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Abstract

In this communication, we study the existence of nonnegative so-
lutions of a nonlinear system in Banach spaces. These maps involved
in the system defined on cone do not necessarily take values in the
cone. Using fixed point theorems just established for this type of
mappings, nonnegative solutions of the system are obtained and used
to investigate elliptic boundary value problems(BVPs).
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1 Introduction and preparatories

It has been well-known that nonlinear systems arise in many fields of scientific re-
searches and engineering practices, the study on existence of nonnegative solutions
for that is very interesting and of great importance, see, for example, [1, 2] and
the references there. However, the nonlinear terms involved in that take negative
values in many cases, to the best of our knowledge, there is little study on it.

Recently, Yang, one of authors of [3], and Lan established a new fixed point
index theory for nowhere normal-outward compact maps [4] and proved a few
fixed point theorems, which were used to population models with sign-changing
nonlinearities [5]. In this communication, we expand some results [3] to systems
and apply them to investigate elliptic boundary value problems(BVPs).

We recall some knowledge on r-nowhere normal-outward maps and a fixed
point theorem for these maps obtained in [3].

Let K be a closed convex set in a Banach space X with norm ∥ · ∥, and let
r : X → K be a retraction, that is, r is continuous and satisfies r(y) = y for y ∈ K.
Recall that a map A : D ⊂ K → X is called to be a r-nowhere normal-outward
map on D relative to K if

Ax ∈
(
X \ r−1(x)

)
∪ {x} for x ∈ D.

The following criterion was obtained in [3, Proposition 2.1].

Lemma 1.1. Let A : D ⊂ K → X be a map and let r : X → K be a retraction. If

x = A(r(x)) for some x ∈ r−1(D) (1.1)

implies x ∈ D, then A is a r-nowhere normal-outward map on D relative to K.

A map A : D ⊂ X → X is said to be compact if A is continuous and A(S) is
relatively compact for each bounded subset S of D.

Let DK = D ∩K, DK = D ∩K and ∂DK = ∂D ∩K. In [3], we established
the following known result (see [3, Theorem 3.2]).

Theorem 1.1. Let K be a a closed convex set in X and let r : X → K be a
retraction. Let D1, D be bounded open sets in X such that D1

K ⊂ DK and D1
K ̸= ∅.

Assume that A : DK \D1
K → X is compact such that the following conditions hold.

(h1) There exists x0 ∈ DK such that tA+(1−t)x̂0 is r-nowhere normal-outward
on DK relative to K for t ∈ (0, 1].

(LS) x ̸= tAx+ (1− t)x0 for x ∈ ∂DK and t ∈ (0, 1).
(h2) There exists e ∈ K \ {0} such that A+λe is a r-nowhere normal-outward

on D1
K relative to K for λ > 0.

(E) x ̸= Ax+ λe for x ∈ ∂D1
K and λ ≥ 0.

Then A has a fixed point in DK \D1
K .
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Let K be a cone in X. Then K defines a partial order ≤ in X by x ≤
y if and only if y − x ≥ 0. A cone K is said to be reproducing if X = K −K, to
be total if X = K −K and to be normal if there exists σ > 0 such that 0 ≤ x ≤ y
implies ∥x∥ ≤ σ∥y∥ [1].

Recall that a real number λ is called an eigenvalue of a linear operator L : X →
X if there exists φ ∈ X \ {0} such that λφ = Lφ. The radius of the spectrum of
L in X, denoted by r(L), is given by r(L) = limm→∞

m
√
∥L∥m. We write

µ1(L) =
1

r(L)
. (1.2)

We denote by L(K) the set of compact linear operators L : X → X satisfying
L(K) ⊂ K and r(L) > 0. By Krein-Rutman theorem (see [6, Theorem 3.1] or [7]),
if K is a total cone and L ∈ L(K), then there exists an eigenvector φ ∈ K \ {0}
such that

φ = µ1(L)Lφ. (1.3)

