p

BXIIP
0.9352

(0.08536)
3.1903

(43.2769)
414.91

(4968.77)
89.7902
(526.60) 206.0 214.0 214.4 224.4 0.2029 1.1302 0.1996 0.3714

In order to compare the TLMOWP model to the TLMOEP model, we will
test the hypothesis

H0 :TLMOEP (b, δ, θ)

Ha :TLMOWP (b, α, δ, θ).

Since these are nested models, we will make use of the likelihood ratio test
where the value of the likelihood ratio statistic is λ = 209.8−202.9 = 6.9. The
likelihood ratio test has p-value

χ2
1(6.9) = 0.00862 < 0.01.

Therefore, we reject the null hypothesis and conclude that the TLMOWP
distribution performs significantly better than the TLMOEP distribution for
the kevlar data set at the 1% significance level.
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Figure 6.6 shows a plot of the fitted density functions over a histogram
of the kevlar data set, as well as a plot of the observed probabilities of the
different distributions against their expected probability. The plots show that
the TLMOWP model provides the best fit for the kevlar data set.

Figure 6.6:
Histogram with Fitted Densities and Sum of Square Errors for Kevlar Data

Figure 6.7:
Experimental CDF and Kaplan-Meier Survival Plot for Kevlar Data
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Figure 6.7 shows that the TLMOWP distribution provides a good fit for
the kevlar data set since the green lines representing the theoretical values
match the black lines representing the data.

Figure 6.8:
Experimental Hazard Rate Function for Kevlar Data

Figure 6.8 shows the plot of the hazard rate function for the kevlar data set.
The hazard rate function exhibits a bathtub shape followed by an upside-down
bathtub shape for the kevlar data set.

The covariance matrix for the kevlar data set is given by

I−1(Θ̂) =


0.02018 −0.03311 0.3062 −0.1898
−0.03311 0.07173 −1.2323 0.2078

0.3062 −1.2323 64.7431 10.6272
−0.1898 0.2078 10.6272 5.5629

 . (7.9)

Thus, the two-sided asymptotic confidence intervals for b, α, δ, and θ for
the kevlar data set are respectively given by 1.0705± 0.2784, 0.7063± 0.5249,
13.9417± 15.7704, and 5.1813± 4.6227.

Carbon Fiber Data

The final data set under consideration is from Nicholas and Padgett (2006). It
features 100 observations of the breaking stress of 50mm carbon fibers.
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0.98 5.56 2.83 3.68 2.00 3.51 0.85 1.61 3.28 2.95 5.08 0.39 1.57 3.19 4.90
2.74 2.73 2.50 3.60 3.11 2.93 2.85 2.77 2.76 1.73 2.48 3.22 3.70 3.27 2.87
1.47 3.11 4.42 2.81 3.15 1.92 1.84 1.22 2.17 1.61 2.12 3.09 2.97 4.20 2.35
1.41 1.59 1.12 1.69 2.79 1.89 1.87 3.39 3.33 2.55 3.68 3.19 1.71 1.25 4.70
2.88 3.68 1.08 3.22 3.75 2.96 2.55 2.59 2.97 1.57 2.17 4.38 2.03 2.82 2.53
3.31 2.38 1.36 0.81 1.17 1.84 12.40 3.15 2.67 3.31 2.81 2.56 2.17 4.91 1.59
1.18 2.48 2.03 1.69 2.43 3.39 3.56 0.80 2.05 3.65

Table 6.3:
Carbon Fiber Data Set

The entries in Figure 6.9 include estimates of the estimated parameters,
along with the standard error in parentheses, and their corresponding goodness-
of-fit statistics. The TLMOWP model is the best model under the W ∗ and
A∗ criteria. If we consider the values of the -2logL, AIC, CAIC, and BIC
criteria, it appears that the BXIIP model outperforms the TLMOWP model.
However, since the K-S p-value is higher and the SS is lower for the TLMOWP
distribution, it is a better model for these criteria for the carbon fiber data set.

