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Abstract

The Padé approximation considered as interpolation problem by rational frac-
tions is widely used to accelerate power series because to their accuracy. Its gener-
alization in the orthogonal Chebyshev basis, a family of polynomials that presents
a behaviour uniform, have been applied successfully in the resolution to various
dependent problems of a variable. In this article, our approach aims to extend this
generalization to functions of two variables. Numerical implementations are also
presented.
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1 Introduction
Approximation methods have always been the subject of intense investigation because
they have been for most of the times inescapable in the resolution to some partial differ-
ential equations. Among the ones, these consisting to approach some functions written
under forms to series by rational fractions have proved their efficiency.
Padé approximants, since the pioneer paper [16] of 1892, are up to date thanks to appli-
cations in physical sciences, mathematics, and other applied sciences with the advent of
computers in the 1950s as tool of convergence acceleration [1, 2]. These approximants are
the locally best rational approximants to a power series. The posed problem by Padé is
the following: let f a given function through its Taylor series expansion at the origin

f (z) = c0 + c1z + c2z
2 + ...+ cnz

n + ... (1)

where ck = f (k) (0) /k!, k = 1, 2, .... It concerns to find a set of rational fractions p(z)/q(z)
which validly approach f(z) [2].
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There are enough works on the Padé approximants [2, 3, 4, 5, 17]. Also, to generalize
certain concepts of Padé approximants to functions of several variables, we can consult
for example [6, 8, 10, 12, 13].
In its article [14], using the Padé approximants, H. J. Maehly has given the starting
point of a method to convert Chebyshev series into rational expressions involving Cheby-
shev polynomials. To this we must add an other variant proposed in [7]. The term
Chebyshev-Padé approximants will refer Padé approximants in the orthogonal Chebyshev
polynomials basis.

The present paper proposes to extend the contained ideas in [7] and [14] to functions
of two variables. Pseudo-spectral methods are a motivation for the research of these ap-
proximants in the aim to accelerate their convergence.
This paper is organized as follows. In the section 2, are briefly presented Padé approxi-
mants. Results on the extension of Padé approximants in the Chebyshev basis are given
in section 3: the subsection 3.1 presents the uniform approximation, subsection 3.2 is
devoted to Chebyshev-Padé approximants of univariate functions, and the subsection 3.3
is dedicate to the approach of Chebyshev-Padé approximants for functions of two vari-
ables. In section 4 some examples are chosen to show the high accuracy of the approach.
Conclusions of the study are summarized in section 5.

2 Padé approximants
Considering the power series (1), it is possible to construct, under some conditions, a
double sequences of rational fractions p(z)/q(z) whose the numerator p is a polynomial
of degree m and denominator q of degree n [3]:

p(z)
q(z) = a0 + a1z + a2z

2 + ...+ amz
m

b0 + b1z + b2z2 + ...+ bnzn
. (2)

The coefficients ai et bj (i = 0, ...,m; j = 0, ..., n) such as am 6= 0, bn 6= 0 of (2) can
be compute so that its increasing power expansion to z coincides with the one to f(z)
as far as possible, ie generally until zm+n including term. In other words, the difference
between the rational fraction (2) and the power series (1) will begin with a term of degree
m+ n+ 1.

Definition 2.1. The rational fraction (2) is said Padé approximant of the function f of
order m, n if

f (z)− p(z)
q(z) = O

(
zm+n+1

)
, z −→ 0 (3)

and one denote by [m/n]f(or [p/q](z)) this approximant.

Theorem 2.1. [2] If the Padé approximant [m/n]f (z) exists, then it is unique.

Concerning the convergence of these approximants, we choose the following result[2]:
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Theorem 2.2 (Montessus de Balloré). Let f be a holomorphic function from the disc
{z : |z| ≤ R} with the poles z1, z2,..., zk. Let n the total order of multiplicity of poles.
Then, the Padé approximant [m/n]f converge on f , uniformly on any compact subset
{z : |z| < R, z 6= zj, j = 1, 2, ..., k}, as m −→∞.

In [9], this theorem genelirazed to the multivariate case.