2 Nonnegative solutions of a nonlinear sys-

tem

Let n ≥ 2, Kn = K × K × .... × K and Ai : K
n → X. We shall establish the

existence results of nonzero solutions in Kn for the following system of the form

xi = Ai(x) for i ∈ In := {1, 2, ..., n}, (2.1)

where x = (x1, x2, ..., xn) ∈ Xn.
LetXn = X×X×....×X with the maximum norm ∥x∥ = max{∥x1∥, ∥x2∥, ..., ∥xn∥}

and rnx = (rx1, rx2, ..., rxn). Then rn : Xn → Kn is a retraction. A map
A : Kn → X is called to be a r-nowhere normal-outward map with respect to
component xi(i ∈ In) on K

n relative to K, if x ∈ Xn, xi = Airnx implies xi ∈ K.
Using Theorem 1.1, we prove

Theorem 2.1. Let K be a total and normal cone in X, and let r : X → K be
a retraction. Assume that Ai : K

n → X is compact and satisfies the following
conditions:

(hn) For any i ∈ In, there exists xi ∈ K such that tAi + (1 − t)x̂i is r-nowhere
normal-outward map with respect to component xi on K

n relative to K for
t ∈ (0, 1].
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(LS)n For any i ∈ In, there exist vi ∈ K \{0}, Li ∈ L(K) and εi ∈ (0, µ1(Li)) such
that

Aix ≤
(
µ1(Li)− εi)Li(xi) + vi for x ∈ K.

(E)n There exist i0 ∈ In, ρ0 > 0 and L0 ∈ L(K) such that

Ai0x ≥ µ1(L0)L0(xi0) for x ∈ ∂Kρ0 .

Then (2.1) has a solution in Kn \ {0}.

Proof. Let A : Kn → Xn be defined by Ax = (A1x,A2x, ......, Anx). Then A is
compact since Ai is compact. Let x ∈ Xn such that x = tArx + (1 − t)x0, where
x0 = (x1, x2, ..., xn). Then xi = tAirx+ (1− t)xi. By (hn), we see xi ∈ K. Hence
tA+(1− t)x̂0 is a rn-nowhere normal-outward map on Kn relative to Kn and (h′1)
of Theorem 1.1 holds.

Let ρ > 0, Kn
ρ = {x : x ∈ Kn, ∥x∥ < ρ} and ∂Kn

ρ = {x : x ∈ Kn, ∥x∥ = ρ}.
Since

r((µi(Li)− εi)Li) = (µ1(Li)− εi)r(Li) < 1,

(I − (µ1(Li)− εi)Li)
−1 exists and is a bounded linear operator such that

(I − (µ1(Li)− εi)Li)
−1(K) ⊂ K,

where I : X → X is the identical mapping I(z) = z.
Let σ be the normality constant of K and

ρ∗ = max{ρ0, σ∥(I − (µi(Li)− εi)Li)
−1(vi + xi)∥, i ∈ In}.

Let ρ > ρ∗ and x0 = (x1, x2, ..., xn). Then x0 ∈ Kn. We prove that

x ̸= tAx+ (1− t)x0 for x ∈ ∂Kn
ρ and t ∈ (0, 1]. (2.2)

In fact, if not, there exist x ∈ ∂Kn
ρ and t ∈ (0, 1] such that x = tAx + (1 − t)x0.

This, together with (LS)n, implies

xi = tAix+ (1− t)xi ≤ t[(µ1(Li)− εi)Li(x) + vi] + (1− t)xi

≤ (µ1(Li)− εi)Li(x) + vi + xi

and
(I − (µi(Li)− ε)Li)xi ≤ vi + xi for i ∈ In.

This, together with (I − (µi(Li)− εi)Li)
−1(K) ⊂ K, implies

xi ≤ (I − (µi(Li)− εi)Li)
−1(vi + xi).
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Since K is a normal cone with normality constant σ, it follows that

∥xi∥ ≤ σ∥(I − (µi(Li)− εi)Li)
−1(vi + xi)∥ ≤ ρ∗ for i ∈ In.

