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Abstract

In this paper, we implement the improved Adomian’s polynomials introduced by Abassy in

2010 with an extension to solve numerically the non-linear initial value problems of fractional

differential equations (FDEs). This proposed extension is called extended Adomian’s polynomi-

als. An adaption of the convergence analysis which was introduced by Hosseini and Nasabzadeh

in 2006 is formulated to be used to prove that these polynomials accelerate the convergence rate

of the series solution comparing with the standard Adomian’s polynomials. Also, we use the

so called improved Adomian decomposition method (IADM) as a special case of the proposed

method where the fractional derivative α = 1. A comparison is made between IADM and ADM

for some examples to illustrate the efficiency of the proposed treatment for non-linear initial

value problems of FDEs.

Keywords: Non-linear fractional differential equations; Adomian decomposition method;

Modified Riemann-Liouville fractional derivative; Convergence analysis.

1. Introduction

Non-linear phenomena which is appeared in many scientific fields can be modeled by fractional

differential equations. There are many approximate and numerical techniques to seek with

numerical solution of non-linear fractional differential equations ([4], [11]-[20], [25]-[28]). In some

of these techniques, the linear operator with fractional derivatives was replaced approximately

by a linear operator with integer derivatives so, the convergence rate was very low such as ADM

which was introduced by Odibat and Momani [21].

In our analytical treatment, the modified Riemann-Liouville fractional derivative which was

introduced by Jumarie [9] is used instead of Riemann-Liouville or Caputo fractional derivatives.

So, we can deal with the linear operator with fractional derivatives using the properties of Jumarie

fractional derivative [10] without any replacement which mean that it is still fractional so the rate
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of convergence is accelerated comparing with ADM. Also this treatment is included an extension

in formulation of Adomian’s polynomials which derived by Abassy [1] and which provides a good

improvement to the speed of convergence and cancels the calculations of all the inaccurate terms

which deteriorate the convergence especially for higher fractional-order differential equations.

To prove the acceleration of our treatment (IADM), we adapt the convergence analysis which

was introduced by Hosseini and Nasabzadeh [7] to be used for non-linear fractional differential

equations. In our test examples, we do comparison between the obtained numerical results with

those obtained using ADM to clarify the efficiency and applicability of the proposed treatment.

2. Basic definitions

In this section, we present some basic definitions and properties of the fractional calculus

which useful in the next sections.

Definition 1.

Let f : R → R, x → f(x), denotes a continuous function, then its fractional derivative of

order α is defined by [9]

f (α)(x) :=
1

Γ(−α)

∫ x

0

(x− ξ)−α−1f(ξ)dξ, α < 0. (1)

For positive α, one will set

f (α)(x) := (f (α−1)(x))′, 0 < α < 1, (2)

and

f (α)(x) := (f (α−n)(x))(n), n ≥ 1, n ≤ α < n+ 1. (3)

If f(x) = k (constant), using Eq.(2) we find that the αth derivative is kxα

Γ(1−α)
which is different

from zero. To circumvent this defect some authors, (say [4]) proposed the following definition.

Definition 2.

Let f : R→ R, x→ f(x) denotes a continuous function, then its Riemann-Liouville fractional

derivative of order α, Dα, is defined by [9]

Dαf(x) :=
1

Γ(n+ 1− α)

∫ x

0

(x− ξ)n−αf (n+1)(ξ)dξ, n ≤ α < n+ 1. (4)

This definition doesn’t apply when f(x) isn’t differentiable and if we want to get the first deriva-

tive of f(x), we must before have its second derivative. So, Jumarie alternated Riemann-Liouville

fractional derivative via finite difference is defined as follows.

Definition 3. (Modified Riemann-Liouville fractional derivative [9])

Let f : R → R, x → f(x) denotes a continuous function, f(x) is not a constant, then its

fractional derivative of order α is defined by
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f (α)(x) :=
1

Γ(−α)

∫ x

0

(x− ξ)−α−1(f(ξ)− f(0))dξ, α < 0. (5)

For positive α, one will set

f (α)(x) :=
1

Γ(1− α)

d

dx

∫ x

0

(x− ξ)−α(f(ξ)− f(0))dξ, 0 < α < 1, (6)

and

f (α)(x) := (f (n)(x))(α−n), n ≥ 1, n ≤ α < n+ 1. (7)

Definition 4.

The integral with respect to (dx)α is defined as the solution of the fractional differential

equation

dy ∼= f(x)(dx)α, x ≥ 0, y(0) = 0, 0 < α ≤ 1. (8)

Let f(x) denotes a continuous function, then, the solution of Eq.(8) is defined as [9]

y =

∫ x

0

f(ξ)(dξ)α = α

∫ x

0

(x− ξ)α−1f(ξ)dξ, 0 < α ≤ 1. (9)

Proposition 1.