3 Extension of Padé approximants in the Chebyshev
polynomial basis

3.1 Uniform approximation
Let f a continuous function on the interval [−1, 1] and expanded in the form of the
Chebyshev series

f (x) =
∞∑

k=0

′
ckTk (x) , k = 0, 1, ..., (4)

where ∑ ′ means here and in the rest of our work that the first term in the summation is
halved, and ak is defined by the relation

ck = 2
π

∫ 1

−1

(
1− x2

)− 1
2 f (x)Tk (x) dx. (5)

The ck are called the Chebyshev coefficients, Tk (x) = cos (k arccos (x)) is the Chebyshev
polynomial of degree k of the first kind and ω (x) = (1− x2)−

1
2 the weight function [15].

These polynomials verify the property

Ti (x)Tj (x) = 1
2
[
Ti+j (x) + T|i−j| (x)

]
. (6)

The zeros of Chebyshev polynomials Tk(x) in the interval [−1, 1] are

xn = cos
(

(2n+ 1) π
2k

)
, n = 0, 1, ..., k − 1. (7)

It is indeed known that the truncated expansion of a function in the form of Chebyshev
series is the near-best polynomial approximant, in the sense of the uniform norm, on the
interval [−1, 1]. To obtain uniformly the accuracy to rational fractions approximations,
we use the Chebyshev polynomials, a family of orthogonal polynomials that present an
uniform behaviour.

3.2 Chebyshev-Padé approximants of functions of single vari-
able

As in section 2, we can approach f under its form (4) by a rational fraction [m/n] ([7],
[14]). But, we formulate the following definition:
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Definition 3.1. One calls a Chebyshev-Padé approximant of the power series (4) every
rational fraction

p (x)
q (x) =

m∑
k=0

′
akTk (x)

n∑
k=0

′
bkTk (x)

, (8)

satisfying (
fq − p

)
= O

(
Tm+n+1(x)

)
, (9)

where the notation O
(
Tm+n+1(x)

)
means that the first term nonzero in the orthogonal

expansion of the function has an index greater than or to m+ n+ 1.

Theorem 3.1. [2] If it exists, the Chebyshev-Padé approximant (8) satisfying the condi-
tion (9) is unique.

To extend the definition (8) to functions of two variables, we recall the Padé-Chebyshev
method in the case univariate functions showed in [7] for n ≤ m:

1
2

n∑
j=0

′
bj

(
ci+j + c|i−j|

)
= 0, i = m+ 1,m+ 2, . . . ,m+ n, (10)

1
2

n∑
j=0

′
bj

(
ci+j + c|i−j|

)
= ai, i = 0, 1, 2, . . . ,m. (11)

The equations (10) determine the coefficients bj, and the equations (11) product the ai.
Experience has shown that the system of equations (10) is fairly well conditioned.
In the following discussion, we propose an analogous approach to (8) for functions of two
variables i.e the calculus of coefficients aij and brs in expressions

p(x, y) =
m∑

i=0

m∑
j=0

aijTi(x)Tj(y) (12)

q(x, y) =
n∑

r=0

n∑
s=0

brsTr(x)Ts(y) (13)

3.3 Chebyshev-Padé approximants of fonctions of two variables
We start by expressing the following theorem:

Theorem 3.2. [15] Let f : [−1, 1]× [−1, 1] −→ C a continuous function and of bounded
variation in the interval I = [−1, 1] × [−1, 1] (see also [15] for a definition of bounded
variation for bivariate functions). If one of its partial derivatives exists and is bounded
in I, the function f has a bivariate Chebyshev expansion,

f (x, y) =
∞∑

i=0

∞∑
j=0

cijTi(x)Tj(y), (14)

converges uniformly on I.
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Proof. We can refer to [15].

This means that the truncated bivariate Chebyshev (14) in x and y of respective
degrees n and m can being defined for functions satisfying hypothesis of theorem 3.2 by

f (x, y) ≈
n∑

i=0

m∑
j=0

cijTi(x)Tj(y). (15)

where the coefficients cij are calculed in [11]:

cij = εij

(n+ 1)(m+ 1)

n∑
k=0

m∑
l=0

f(xk, yl) cos
(
i(2k + 1)π
2(n+ 1)

)
cos

(
j(2l + 1)π
2(m+ 1)

)
(16)

with

ε = 4 for i 6= 0 and j 6= 0,
ε = 2 for i = 0 and j 6= 0 or i 6= 0 and j = 0,
ε = 1 for i = 0 and j = 0.