Hence, we have ρ = ∥x∥ ≤ ρ∗ < ρ, a contradiction. (LS) of Theorem 1.1 holds.
Without loss of generality, we may assumeA has not fixed point in ∂Pρ0(otherwise,

the result has been proved). Since K is total, it follows from the Krein-Rutman
theorem that there exists φ0 ∈ K \ {0} such that φ0 = µ1(L0)L0(φ0). Let e =
(0, 0, ..., 0︸ ︷︷ ︸

i0−1

, φ0, 0, ..., 0︸ ︷︷ ︸
n−i0

). Let x ∈ ∂Kn
ρ0 such that x = Arx + λe. When i ̸= i0,

we have xi = Airx and xi ∈ K by (hn) with t = 1. When i = i0, by (E)n,
xi0 = Ai0rx+λφ0 ≥ λφ0. Hence x ∈ Kn and A+λê is r-nowhere normal-outward
map on K

n
ρ0 relative to Kn.

We prove that

x ̸= Ax+ λφ0 for x ∈ ∂Kn
ρ0 and λ ≥ 0. (2.3)

In fact, if not, there exist x ∈ ∂Kn
ρ0 and λ ≥ 0 such that

x = Ax+ λφ. (2.4)

This implies xi0 = Ai0x + λφ0 and λ > 0. By (E)n and (2.4), we have Ai0x ≥
µ1(L0)L0(xi0) ≥ 0 and xi0 ≥ λφ0. Let

λ1 = sup{λ > 0 : xi0 ≥ λφ0}. (2.5)

Then 0 < λ ≤ λ1 <∞, xi0 ≥ λ1φ0 and L0(xi0) ≥ λ1L0(φ0) =
λ1

µ1(L0)
φ0. By (2.4)

and (E)n,

xi0 = Ai0(x) + λφ0 ≥ µ1(L0)L0(xi0) + λ1φ0 ≥ (λ1 + λ)φ0.

Hence, by (2.5), we have λ1 ≥ λ1 + λ > λ1, a contradiction. (E) of Theorem 1.1
holds.

By Theorem 1.1, A has a fixed point in Kn
ρ \Kρ0 , that is, (2.1) has a solution

in Kn \ {0}.

The following result shows the nome-type compression and expansion theorem
of (2.1).

Theorem 2.2. Let K be a total, normal cone in X, r : X → K be a retraction,
Ai : K

n → X be compact and satisfy:
(hn)

′ tAi is r-nowhere normal-outward map with respect to component xi on
Kn relative to K for any i ∈ In and t ∈ (0, 1] .

Assume that the following conditions hold: there exist ρ0, ρ1 ∈ (0,∞) with
ρ0 < ρ1 such that for any i ∈ In
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(E)n Aix ∈ K for x ∈ Kn
ρ0 and ∥Aix∥ > ∥xi∥ for x ∈ Kn

ρ0 with ∥xi∥ = ρ0.

(Hn) ∥Aix∥ ≤ ∥xi∥ and x ∈ Kn
ρ1 with ∥xi∥ = ρ1.

Then (2.1) has a solution in Kn \ {0}.

Proof. Let A be defined by Theorem 2.1 and xi = 0(i ∈ In). Then (hn)
′ implies

that tA is rn-nowhere normal-outward map on Kn relative to Kn for t ∈ (0, 1].
Let x ∈ ∂Kn

ρ0 . Then there is xi ∈ P such that ∥xi∥ = ρ0 and ∥Ax∥ ≥ ∥Aix∥ >
∥xi∥ = ρ0 = ∥x∥ by (En). Since A : Kn

ρ0 → Kn, the standard argument shows
ir,K(A,K

n
ρ0) = iK(A,Kn

ρ0) = 0, for example, see [6].
Without loss of generality, we may assume that A has no a fixed point in

∂Kn
ρ1(otherwise, the result has been proved). We prove x ̸= λAx for x ∈ Kn

ρ1 and
0 < λ ≤ 1.