Assume that f : R→ R, has fractional derivative of order αk, for any positive integer k and

any α, 0 < α ≤ 1, then f(x) is expanded in the series form

f(x) :=
∞∑
k=0

f (αk)(0)

Γ(1 + αk)
xαk. (10)

Proposition 2. (Jumarie fractional derivative via fractional difference [10])

Let f : R→ R, x→ f(x), denotes a continuous (but not necessarily differentiable) function,

and let the partition h > 0 in the interval [0, 1].

Define the forward operator FW(h) in the form

FW (h).f(x) := f(x+ h),

then the fractional difference of order α, (0 < α ≤ 1), of f(x) is defined by the expression

4α.f(x) := (FW − 1)α.f(x) =
∞∑
k=0

(−1)k
(
n

k

)
f(x+ (α− k)h),

and its fractional derivative of order α is

f (α)(x) = lim
h→0

4α.f(x)

hα
.

Remark: The αth derivative of a constant using this definition is zero.

For more details about the fractional calculus see ([17], [22]).
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3. The improved Adomian decomposition method (IADM)

Consider the non-linear initial value problem of fractional partial differential equation in the

following general form

Lsαu(x, t) = Ru(x, t) +Nu(x, t) + g(x, t), 0 < α ≤ 1, (11)

under the initial conditions

∂kαu(x, 0)

∂tkα
= fk(x), k = 0, 1, ..., s− 1,

where Lsα = ∂sα

∂tsα
, s = 1, 2, ..., is the highest fractional partial derivative with respect to t in

terms of Jumarie fractional derivative, R is a linear operator, N(u) is the non-linear term and

g(x, t) is the source function.

Define the inverse operator L−sα in terms of Jumarie derivative in the following form

L−sα(.) =
1

Γs(α + 1)

∫ (ts)

0

∫ (ts−1)

0

...

∫ (t1)

0

(.)(dτ1)α...(dτs−1)α(dτs)
α. (12)

Applying the inverse operator L−sα to both sides of (11) gives

u(x, t) =
s−1∑
k=0

tαk

Γ(1 + αk)
u(αk)(x, 0) + L−sα (g(x, t)) + L−sα

(
Ru(x, t) +Nu(x, t)

)
. (13)

Where the first part from the right hand side of formula (13) is obtained from the solution of the

homogenous fractional differential equation Lsαu(x, t) = 0 using the Maclurin series of fractional

order introduced by Jumarie [9].

ADM defines the solution u(x, t) as an infinite series in the form ([2], [3], [29])

u(x, t) =
∞∑
n=0

un(x, t), (14)

where the components un(x, t) can be obtained in recursive form.

Also, the non-linear term N(u) can be decomposed by an infinite series of polynomials given by

N(u) =
∞∑
n=0

An, (15)

where the components An can be obtained using the following formula

An =
1

(ns)!

[ dns
dλns

N(
∞∑
i=0

λihit
αi)
]
λ=0

+
1

(ns+ 1)!

[ d(ns+1)

dλ(ns+1)
N(

∞∑
i=0

λihit
αi)
]
λ=0

+ ...

+
1

(ns+ s− 1)!

[ d(ns+s−1)

dλ(ns+s−1)
N(

∞∑
i=0

λihit
αi)
]
λ=0

, n = 0, 1, ...,

(16)

where h′ns are the coefficients of tnα in the components un(x, t).
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The formula (16) is a generalization of the formula which introduced by Abassy [1] and obtained

when we put (α = 1) in Eq.(16) which is used to improve the accuracy of the solutions. Also there

are many approaches which was introduced to improve the accuracy of Adomian decomposition

method ([8], [23]). The formula (16) is used in our treatment instead of the formula of standard

Adomian’s polynomials

An =
1

n!

[ dn
dλn

N(
∞∑
i=0

λiui)
]
λ=0

, n = 0, 1, ... . (17)

The two formulae are similar to each other when (s = 1) but the formula (16) accelerates the

speed of convergence than the formula (17) and cancels the inaccurate terms when s = 2, 3, ...

which appear when using the Adomian’s polynomials (17) which deteriorate the convergence of

the series solution.