By the relation (9) and applying the property (6), we have:

f (x, y)Q (x, y) =
 ∞∑

i=0

∞∑
j=0

cijTi(x)Tj(y)
( n∑

r=0

n∑
s=0

brsTr(x)Ts(y)
)

=
∞∑

i=0

∞∑
j=0

n∑
r=0

n∑
s=0

cijbrsTi(x)Tr(x)Tj(y)Ts(y)

(17)

= 1
4

∞∑
i=0

∞∑
j=0

n∑
r=0

n∑
s=0

cijbrs

(
Ti+r(x)Tj+s(y) + Ti+r(x)T|j−s|(y)

+ T|i−r|(x)Tj+s(y) + T|i−r|(x)T|j−s|(y)
)
.

In order to simplify different expressions, we formulate the following propositions:

Proposition 3.1.
Let (αi)i≥0 and (βi)i≥0 two series of real numbers, and (γi(x))i≥0 a series of functions,
we have:

∞∑
i=0

n∑
r=0

αiβrγi+r(x) =
∞∑

i=0

n∑
r=0

α̃i−rβrγi(x) (18)

∞∑
i=0

n∑
r=0

αiβrγi−r(x) =
∞∑

i=0

n∑
r=0

α̃i+rβrγi(x) (19)

∞∑
i=0

n∑
r=0

αiβrγ|i−r|(x) =
∞∑

i=0

n∑
r=0

α̃r−iβrγi(x) +

(20)
∞∑

i=1

n∑
r=0

αi+rβrγi(x)
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where the coefficients α̃i verify

α̃i =
{
αi, if i ≥ 0,
0, otherwise. (21)

Proof. To prove (18), we made a change of index ĩ = i+ r, it follows:
∞∑

i=0

n∑
r=0

αiβrγi+r(x) =
n∑

r=0

∞∑
ĩ=r

α
ĩ−r
βrγ ĩ

(x)

=
n∑

r=0

∞∑
i=r

αi−rβrγi(x)

=
∞∑

i=0

n∑
r=0

α̃i−rβrγi(x)

The proof (19) is similar to (18), it suffices to set ĩ = i− r.
Indeed to show (20), first a decomposition gives:

∞∑
i=0

n∑
r=0

αiβrγ|i−r|(x) =
n∑

r=0

r∑
i=0

αiβrγr−i(x) +
n∑

r=0

∞∑
i=r+1

αiβrγi−r(x). (22)

Then, the change of respective index ĩ = r−i and ĩ = i−r for two terms of the right-hand
side of (22), it comes

∞∑
i=0

n∑
r=0

αiβrγ|i−r|(x) =
n∑

r=0

0∑
ĩ=r

α
r−̃i

βrγ ĩ
(x) +

n∑
r=0

∞∑
ĩ=1

α
ĩ+r
βrγ ĩ

(x)

=
n∑

r=0

r∑
i=0

αr−i βrγi(x) +
n∑

r=0

∞∑
i=1

αi+rβrγi(x)

=
∞∑

i=0

n∑
r=0

α̃r−i βrγi(x) +
∞∑

i=1

n∑
r=0

αi+rβrγi(x)

with the α̃i are defined as in (21).

In the following we consider the coefficients (c̃ij) such that

c̃ij =
{
cij, if i ≥ 0 et j ≥ 0,
0, otherwise.

Using the proposition 3.1 we obtain:
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4f (x, y)Q (x, y) =
∞∑

i=0

∞∑
j=0

n∑
r=0

n∑
s=0

c̃i−r,j−sbrsTi(x)Tj(y)

+
∞∑

i=0

∞∑
j=0

n∑
r=0

n∑
s=0

c̃i−r,s−jbrsTi(x)Tj(y)

+
∞∑

i=0

∞∑
j=1

n∑
r=0

n∑
s=0

c̃i−r,s+jbrsTi(x)Tj(y)

+ 2
∞∑

i=0

∞∑
j=0

n∑
r=0

n∑
s=0

c̃r−i,s−jbrsTi(x)Tj(y)

+ 2
∞∑

i=1

∞∑
j=0

n∑
r=0

n∑
s=0

c̃i+r,s−jbrsTi(x)Tj(y)

+
∞∑

i=0

∞∑
j=1

n∑
r=0

n∑
s=0

c̃r−i,s+jbrsTi(x)Tj(y)

+
∞∑

i=1

∞∑
j=1

n∑
r=0

n∑
s=0

c̃i+r,s+jbrsTi(x)Tj(y) (23)

