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Abstract

A new concept of order and chaos has been suggested, whereby
any system’s level of order can be determined provided existence of
the order establishment procedure. This work develops a mathemat-
ical tool that realizes the above concept while analyzing a level of
order in the deterministic chains of elements. Compositions of open
chains (words) are being analyzed. Determined hereby are compo-
sitions of words enjoying ideal symmetry, as well as the procedure
of step-by-step transformation of open sequence of elements into the
ideal-symmetry composition. The level of order in a word is deter-
mined by the number of steps in the defined procedure that transforms
this word into the symmetric-state composition. To describe a word or
a word composition the A matrix is being used, components of which
are the closest neighbors’ numbers of pairs. It has been shown that the
level of order is calculated by expansion of the A matrix to matrices
that correspond to the ideal-symmetry compositions. The theorem
has been formulated and proved as to the type of the pair matrix ex-
pansion to matrices that correspond to the ideal-order compositions.
Maximum and minimum symmetry word structures have been found.
It has been shown that, in general, the minimum symmetry state is a
far cry from the maximum entropy condition found in the Shannon’s
classic information theory.
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1 Introduction

Order and chaos issue is one of the most vague problems in the modern
natural science. In near-homogenous physical systems degree of order is
being described by a continuous quantity - entropy. In case a system consists
of deterministically interconnected discrete elements, the notion of entropy,
generally speaking, is no longer applicable. However, the notion of entropy,
as well as that of complexity, remain today the key research tool [1]- [8].
Let us consider a chain of interconnected physical elements or a deterministic
sequence of symbols. The following questions are worth detailed discussion:

• What is the amount of information in this chain?

• How complex is this chain?

• How much meaning does the chain’s information carry?

• How much is this chain ordered? (What is the amount of order?)

The Shannon’s classic information theory answers the first question [2]-
[4]. In this case we shall simulate a deterministic sequence of elements as
a Markov random chain, having determined a statistical conditional prob-
ability of this element’s occurrence at the known m of the preceding ones.
The theory of algorithmic complexity of different types answers the second
question [5, 6]. Recently, both questions are being actively discussed in the
context of the biological systems’ research [7, 8]. Diverse methods of the
complexity’s statistical estimation are being offered. As to the meaning con-
tained in information, both the Shannon’s classic information theory and the
Kolmogorov complexity operate exclusively with the syntactic, and not the
substantial content of information. It should be noted, however, there are
attempts today to experimentally extract substantial content in the DNA
complexity assessment [7]. Quite naturally, the modern ways of informa-
tion and complexity calculation are based upon probabilistic and statistic
approach.

Let us now address the level of order issue. Level of order is generally
deemed to be determined by entropy. Therefore the problem could seem
irrelevant. The classic theory accepts that the more information (entropy)
a system has, the less the order. Chaos turns out to be more informative.
A number of works published recently assert that relation between entropy
and order in physical systems could be reverse [9]- [11]. In any case, until
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now all disputes on order, chaos and level of symmetry have been carried out
based exclusively upon the notion of entropy or algorithmic complexity. For
the deterministic sequence of elements, however, it is very much expedient
to determine the level of order without resorting to the probability theory’s
methods. This is why we suggest introducing a purely combinatorial measure
that would account, among other things, for the certain symmetry properties.
The philosophical concept of such measure’s building had been formulated by
us earlier [12]. A system’s degree of order can be determined provided order
establishment rules have been formulated - either those set up a priori, or
those corresponding to the real physical laws. At this very stage we shall only
discuss the order establishment rules, determined based upon some common-
sense expectations. When considering a sequence of elements, one of those
possible order establishment methods is to denote certain chain states as ideal
and to set a procedure that will transform the chain from the condition with
the fixed location of elements to the ideal state. It is advisable to select high-
symmetry conditions as the ideal ones. Above in [12], the degree of order
has been determined for a composition of closed words, composed of equal
number of each of the fixed k of different elements. Research has been based
upon expansion of the number of neighboring pairs’ matrix into matrices
describing symmetric states. In corresponding matrices the sums of elements
in each line and each column are equal. In this work essential generalizations
have been made. The ideal order states have been defined for a composition
built of open words. Expansion of a number of neighboring pairs’ matrix into
the ideal state matrices in case of arbitrary number of each of the fixed k of
different elements has been received. In this paper the general condition has
been found, in which a word reaches the maximum asymmetry state. This
state has been compared with the state of maximum entropy in the classical
information theory. In the Shannon’s theory maximum entropy describes
chaotic, e.c. equiprobable, memoryless distribution of elements in the word.
It may seem that the state of chaos is the state of minimal symmetry. But
this is not always true. It has been illustrated, that the maximum asymmetry
state, in general, is a far cry from the state of chaos by Shannon.
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2 Composition of Open Words and