In fact, if there exist x ∈ ∂Kn
ρ1 and 0 < λ ≤ 1 such that x = λAx, then λ < 1

since A has no a fixed point in Kn
ρ1 . From xi = λAix for any i ∈ In, we have

∥xi∥ = λ∥Aix∥. Let i0 ∈ In such that ∥xi0∥ = ρ1. By (Hn), ∥xi0∥ = λ∥Ai0x∥ <
∥Ai0x∥ ≤ ∥xi0∥, it is a contradiction. By Theorem 3.1 [3], ir,K(A,Kn

ρ1) = 1.

Hence, A has a fixed point in Kn
ρ1 \Kn

ρ and (2.1) has a solution in Kn\{0}.

Remark 2.1. One may refer to [8] for the nome-type compression and expansion
theorem, where maps defined on cone and take values in the cone.

3 Nonegative solutions of elliptic boundary

value problems

In this section, we investigate the existence of nonzero nonnegative (classical)
solutions of the following elliptic systems:{

Liui(z) = fi(z,u(z)) in Ω and for each i ∈ In,

ui(z) = 0 on ∂Ω,
(3.1)

where Ω ⊂ Rm (m ∈ N,m ≥ 2}) is a bounded domain,

Liui(z) = −
m∑

k,j=1

∂

∂zk

(
a
(i)
kj (z)

∂ui(z)

∂zj

)
+

m∑
j=1

b
(i)
j (z)

∂ui(z)

∂zj
+ ci(z)ui(z), (3.2)

where u(z) = (u1(z), u2(z), ..., un(z)), z = (z1, z2, ..., zm), fi : Ω × Rn+ → R, fi ∈
Cµ(Ω × Rn) and µ ∈ (0, 1) is a given constant. When fi ∈ Cµ(Ω × Rn) → R+,
system (3.1)was studied in [10]. A single Elliptic BVP with Dirichlet boundary
condition was studied in [5]. The definitions of L and Ω are same as in [2, 10].
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u is called to a (classical) solution of (3.1), we mean a function ui ∈ C2(Ω) ∩
C(Ω) satisfying (3.1) pointwise. A solution u of (3.1) is said to be nonnegative if
ui ∈ P , where

P = {u ∈ C(Ω) : u(z) ≥ 0 for z ∈ Ω} (3.3)

is the positive cone in C(Ω), which is total and normal.
We always assume that the following conditions hold for each i ∈ In:

(C1) a
(i)
kj , b

(i)
j , c

(i) ∈ C µ̂(Ω) for k, j ∈ Im, and c
(i)(z) ≥ 0 for z ∈ Ω.

(C2) a
(i)
kj (z) = a

(i)
jk (z) for z ∈ Ω and k, j ∈ Im, and there exists µi > 0 such that

m∑
k,j=1

a
(i)
kj (z)ξkξj ≥ µi|ξ|2 for x ∈ Ω and ξ = (ξ1, ..., ξm) ∈ Rm.

(C3)
∂a

(i)
kj

∂zk
∈ C µ̂(Ω) for k, j ∈ Im.

(C4)
∂b

(i)
j

∂zj
∈ C(Ω) and

∂b
(i)
j (z)

∂xj
≤ 2c(i)(z) for x ∈ Ω and j ∈ Im.

(h1) fi ∈ C µ̂(Ω× Rn+).

(h2) (Positivity condition) fi(z, ŷ
i
0) ≥ 0 for z ∈ Ω, where ŷi0 = (y1, y2, ..., yi−1, 0, yi+1, ..., yn)

and yi ∈ R+.