Substituting by (14) and (15) into Eq.(13) gives

∞∑
n=0

un(x, t) =
s−1∑
k=0

tαk

Γ(1 + αk)
u(αk)(x, 0) + L−sα(g(x, t)) + L−sα

(
R
∞∑
n=0

un +
∞∑
n=0

An

)
. (18)

Substitute by the initial conditions, we can obtain the components un(x, t) of the solution by

the following formula

u0(x, t) = f0(x) +
f1(x)

Γ(1 + α)
tα + ...+

fs−1(x)

Γ(1 + (s− 1)α)
t(s−1)α + L−sα(g(x, t)),

un+1(x, t) = L−sα(Run + An), n ≥ 0.

(19)

4. Convergence analysis of IADM and ADM

Hosseini and Nasabzadeh introduced a simple method to determine the rate of convergence

of Adomian decomposition method [7]. In this section, we adapt it to seek here.

Theorem 1. [7]

Let N be an operator from a Hilbert space into itself and u(x, t) be the exact solution

of Eq.(11), then, the approximate solution which is obtained by (19) converges to u(x, t) if

0 ≤ γ < 1, and satisfies the following condition

‖uk+1‖ ≤ γ‖uk‖, k = 0, 1, ... . (20)

Remark: If Ui and Ûi are obtained by ADM and IADM, respectively, then the rate of conver-

gence of
∑∞

i=0 ûi to the exact solution is higher than
∑∞

i=0 ui if γ̂i ≤ γi and both of them are

less than one.
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5. Illustrative examples

In this section, we introduce four examples of non-linear fractional differential equations two

of them are ODEs and the others are PDEs. We find the truncated series solutions for these ex-

amples using our treatment (IADM) and compare them with the solutions obtained using ADM

and plot the curves of these solutions at different values of α. Also, we study the convergence of

our treatment solutions comparing to solutions of ADM using the generalization of Hosseini and

Nasabzadeh study on the convergence of Adomian decomposition method.

Example 1:

Consider the initial value problem for higher fractional-order differential equation [24]

u(2α)(t) = u2(t) + 1, t ≥ 0, 0 < α ≤ 1, (21)

subject to the initial conditions

u(0) = 0, u(α)(0) = 1.

In order to obtain the numerical solutions for Eq.(21) using our proposed treatment, we follow

the following steps:

1: Rewrite Eq.(21) in the following operator form

L2αu(t) = Ru(t) +Nu(t) + g(t), (22)

where L2α = d2α

dt2α
, Ru(t) = 0, Nu(t) = u2, and g(t) = 1.

2: Apply the inverse operator L−2α which is defined by

L−2α(.) =
1

Γ2(1 + α)

∫ t

0

∫ t

0

(.)(dτ)α(dτ)α, (23)

to both sides of Eq.(22) gives

u(t) =
1∑

k=0

u(αk)(0)

Γ(1 + αk)
tαk + L−2α(1) + L−2α(Nu(t)). (24)

Substituting by Eqs.(14) and (15) in Eq.(24) gives

∞∑
n=0

un(t) = u(0) +
u(α)(0)

Γ(1 + α)
tα +

1

Γ2(1 + α)

∫ t

0

∫ t

0

(1)(dτ)α(dτ)α + L−2α
( ∞∑
n=0

An

)
, (25)

substituting by initial conditions, then, the components un(t) of the solution u(t) can be written

as
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u0(t) =
tα

Γ(1 + α)
+

t2α

Γ(1 + 2α)
, un+1(t) = L−2α(An), n ≥ 0, (26)

where An can be obtained by the formula (16) at s = 2.

3: In order to obtain the components un(t) of the solution u(t) using the iteration formula (26),

follow the following

u0(t) =
tα

Γ(1 + α)
+

t2α

Γ(1 + 2α)
= h0 + h1t

α + h2t
2α,

where,

h0 = 0, h1 =
1

Γ(1 + α)
and h2 =

1

Γ(1 + 2α)
,

A0 = h2
0 + 2h0h1 t

α + h2
1 t

2α + 2h0h2 t
2α.

The first component u1(t) can be obtained using the formula (26) as follows

u1(t) = L−2α(A0) =
Γ(1 + 2α)

Γ(α)Γ(1 + α)
2F1[1, 1 + 3α, 2 + 4α, 1] t4α.

We rewrite the component u1(t) in the form

u1(t) = h3 t
3α + h4 t

4α,

where, h3 = 0, h4 = Γ(1+2α)
Γ(α)Γ(1+α) 2F1[1, 1 + 3α, 2 + 4α, 1],

following the same procedure, we obtain

u2(t) =
3
√
π21−2αΓ(3α)

Γ2(α)Γ(1
2

+ α)
2F1[1, 1 + 4α, 2 + 5α, 1] t5α +

22−4απΓ(4α)

Γ2(α)Γ2(1
2

+ α)
t6α,

u3(t) =
(2α2Γ(α)Γ(1

2
+ α)Γ(1 + 2α)× ...)