the Ideal Symmetry State

Let there be k different elements of any nature. Let us suppose that
each element have two connections - left and right. These connections allow
the elements to create one-dimensional chains. In this work, in contrast to
the previous one, we shall consider open chains, in which the first chain
element has a free left connection and the last chain element - a free right
connection. We shall call the chains under review words, by analogy with
the theory of information. Let there be a certain set of such words, where
each of the k elements occurs n times exactly (n ≥ 1). Let us call this set
a composition. Each word, included in such composition, we shall call a
composition fragment. Let us give an example of composition for k = 4,
n = 5, that has three fragments:

abda acccb bddddaaccbb.

Any open fragment that creates a periodic chain in the ring closing we shall
call ”periodic”. For example, we call periodic the fragment abcabc. Open
periodic fragments with the same period may differ in length and first ele-
ment. Let us agree to hereinafter bind all fragments having identical period
and identical first element into a single fragment. For example:

abcabc abc abc → abcabcabcabc

Equal number of all different elements creating a composition, allows to de-
fine the most symmetric compositions we shall hereby call ”ideal”. This
definition will be different from the corresponding one in the previous paper
[12] because we consider a composition built of open words.

Let us call a composition the ”ideal” one, provided:

1. All composition fragments are periodic. Number of elements, denoted
by l, in the minimal period, complies with inequation 1 ≤ l ≤ k. All
elements in the minimal period are different.

2. Each of the k elements belongs to only one of the periods, but it may
also belong to different fragments.

3. An open fragment may begin with any element that belongs to a rele-
vant period.
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Let us build an ideal composition consisting of nk elements. First, let us
build a set of short fragments out of k initial elements in such a way, that
each element would belong to one fragment only (n = 1). Let us arrange
these fragments ascending in length, equal to the number of elements. Let
m1 fragments have length of l1, m2 fragments have length of l2, mi fragments
have length of li, at that li > li−1 (1 ≤ i ≤ t, where t is the number of the
fragments’ different lengths). For example, for 8 initial elements designated
by digits 1-8 one can build the following set of 5 fragments (m1 = 2, l1 =
1, m2 = 3, l2 = 2):

1 2 34 56 78.

Apparently, for the total number of short fragments we have:

1 ≤
t∑

i=1

mi ≤ k. (1)

And, besides:
t∑

i=1

mili = k. (2)

Elements that entered each of the short fragments in some order, we shall
consider a minimal period of the fragment of the ideal composition being
created. Let us now expand each of the created fragments by repeating its
period n times. The set thus created presents an ideal-order composition
with the fixed set of periods and minimum number of fragments. Let us
denote number of fragments by s and ideal-order composition with minimum
number of fragments by Id(k, n, s = smin). Let us give an example of an ideal
composition, where Id(k = 6, n = 5, smin = 3). (The elements are denoted
by digits 1-6.)

11111 2323232323 546546546546546. (3)

All fragments of the ideal composition with minimum number of fragments
have different periods. An ideal composition with arbitrary number of frag-
ments Id(k, n, s) may include fragments with identical periods, different in
length and first element. Two ideal compositions Id(k, n, s1) and Id(k, n, s2)
we shall consider equivalent, provided they consist of the same set of differ-
ent periods, notwithstanding the number of fragments and which element of
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the fragment occurs first. Let us give an example of an ideal composition
Id(k = 6, n = 5, s = 5), equivalent to (3):

11111 232323 3232 546546 465465 654. (4)

Apparently, any ideal composition is equivalent to one of the ideal composi-
tions with minimum number of fragments. The maximum possible number
of an ideal composition’s fragments is limited by a number of elements the
fragment may begin with, that is smax = k , unlike an ideal composition with
closed fragments [12], where smax = nk.