Let L be defined by [5] and all assumptions on L hold. Following the known
results [5], there is a bounded linear operator L satisfying

(1) L maps C(Ω) to C2+µ̂(Ω).
(2) If u ∈ C2+µ̂(Ω) and v ∈ C µ̂(Ω) satisfy u = Lv, then u and v satisfy{

L u(z) = v(z) in Ω,

u(z) = 0 on ∂Ω
(3.4)

see [1, Theorem 4.2]
Let ψ ∈ C µ̂(Ω) and let

Lψ(u) = L(ψu) for u ∈ C(Ω) (3.5)

and
ψ = min{ψ(z) : z ∈ Ω}.
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It is well known that if ψ ∈ C µ̂(Ω) with ψ > 0, then Lψ : C(Ω) → Cσ(Ω) ⊂ C(Ω)
is a compact linear operator such that Lψ(P ) ⊂ P for each σ ∈ (0, 2) and there

exists φ ∈ P ∩ C2+µ̂
0 (Ω) \ {0} such that

φ = µ1(Lψ)Lψφ, (3.6)

where µ1(Lψ) = 1/r(Lψ) and r(Lψ) is the spectral radius of Lψ, see [1, Theorem
4.2]

We define an operator Ai : P
n → C(Ω) by

(Aiu)(z) = (LiFiu)(z) (3.7)

where Li is an operator corresponding to L when L = Li in (3.4) and Fi : P
n →

C(Ω) is a Nemytskii operator defined by

(Fiu)(z) = fi(z,u(z)). (3.8)

Let A : Pn → C(Ω)n by Au = (A1u, A2u, .., Anu). By the known results, it is
easy to verify under the conditions (h1) that A is is compact, and u ∈ Pn is a
solution of the following fixed point equation

u(z) = Au(z) for z ∈ Ω, (3.9)

if and only if ui ∈ C2+µ̂
0 (Ω) and u is a nonnegative solution of (3.1), see [5, Lemma

2.2].
Let r : C(Ω) → P be defined by

r(u)(z) = u+(z) := max{u(z), 0}. (3.10)

Then it is easy to know that r is a retraction from C(Ω) to P , r−1(P ) = C(Ω) and
r : C(Ω) → P is a Lipschitz continuous map with Lipschitz constant 1.

Theorem 3.1. Assume that (C4), (h1) and (h2) hold. Then tA is a rn-nowhere
normal-outward map on Pn relative to Pn for t ∈ (0, 1], where Ai and r are same
as in (3.7) and (3.10), respectively.

Proof. Let u = (u1, u2, ..., ui, ...un) ∈ C(Ω)n such that u(z) = tA(rnu)(z). Then
ui(z) = tAi(rui)(z) for any i ∈ In. Similarity to the proof of Theorem 3.1 [5], we
obtain ui ∈ P and u ∈ Pn.

By using Theorems 2.1 and 3.1, we prove our main result on the existence of
nonzero nonnegative solutions of (3.1).
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Theorem 3.2. Assume that (C4), (h1), (h2) and the following conditions hold.
(H1) For any i ∈ In, there exist ϕi ∈ C µ̂(Ω) with ϕi > 0, εi ∈ (0, µ1(Lϕi)) and

ui0 ∈ P such that

fi(z, y) ≤ ui0(z) +
(
µ1(Lϕi)− εi

)
ϕi(y)yi for z ∈ Ω and y ∈ Rn+.

(H2)There exists i0 ∈ In and ψρ ∈ C µ̂(Ω) with ψρ > 0 such that

fi0(z, y) ≥ µ1(Lψρ)ψρ(y)yi0 for z ∈ Ω, |y| ∈ [0, ρ] and y ∈ Rn+.

Then (3.1) has a solution u ∈ Pn \ {0} with ui ∈ C2+µ̂
0 (Ω).

Proof. By Theorem 3.1, we have that tA is a rn-nowhere normal-outward map on
Pn relative to Pn for t ∈ (0, 1].

Since Li(P ) ⊂ P , by (H1) we have

Aiu(z) ≤ ui1(z) +
(
µ1(Lϕi)− ε

)
Lϕi(ui) for u ∈ Pn and z ∈ Ω.

where ui1(z) = L(ui0)(z) ≥ 0 for z ∈ Ω. Hence, A satisfies Theorem 2.1 (LS)n.
By (H2) and Li0(P ) ⊂ P , we have

Ai0u(z) ≥ µ1(Lψρ)Lψρ(ui0) for u ∈ ∂Pnρ and z ∈ Ω.

and A satisfies Theorem 2.1 (E)n.
By Theorem 2.1, there exists u ∈ Pn \ Pnρ such that u = Au. It follows that

u is a solution of (3.1) and ui ∈ C2+µ̂
0 (Ω).