Figure 6.9:
Estimates of Models for Carbon Fiber Data Set

Estimates Statistics
Model a b α β δ θ ω −2 logL AIC CAIC BIC W ∗ A∗ SS p

TLMOWP -
3.6217

(1.6086)
0.6460

(0.1084) -
10.9712
(7.3996)

6.4091
(2.1705) - 304.4 312.4 312.8 322.8 0.0999 0.5528 0.0987 0.55

TLMOEP -
1.4828

(0.3015) - -
45.7478

(35.2760)
2.5588

(1.9474) - 318.9 324.9 325.2 332.8 0.1014 0.7668 0.0610 0.8688

TLMOW -
3.9169

(1.7232)
0.8131

(0.06507) -
4.9673

(2.4409) - - 310.4 316.4 316.7 324.2 0.1443 0.8366 0.1329 0.4631

BLP
1.5154

(2.1919)
0.9155

(0.3740) -
1.3124

(0.3012) -
4.6274

(7.9490) - 311.3 319.3 319.7 329.7 0.1468 0.8539 0.1352 0.4384

EPLP - -
0.7687

(0.1789)
2.1012

(0.7763) -
3.4312

(2.0343)
6.3559

(5.8534) 309.5 317.5 317.9 327.9 0.1541 0.8603 0.1403 0.4504

EWP - -
0.8250

(0.2062)
1.7712

(1.2125) -
3.5049

(2.0109)
6.3803

(5.8957) 309.6 317.6 318.0 328.0 0.1574 0.8778 0.1432 0.4368
c k s λ −2 logL AIC CAIC BIC W ∗ A∗ SS p

BXIIP
3.1850

(0.3386)
0.9863

(0.9393)
4.9099

(1.4830)
6.4271

(2.7424) 303.4 311.4 311.8 321.8 0.1084 0.5689 0.1057 0.5033

In order to compare the TLMOWP model to the nested TLMOEP model,
we will test the hypothesis

H0 :TLMOEP (b, δ, θ)

Ha :TLMOWP (b, α, δ, θ).

Since these are nested models, we will use the likelihood ratio test, where the
value of the likelihood ratio statistic is λ = 318.9−304.4 = 14.5. This follows a
χ2 distribution with 1 degree of freedom. The likelihood ratio test has p-value:

χ2
1(14.5) = 0.00014 < 0.01.

Therefore, we reject the null hypothesis and conclude that the TLMOWP
distribution performs significantly better than the TLMOEP distribution for
the carbon fiber data set at the 1% significance level.

Figure 6.10 shows a plot of the distributions superimposed over a histogram
of the data set, as well as a plot of the models against a line representing the
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expected probability. From these plots, we observe the goodness-of-fit of the
TLMOWP model compared to the others.

Figure 6.10:
Histogram with Fitted Densities and Sum of Square Errors for Carbon Fiber
Data

Figure 6.11:
Experimental CDF and Kaplan-Meier Survival Plot for Carbon Fiber Data

Figure 6.11 shows that the TLMOWP model provides a good fit to the car-
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bon fiber data, since the green curves representing the theoretical probabilities
align with the black lines representing the data.

Figure 6.12:
Experimental Hazard Rate Function for Carbon Fiber Data

Figure 6.12 shows that the carbon fiber data exhibits an upside-down bath-
tub hazard rate.

The covariance matrix for the carbon fiber data set is given by

I−1(Θ̂) =


2.5875 −0.1518 −11.6664 0.8842
−0.1518 0.01176 0.6813 −0.1324
−11.6664 0.6813 54.7542 −1.9870

0.8842 −0.1324 −1.9870 4.7109

 . (7.10)

Thus, the two-sided asymptotic confidence intervals for b, α, δ, and θ for the
carbon fiber data set are respectively given by 3.6217±3.1527, 0.6460±0.2125,
10.9712± 14.5029, and 6.4091± 4.2540.
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APPENDIX

The following url contains all the derivations referred to in the document
https://drive.google.com/file/d/15oSSjpvrX-tcyygcyxHfwup2QY3A0B7p/

view?usp=sharing
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