Let us calculate number Q(m1, ...,mt, l1, ..., lt) of different nonequivalent
ideal compositions with minimum number of fragments for the fixed set of
numbersmi, li. Clearly, for calculation it will suffice to consider compositions
with short fragments, i.e. to assume n = 1. Let us arrange all k elements in a
row. In total there are k! such arrangements. Let us now divide a row of such
arrangements into consecutive fragments - as above, ascending in length: (mi

fragments li long, where 1 ≤ i ≤ t). Following the aforementioned division,
a part of k! arrangements leads, for the given set of mi, li to equivalent
compositions. Specifically: rearrangement of equal-length fragments (mi!
combinations) and cyclic interchange inside every fragment, whereby the last
element falls into the place of the first one (li combinations), give birth to
equivalent ideal compositions. Consequently we have:

Q(m1, ...,mt, l1, ..., lt) =
k!

lm1
1 lm2

2 ...lmt
t m1!m2!...mt!

. (5)

where mi, li satisfy formulas (1),(2). The total number of different nonequiv-
alent ideal compositions with minimum number of fragments:∑

mi,li

Q(m1, ...,mt, l1, ..., lt) = k!, (6)

where the sum goes on all possible m1, ...,mt, l1, ..., lt values.

3 Description of theWords Symmetry by Means

of the Closest Neighbors Pair Matrix

Sequence of any two following each other left to right symbols in the
word we shall call a pair, for brevity sake. Let us designate elements of the
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alphabet, the composition had been built from, by indices i, j:

1 ≤ i ≤ k, 1 ≤ j ≤ k.

Let us denote the total number of pairs in the composition words, which
have i element to the left and j element to the right, as aij . Now, in order
to describe the composition, let us introduce the pair matrix A of order k,
components of which aij are nonnegative integers:

A =


a11 a12 ... a1k
a21 a22 ... a2k
... ... ... ...
ak1 ak2 ... akk

 . (7)

In the matrix (7), unlike [12], the sum of elements in each line and each
column is not necessarily a fixed number. Thus, expansion of the matrix (7)
we are about to obtain, covers both open-word compositions and composi-
tions with unequal number of elements contained therein. We are about to
demonstrate that the pair matrix (7) in the present review may be expanded
into the ideal-order matrices - the same way we did in [12]. Let us examine
an I1 unit matrix of order k, as well as all possible Im matrices, received from
the former by line rearrangement. Im matrices shall be called the ideal-order
matrices. Apparently, in total there are k! of different Im matrices. We shell
denote I = {I1, I2, ...Ik!} the set of all Im matrices. Let us denote by Um(s)
matrices of equivalent ideal compositions with different number of fragments
s (smin ≤ s ≤ smax). The matrix Um(s) is similar to matrix Im. To each
ideal composition Id(k, n, smax) having maximum possible number of frag-
ments smax = k corresponds a Um(smax) pair matrix that may be expressed
by means of the Im matrix in the following way:

Um(smax) = (n− 1)Im. (8)

But if s < smax, certain nonzero elements of the Um(s) matrix will equal
n, and not n − 1, in contrast to (8), whereas zero elements will occupy the
same, as in (8) places. Should composition consist of a single open periodic
fragment, then k − 1 of the Um(1) nonzero elements will equal n, and one
will equal n− 1 .
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4 Expansion of a Square Matrix With

Nonnegative Integer Components Into

the Ideal-order Matrices

Theorem 1 Square matrix A, ,components of which aij are nonnegative in-
tegers, may be expanded as follows:

A =
r∑

l=1

xlIml
+ Ar, (9)

where xl - natural positive expansion coefficients, Iml
∈ I, r ≤ (k − 1)2 + 1,

and Ar matrix does not allow any further expansion, that is to say there are
no such xr+1 and Imr+1 to which all Ar−xr+1Imr+1 matrix components might
be nonnegative. The set of Iml

matrices in (9) for 1 ≤ l ≤ r , as well as
the Ar matrix, have not been uniquely defined. However, for the set of Iml

matrices, expansion (9) of which has been performed, there is a single set of
expansion coefficients xl.

Proof. First of all, let us note that for k = 2 expansion (9) is unique and
it is obvious that r ≤ 2. Therefore, the theorem proof offered below falls into
the k ≥ 3 case. To begin with, let us describe the procedure that leads to
expansion (9). Let us assume there will be an ideal-order matrix Im1 , nonzero
elements of which (Im1)ij ̸= 0 are inconsistent with the corresponding zero
elements aij = 0 of the A matrix, if any of such zero elements exist. Let
us superimpose Im1 matrix on A matrix. Let the smallest element in the A
matrix transverse with the Im1 matrix nonzero elements equal x1. Then

A = x1Im1 + A1. (10)