Notation: Let ψi : Ω → (0,∞) with ψi > 0. For yi ∈ (R+ \ {0}), let

fψi
(yi) = inf

(z,y)∈Ω×Rn
+

fi(z, y)

ψi(z)
, fψi

(yi) = sup
(z,y)∈Ω×Rn

+

f(z, y)

ψi(z)
,

(fψi
)0 = lim inf

yi→0+
fψi

(yi)/yi, (fψi
)∞ = lim sup

yi→∞
fψi

(yi)/yi.

As a special case of Theorem 3.2, we obtain the following result.

Corollary 3.1. Assume that (C4), (h1), (h2) and there exists ψi ∈ C µ̂(Ω) with
ψi > 0 such that the following condition holds.

(H1)
′ (fψi

)∞ < µ1(Lψi
) for any i ∈ In

(H2)
′ µ1(Lψi0

) < (fψi0
)0 for some 1 ≤ i0 ≤ n.
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(H3) For any r ∈ (0,∞) and i, there isM i
r > 0 such that fi(z, y) ≤M i

r for z ∈ Rn+
and yi ∈ [0, r]

Then (3.1) has a solution u ∈ Pn \ {0} with ui ∈ C2+µ̂
0 (Ω).

Proof. By (H1)
′ and (H3), there exists εi > 0 such that

fi(z, y) ≤
(
µ1(Lψi

)− εi

)
ψi(z)yi for (z, y) ∈ Ω×Rn+ and yi ∈ [ri,∞)

and
fi(z, y) ≤M i

ri +
(
µ1(Lψi

)− εi

)
ψi(z)yi for (z, y) ∈ Ω×Rn+.

By (H2)
′, it is easy to see that there exists ρ > 0 such that fi(z, y) ≥ 0 for

z ∈ Ω, ∥y∥ ≤ ρ for every i ∈ In and

fi0(z, y) ≥ µ1(Lψi0
)ψi0(z)yi0 for (z, y) ∈ Ω×Rn+ and |y| ∈ [0, ρ].

The result follows from Theorem 3.2.

Remark 3.1. Let fi(z, y) = ψi(z)yie
αi−Σn

j=1βijyj−
mi

1+Σn
j=1

kijyj − diy
σi
i or fi(z, y) =

siy
γii
i

1+y
γii
i +Σn

j=1,j ̸=iajy
γij
j

− diy
σi
i , all the parameters are nonnegative, σi ≥ 1. When

σi = 1, population models of Ricker types (3.1) and Beverton-Holt types (4.1) in
[10] were studied. However, the results can be not utilized to discuss a case of
σi > 1, but we can treat the case of σi > 1 since fi(z, ŷ

i
0) ≥ 0.

4 Conclusions and Remarks

We study the existence of nonnegative solutions of a nonlinear system consisting
of nowhere normal-outward maps in Banach spaces, this type of maps defined on
a cone does not necessarily take values in the cone and contains weakly inward
maps and generalized inward maps under the appropriate conditions [3]. In history,
someone established the fixed point index of weakly inward maps or generalized
inward maps, but it is difficult to use the index since verifying the weakly inward
maps or generalized inward maps is very difficult [9]. From the discussion in
this paper, we know that verifying the nowhere normal-outward map is easy in
applications. The existence of nonnegative solutions [5] of a single elliptic BVP is
extended to system (3.1) via using Theorem 2.1, system (3.1) has many uses such
as population models [10] or Volterra-Lotka competition models [11] or steady-
state periodic solutions for parabolic systems [12]. We hope that the results of
this paper will be applied in many fields.
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