Since (12), (13) and (14) must verify (9), this helps by identification of coefficients for
i, j = m+ 1, ...,m+ n, to obtain the following homogeneous system of unknowns brs:

n∑
r=0

n∑
s=0

(c̃i−r,j−s + c̃i−r,s+j + c̃i+r,s+j) brs = 0. (24)

The system (24) is homogeneous and includes n2 equations and (n+ 1)2 unknowns. It is
thus a system over determined. Generally, it does not admit solutions. A way possible to
solve is to normalize certain terms. In our case, (2n+ 1) conditions of normalizations are
needed (recall that other normalizations are possible):

b00 = 1, (25)
br0 = 1 with r = 1, 2, ..., n, (26)
b0s = 1 with s = 1, 2, ..., n. (27)

In these specific cases, the system (24) contains n2 equations and n2 unknowns:
n∑

r=1

n∑
s=1

Θijrsbrs = −3cij −
n∑

r=1
Θijr0 −

n∑
s=1

Θij0s, (28)

with
Θijrs = c̃i−r,j−s + c̃i−r,s+j + c̃i+r,s+j.

7



In the same way, the coefficients aij are determined by solving the following system:

1
2

n∑
r=0

n∑
s=0

c̃rsbrs = a00, i, j = 0,

1
4

n∑
r=0

n∑
s=0

(c̃r,s+j + 2c̃r,s−j) brs = a0j, 1 ≤ j ≤ m,

1
4

n∑
r=0

n∑
s=0

(2c̃r+i,s + c̃i−r,s + 2c̃r−i,s) brs = ai0, 1 ≤ i ≤ m,

1
4

n∑
r=0

n∑
s=0

(c̃i−r,s+j + 2c̃i+r,s−j + c̃r−i,s+j + c̃i−r,j−s + c̃i−r,s−j

+ 2c̃r−i,s−j) brs = aij, 1 ≤ i, j ≤ m.

(29)

Remark 3.1. Different normalisations enable to prove the existence of these approxi-
mants but no the uniqueness.

4 Numerical experimentation
To illustrate the efficiency of the previous method, we give three estimated examples at
the N = 30 Chebyshev points. One the one hand, we have established a table of values
showing absolute errors between exact values of each function and its approximate by
truncate Chebyshev series fap, and one the other hand with its Chebyshev-Padé approx-
imant f(x, y)ChebP ade on the same grid points N × N . Thus, we could exhibit a positive
integer n (degree of denominator in x and y) for which f(x, y)ChebP ade −→ f(x, y) varying
m (degree numerator in x and y).

[m/n] ||f − fap||∞ ||f − fChebP ade||∞
[15/7] 0.17844680 0.00989083
[16/7] 0.17219250 0.00956546
[17/7] 0.16663555 0.00768792
[18/7] 0.16210627 0.00761395
[19/7] 0.15787886 0.00666526
[20/7] 0.15341211 0.00605857

Table 1: f(x, y) = sin (πx) sin(πy)

[m/n] ||f − fap||∞ ||f − fChebP ade||∞
[20/9] 0.08544526 0.00993883
[21/9] 0.08331408 0.00964092
[22/9] 0.08153698 0.00945850
[23/9] 0.07971592 0.00868023
[24/9] 0.07783491 0.00813102
[25/9] 0.07594786 0.00775546

Table 2: f(x, y) = exp (−xy)
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[m/n] ||f − fap||∞ ||f − fChebP ade||∞
[25/10] 0.12392750 0.00955737
[26/10] 0.12102090 0.00917107
[27/10] 0.11822960 0.00813607
[28/10] 0.11557987 0.00802139
[29/10] 0.11303214 0.00714170
[30/10] 0.11060684 0.00335623

Table 3: f(x, y) = exp(x) (sin(y) + xy2)

Three tables of absolute errors show clearly that it is more accurately to approach
functions by rational functions than by polynomials with the same number of degrees of
freedom. Therefore, this method confirms the convergence acceleration of pseudo-spectral
methods.

5 Concluding remarks
In this article, an approach of Chebyshev-Padé approximants for functions of two variables
have been proposed. We obtained algebraic systems to determine the numerator and
denominator coefficients of these approximants. Numerical examples made proved the
efficiency of this method in the convergence acceleration of pseudo-spectral methods.
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