In locations, where in the A matrix elements’ transverse with the Im1 matrix
nonzero elements there were elements equal to x1, the residual matrix A1

will have zeroes. Now, we can try to expand the A1 matrix according to the
scheme (10). Provided expansion is possible, we shall have A1 = x2Im2 +A2,
where A2 is the next residual matrix. Proceeding with the similar expansion,
we reach the finit recurrent procedure:

Al−1 = xlIml
+ Al. (11)
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In(11) we have: 1 ≤ l ≤ r ,A = A0. Following l steps of the recurrent
procedure (11), we get:

A = Yl + Al, (12)

Yl =
l∑

s=1

xsIms . (13)

Further recurrent procedure (11-13) becomes impossible as soon as during
superimposition of the Al residual matrix on any of the Im matrices a one of
the latter becomes consistent with a zero of the former. We need to prove
that the number of steps of the recurrent procedure (11), required to reach
indecomposability of Al, does not exceed (k − 1)2 + 1. Yl matrix elements,
hereinafter denoted as yij(l), have properties as follows:

1. The sums of elements in any line or column are equal:

k∑
j=1

yij(l) =
k∑

j=1

yji(l) = n(l), 1 ≤ i ≤ k, (14)

where

n(l) =
l∑

s=1

xs. (15)

2. At least l elements of the Yl matrix are equal to the corresponding
elements of the A matrix. These elements are fixed, i.e. during the
next step of the recurrent procedure they remain unchanged.

Properties (14) may be considered as a system of linear homogeneous
equations in relation to k2 + 1 variables (all yij(l) elements and n(l) ). In
(14) there are 2k−1 independent linear equations and, therefore, (k−1)2+1
free variables. (Variables, located in i line and j column of the Y matrix,
may be considered basic, whereas the rest of the Y (l) matrix elements and
n(l) may be considered free.) Following each step of the recurrent procedure,
one or several elements, not equal to zero in Al−1 matrix, become zero in
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Al matrix. Let one of these elements occur in il line and jl column. The
corresponding elements of A and Y (l) matrices then become equal:

yil,jl(l − 1) ̸= ail,jl , (16)

yil,jl(l) = ail,jl . (17)

(In case during a single step of the recurrent procedure (11) several Al ma-
trix elements become zeroes, this is due to possible additional linear relations
between its elements). Following p iterations in (11), the Yl matrix elements,
for which, (17) has been performed, become fixed for all l ≥ p, i.e. they
remain unchanged in further iterations. After each iteration system of equa-
tions (14) for yij(l) and n(l) can be expanded by attaching equation (17) for
a single pair (il, jl) to the system (14). The new system is not homogeneous
and contains 2k − 1 + p linearly independent equations. Indeed, equation
(17) with l = p cannot be a derivative of equation (14) and p − 1 of any
preceding equations (17). If this were the case, then from equations (14) and
p− 1 equations (17) it would follow

yipjp = aipjp . (18)

Equation (18) would mean that element yipjp remains unchanged under tran-
sition from iteration l = p−1 to iteration l = p, which contradicts conditions
of (17,16).

The iteration procedure completes as soon as the number of variables of
the system (14,17 ) equals the number of independent equations of the same
system, i.e. p reaches its highest possible value when:

k2 + 1 = 2k − 1 + p. (19)

Thus, the maximum possible number of iterations is:

r ≤ pmax = k2 − 2k + 2. (20)

In order to prove the uniqueness of expansion (9) for determinated set of
Iml

matrixes, it will suffice to ascertain linear independence of Im1 , Im2 , ..., Imr , Ar

matrices, provided Ar ̸= 0, or linear independence of Im1 , Im2 , ..., Imr , pro-
vided Ar = 0 . Let us equate linear combination of these matrices to zero:

r∑
l=1

αlIml
+ αr+1Ar = 0. (21)

10



Let us assume that during the first step of the recurrent procedure a certain
element, not equal to zero in A matrix, ((A)i1j1 ̸= 0) becomes zero in A1

matrix:
(A1)i1j1 = 0. (22)

Then, as it follows from the stated recurrent procedure:

∀l ≥ 2 : (Iml
)i1j1 = 0, (Ar)i1j1 = 0. (23)

From (21,23) it follows that α1 = 0. In the similar way, for each subsequent
step s for 2 ≤ s ≤ r − 1 we have (As−1)isjs ̸= 0,

(As)isjs = 0, ∀l ≥ s+ 1 (Iml
)isjs = 0, (Ar)isjs = 0 ⇒ αs = 0. (24)

The last step of the recurrent procedure will give us

(Ar−1)ir−1jr−1 ̸= 0, (Ar)ir−1jr−1 = 0,

from which αr = 0. Now it arises from (21) that either αr+1 = 0 or Ar = 0.
In this way the required linear independence has been proven.

The foregoing makes it clear that the iteration procedure may be com-
pleted at p < pmax. Let us single out here two special cases. Inasmuch as
the sum of elements in any line or column of the Y matrix equals n, then,
as soon as all elements in any such line (or column) become fixed, no further
iterations become possible. Provided the initial A matrix had no zeroes, the
minimum number of iterations in this case equals k. Another interesting case
is when at step l, M2 elements of the Y matrix, filling the square, for the
elements with indices 1 ≤ i, j ≤ M , were 2M > k > 2, become fixed. In this
case, maximum after l = M2 iterations, a one in any of the Im matrices shall
necessarily superimpose on zero in Al.

Note to the Theorem 1. Let A matrix have following properties:

• Elements aij of the A matrix are tied by s linear, homogenous and
linearly independent conditions, which, together with 2k − 2 linearly
independent conditions, found in equations

k∑
j=1

aij =
k∑

j=1

aji, 1 ≤ i ≤ k, (25)

form a system of 2k−2+s homogenous, linearly independent equations.
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• There exists a recurrent procedure (11), in which the same s conditions
are valid for Al (and, consequently, for Yl ) at any l.

Then, in addition to (14) we have more s linear conditions at each iteration
step and, consequently, in expansion (9):

r ≤ pmax = k2 − 2k + 2− s. (26)

The described requirements can be met by, for example, conditions of the
aij = 0 type. (Because of (25) the number of zeroes in A in this case may ex-
ceed s.) The similar situation may exist provided existence of the symmetry
conditions:

ai1,j1 = ai2,j2 , where i1 ̸= i2, j1 ̸= j2.

5 Transformation of the Open-end Word

into the Ideal-order composition

Let there be given a single word, built out k elements, each occurring
exactly n times. Let us build an A pair matrix for this word and then
expand it according to the Theorem 1. Let us then describe the step-by-step
transformation procedure of this word into the ideal-order composition that
corresponds to the first matrix Im1 in the expansion (9). Let us perform first
x2 steps. In the word, let us cut k1 pairs, being described by the Im2 matrix,
but not occurring in Im1 (k1 ≤ k ). We get k1 + 1 fragments. Let us patch
these fragments so that the new composition adds up the maximum possible
number of pairs, corresponding to the Im1 matrix. Provided possibility of
adding k1 such pairs, then value x1 in expansion (9) for the new composition’s
A(1) matrix will increase by 1 in comparison to A . Provided it is impossible to
add all k1 pairs in the above manner, a certain part of fragments will remain
unpatched and we will get a composition of fragments, not a single word. In
any case, expanding an A(1) matrix into the same ideal matrices as above,
instead of x2 we shall get x2−1 . This completes the first step. If x2 > 1, then
in the composition received we shall execute further cuts, corresponding to
Im2 , but not occurring in Im1 and perform further maximum possible number
of fragment patchings to increase coefficient x1 in (9). In the same manner
we execute x2 steps, upon which the expansion coefficient ahead of Im2 in (9)
becomes zero. Then, in the similar way, let us perform further x3, x4, ...xr
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steps of cuts - patchings that correspond to matrices Im3 , ..., Imr . The last
step we shall consider the cuts to be performed in order to zero Ar in the
final composition. The described procedure has the total of n − x1 steps.
Examples of arrangement can be found in the appendix.

6 Degree of Order and the Minimum

Symmetry State

Let us examine a certain open word and all possible expansions (9) of its
pair matrix. Let us select one of the Im matrices that occurs in at least one
of these expansions. Of all these expansions, let us select the one, in which
coefficient xm in front of Im has the maximum possible value. Let us denote:

gm = max{xm}, (27)

where maximum is taken by all possible expansions (9), in which Im matrix
occurs. The gm value equals the smallest of A matrix elements, located in
places, corresponding to the non-zero elements of the Im matrix. The gm
value shows, how close this word is to the state of symmetry, described by
the Im matrix. Specifically, gm = n − 1 means the word is very close to
the ideal symmetry state and it takes no more than one step to transform it
into the ideal composition, corresponding to Im. Let us arrange each of the
possible expansions (9) so that the expansion coefficients will not increase:

x1 ≥ x2 ≥ x3 ≥ ... ≥ xr.

Of all expansions arranged in this manner, let us select the one having max-
imum x1 and determine:

G = max{x1} = max{gm}. (28)

Then value
N = n−G. (29)

describes the minimum number of the arrangement procedure steps required
to transfer the word in question to the closest ideal-order composition. In
this sense G is a measure to describe the given word’s symmetry level. The
closer the G value is to n , the more symmetric is the word.
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Further it would be interesting to determine the word structures, under
which G reaches its maximum and minimum values at the given n. Maximum
degree of orderGmax = n−1 we have for composition with pare matrix Um(s).
Maximum degree of order for an open single word is being reached in two
cases:

• A word represents an ideal composition, consisting of one fragment, for
example:

123123123123123.

• In a single arrangement procedure step a word may be transformed into
an ideal-order composition, for example:

11111222233334444.

In both cases we have:

Gmax = n− 1. (30)

In our model G value is the function of the pair matrix G = G(A). Let
us look for such pair matrix structure at the given n, at which G reaches
its minimum value. Value Gmin will correspond to such words, for which
the number of steps N , required for transition to the closest ideal-symmetry
composition, is maximum. It may naturally be expected, that in this case
the numbers of steps required for transitions to any of the ideal-order states,
described by one of the matrices in expansion (9) are roughly equal ( that is
gi differ by not more than 1). This is substantiated by the following theorem.

Theorem 2 Let A , matrix be given, in which the sum of elements in any
line and any column equals n . Some of the A matrix elements may equal
zero. Let in this matrix i ̸= j, be found, such that

gi − gj ≥ 2. (31)

Then there exists A′ matrix with the same value of n, in which:

• In both A and A′ zeroes are located in the same very places;

• for all i ̸= j of the A′ matrix we have:

|gi − gj| ≤ 1. (32)
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• G(A′) ≤ G(A).

Conclusion, formulated above, follows from the gi balancing possibility
by multiple application of the following procedure:

A1 = A+ βij(Ij − Ii), (33)

where βij = ⌊0.5(gi − gj)⌋, Ii, Ij are the ideal symmetry matrices, corre-
sponding to gi, gj respectively. At that, ones of the Ii, Ij are inconsistent
with zeroes of the A matrix. In reality, we shall execute each step of the
procedure(33) for such gi, gj pair, in which gi has its maximum value, and
gj is at its minimum. Then, at every step the minimum gj will increase at
least by one and, as the final result, we shall get the A′ matrix.

From the Theorem 2 it follows that for a matrix, possessing property
(32) at any i ̸= j, G value reaches its local structural minimum. Let us
initiate our search for a structure, whereby the absolute value of Gmin , is
being reached, from a special case, when for all possible Ii in expansion (9)
we have gi = L. In this case the A pair matrix expands according to the
iteration procedure (11) into r matrices having equal expansion coefficients
xi = L; at that, Ar = 0 , and the sum of elements of any line and any column
in the A matrix equals n = rL (in this way n is aliquot to r ). The structure
that corresponds to Gmin will be reached at the maximum possible value of
r = rmax. From symmetry considerations it is apparently enough to look for
the A′ matrix, in which r elements, equal to L, fill up a certain rectangle.
Let us denote the number of this rectangle’s horizontal elements as x, and
the number of its vertical elements as y (x ≥ 1, y ≥ 1). Let us divide the A′

matrix into 4 rectangular blocks, as shown below:

A′ =



L . . . L a1,x+1 . . . a1,k
...

...
...

...
...

...
L . . . L ay,x+1 . . . ay,k

ay+1,1 . . . ay+1,x ay+1,x+1 . . . ay+1,k
...

...
...

...
...

...
ak,1 . . . ak,x ak,x+1 . . . ak,k


, (34)

The first necessary condition of expanding A′ into r matrices with equal
coefficients is obvious:

xy = r. (35)
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The second necessary condition follows from the prerequisite that at every
expansion step only one element of the 1 ≤ i ≤ y, 1 ≤ j ≤ x rectangle must
be set to zero. In the latter case, k − 1 elements of the Iml

matrix in (9)
occur respectively in x− 1 columns under the rectangle with elements L and
in y − 1 lines to the right of the said rectangle. In this way we get:

x+ y = k + 1. (36)

Inasmuch as the sum of elements in any line and any column equals rL, we
have:

∀ 1 ≤ i ≤ y :
k∑

j=x+1

aij = L(r − x), (37)

∀ 1 ≤ j ≤ x :
k∑

i=y+1

aij = L(r − y), (38)

y∑
i=1

k∑
j=x+1

aij = yL(r − x). (39)

Hence, using (35, 36) we have:

k∑
i=y+1

k∑
j=x+1

aij = Lr(k − x)− yL(r − x) = 0. (40)

And inasmuch as aij ≥ 0 from (40) we get:

∀ y + 1 ≤ i ≤ k , x+ 1 ≤ j ≤ k : aij = 0. (41)

So, all elements of the rectangle, located in the lower right corner of the
A′ matrix, must equal zero. From (41) it follows that conditions (35), (36)
are sufficient for only one element of the 1 ≤ i ≤ y, 1 ≤ j ≤ x rectangle being
set to zero at every iteration procedure step. The maximum possible r we
find from (35), (36 ). If k is odd, the maximum possible value of r is being
reached at xmax = ymax = 0.5(k + 1), and equals:

rmax =
(k + 1)2

4
. (42)
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If k is even, the maximum possible value of r is being reached at xmax = 0.5k,
ymax = 0.5k + 1 or at xmax = 0.5k + 1, ymax = 0.5k, and equals:

rmax =
k

2
(
k

2
+ 1). (43)

Level of order of the word, described by the pair matrix (34) is a function of
the variable r : G = G(r) . At r = rmax we get the minimum value for G:

Gmin = L =
n

rmax

. (44)

Let us denote the pair matrix that at the given n has the minimum G value
as Aasym = A′(rmax). There is no difficulty in understanding that minimum
G, described by formula (44) and corresponding to the A′ matrix (34), is
also the smallest possible value among all matrices, for which n is aliquot
to rmax. Now, let n be not aliquant to rmax, that is n = rmaxL + M , were
1 ≤ M < rmax. Then it is possible to build an Aasym matrix, using expansion
into the same very Im matrices that occur in the matrix expansion (34):

Aasym =
r∑

m=1

(LIm + x′
mIm). (45)

In (45) at least one of the coefficients x′
m equals zero, whereas all those

different from zero equal one. In this case, matrix Aasym is similar to (34).The
only difference is that in the rectangle 1 ≤ i ≤ y, 1 ≤ j ≤ x we get M
elements that equal L + 1 and rmax − M elements that equal L. Level of
symmetry for the word, being described by matrix Aasym, in this case will
also be minimal and equal to L+ 1, that is:

Gmin =
⌈ n

rmax

⌉
. (46)

Now let us examine an open word, in which every of the k elements
occurs n times. In the corresponding pair matrix the sum of elements in one
of the lines and one of the columns equals n − 1 . Let n > rmax. Then, the
Aasym matrix that corresponds to the minimal symmetry sequence, is being
built similar to the aforementioned method. The only difference is that in
the Aasym matrix’ expansion into the ideal-order matrices, there appears the
residual matrix Ar, being one of the Im matrices with a single 1 deleted.
Results for the degree of order (44-46) however, hold. In this way we come
to the conclusion as follows.
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Theorem 3 Minimal value of the symmetry level for the words built out of
nk elements is:

Gmin =
⌈ n

rmax

⌉
, (n > rmax), (47)

rmax =


(k+1)2

4
, k iz odd,

k
2
(k
2
+ 1), k iz even.

(48)

The result (47) has been found earlier in [12] for k = 3 and k = 4.

7 Comparison with Information Theory

Let us examine the above described deterministic open word as stochastic
one. In accordance with our model, let us assume that absolute frequency of
every element in the word is n and aij is the frequency of appropriate pare.
Thus, statistical probability of occurrence of any element is:

p(i) =
1

k
.

There are nk − 1 pares in the sequence, therefore probability of occurrence
of pare ij is:

p(ij) =
aij

nk − 1
. (49)

For conditional probability of element i given j we have:

p(i/j) =
kaij

nk − 1
. (50)

Making use of the first order Markov chain’s model [4], from equations (49)
and (50) we obtain next expression for an entropy H of the word:

H = −1

k
log2

1

k
−

∑
i,j

aij log2
kaij

nk − 1
. (51)

For equiprobable distribution of elements the state of maximum entropy
(chaos) is being reached when information source is memoryless:

p(ij) = p(i)p(j).
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Components aij are integers, therefore the maximum value of entropy in (51)
is being reached when A matrix elements aij differ by not more than one. In
this case in (9) r = k . Given the chaos word structure we have the local
minimum of symmetry level G , which equals:

Gchaos =
⌈n
k

⌉
. (52)

At k = 2 local minimum of symmetry level (52) is absolute and equals to
symmetry level calculated from (47) and 48. Consequently at k = 2 chaos by
Shannon and minimum of symmetry are being reached at one and the same
word structure. However, provided k ≥ 3, the symmetry level value (52)
does not equal to absolute minimum of G, determined in (47). At k ≥ 3,
degree of asymmetry in (47) is substantially higher than in (52). Chaotic
distribution appears to be not the most asymmetric.

8 Conclusion

Now we have a simple algorithm for calculating the level of symmetry of
elements’ chain. To get this level we have to find maximum value of gm for
every m whereby

∀i, j (A− gmIm)ij ≥ 0.

Then the value of symmetry level will be:

G = max{g1, g2, ...gk!}.

9 Appendix

Let us give an example of the open word’s arrangement into the ideal-
symmetry state.

112431234224413133441322 (53)

The word’s pair matrix (53) and its expansion:

A =


1 2 3 0
0 2 1 2
2 1 1 2
2 1 1 2

 =2


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

+


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

+

19




0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

+


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

+


0 1 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 . (54)

The closest ideal-symmetry state corresponds to the first matrix in the expan-
sion (54). We have n = 6, G = 2, N = 4. Below please find the step-by-step
procedure of arrangement into the closest ideal-symmetry state. Stars repre-
sent all necessary cuts. Following cuts, patching, possible at the given step,
are performed. Cross linking points are shown by the break sign. Spaces
separate different fragments. Step 1 (corresponds to removal of the second
matrix in the expansion)

11 ∗ 24312 ∗ 34224413133 ∗ 44 ∗ 1322

11 34224413133 44 1322 24312

Step 2 (corresponds to removal of the third matrix in the expansion)

113422 ∗ 44 ∗ 13133 44 13 ∗ 2224312

13133 13 44 44 113422 2224312

Step 3 (corresponds to removal of the forth matrix in the expansion)

1313 ∗ 313 4444 1 ∗ 134 ∗ 22222 ∗ 4312

1313 313 1 134 4444 4312 22222

Step 4 (corresponds to removal of the residual matrix)

1313 313 1 13 ∗ 444444 ∗ 31 ∗ 222222

1313 13 313 1 31 444444 222222

Final ideal state: Id(k = 4, n = 6, s = 4):

131313 313131 444444 222222

Further, let us give an example of the word in the state farthest from the
symmetry state and its arrangement procedure.

231223113213231223113213122313
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Aasym =

 2 3 5
2 3 5
6 3 0

 =3

 0 1 0
0 0 1
1 0 0

+ 3

 0 0 1
0 1 0
1 0 0

+

+2

 0 0 1
1 0 0
0 1 0

+

 1 0 0
0 0 1
0 1 0

+

 1 0 0
0 0 1
0 0 0

 . (55)

Arrangement procedure into the 123 periodic state:
Step 1 (corresponds to reduction of the coefficient at the second matrix)

23122311 ∗ 32132312 ∗ 23113213122313

23122311 23113213122313 32132312

Step 2 (corresponds to reduction of the coefficient at the second matrix)

231223112311 ∗ 321312 ∗ 2313 32132312

231223112311 2313 321312 32132312

Step 3 (corresponds to removal of the second matrix)

2312 ∗ 231123112313 321 ∗ 31232132312

321 231123112313 2312 31232132312

Step 4 (corresponds to reduction of the coefficient at the third matrix)

32 ∗ 1231123112313 2312 3123 ∗ 21 ∗ 32312

21 2312 32312 3123 1231123112313 32

Step 5 (corresponds to removal of the third matrix)

2 ∗ 123123 ∗ 23123123123112311231 ∗ 3 32

23123123123112311231 2 3123123 32

Step 6 (corresponds to removal of the forth matrix)

231231231231 ∗ 1231123123123123 3 ∗ 2
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231231231231 2 3 1231123123123123

Step 7 (corresponds to removal of the residual matrix)

231231231231 231231 ∗ 123123123123

231231231231 231231 123123123123

Final ideal state: Id(k = 3, n = 10, s = 2):

231231231231231231 123123123123

N = 10− 3 = 7 steps in total.
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