(Γ2(1 + α)(1 + 7α)Γ(1
2

+ α)× ...)
t7α+

(
α22(1−10α)Γ(α)×

√
π(1 + 7α)Γ(1 + 6α)...

)
(

Γ2(1 + α)((1 + 7α)Γ(1
2

+ α)× ...)
) t8α.

So, the solution u(t) can be approximated as

u(t) ' φn(t) =
n∑

m=0

um(t). (27)

The truncated solution φn(t) using IADM with different values of n is given by

φ2(t) = u0(t) + u1(t) + u2(t)

=
tα

Γ(1 + α)
+

t2α

Γ(1 + 2α)
+

Γ(1 + 2α)

Γ(α)Γ(1 + α)
2F1[1, 1 + 3α, 2 + 4α, 1]t4α+

3
√
π21−2αΓ(3α)

Γ2(α)Γ(1
2

+ α)
2F1[1, 1 + 4α, 2 + 5α, 1]t5α +

22−4απΓ(4α)

Γ2(α)Γ2(1
2

+ α)
t6α,
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φ3(t) = u0(t) + u1(t) + u2(t) + u3(t)

=
tα

Γ(1 + α)
+

t2α

Γ(1 + 2α)
+

Γ(1 + 2α)

Γ(α)Γ(1 + α)
2F1[1, 1 + 3α, 2 + 4α, 1]t4α+

3
√
π21−2αΓ(3α)

Γ2(α)Γ(1
2

+ α)
2F1[1, 1 + 4α, 2 + 5α, 1]t5α +

22−4απΓ(4α)

Γ2(α)Γ2(1
2

+ α)
t6α+

(2α2Γ(α)Γ(1
2

+ α)Γ(1 + 2α)× ...)
(Γ2(1 + α)(1 + 7α)Γ(1

2
+ α)× ...)

t7α +
(α22(1−10α)Γ(α)× (

√
π(1 + 7α)Γ(1 + 6α)...)

(Γ2(1 + α)((1 + 7α)Γ(1
2

+ α)× ...))
t8α.

In order to obtain the numerical solutions for Eq.(21) using standard ADM, we compute the first

components of the solution as follows

u0(t) =
tα

Γ(1 + α)
+

t2α

Γ(1 + 2α)
,

u1(t) =
1

2α2Γ(2α)

(
α +

4t2αα3Γ(2α2)

Γ2(1 + α)Γ(1 + 4α)
+ ...

)
t2α,

u2(t) =
1

Γ(2α)

(t2α
2α

+
21−4
√
πΓ(2α)Γ(1 + 5α)t7α

Γ3(1 + α) + Γ(1
2

+ 2α) + Γ(1 + 7α)
+ ...

)
,

u3(t) =
1

2Γ(2α)

( 28t9αΓ(3α)Γ(7α)

15α3Γ(α)Γ(2α)Γ(5α)Γ(9α)
+ ...+

272−4α
√
πt11αΓ(6α)Γ(9α)

Γ(8α)Γ3(1 + α)Γ(1
2

+ 2α)Γ(1 + 11α)

)
.

Then the solution u(t) which is defined by (27) can be approximated in the following form

φ2(t) = u0(t) + u1(t) + u2(t)

=
tα

Γ(1 + α)
+

t2α

Γ(1 + 2α)
+

1

2α2Γ(2α)

(
α +

4t2αα3Γ(2α2)

Γ2(1 + α)Γ(1 + 4α)
+ ...

)
t2α+

1

Γ(2α)

(t2α
2α

+
21−4
√
πΓ(2α)Γ(1 + 5α)t7α

Γ3(1 + α) + Γ(1
2

+ 2α) + Γ(1 + 7α)
+ ...

)
.

The behavior of the approximate solutions using our modified method (IADM) compared with

ADM and approximate solution using ADM∗ (ADM with Jumarie derivative and Adomian’s

polynomials (17)) is given in figures 1.1 and 1.2 at α = 1 and α = 0.75, respectively.

Method ||u1||
||u0||

||u2||
||u1||

||u3||
||u2||

IADM 0.021963 0.389872 0.052601

ADM∗ 0.035102 0.543723 1.025448

ADM 0.243101 0.957275 0.052006

Table 1.1: The convergence behavior of the truncated solutions at α = 1.0

using IADM, ADM∗ and ADM.
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The convergence analysis of the approximate solution using our modified method (IADM) com-

pared with ADM and approximate solution using ADM∗ is given in tables 1.1 and 1.2 respectively,

in terms of Theorem 1 with respect to the L2 norm which is defined as

||u(t)||2 =

∫ 1

0

|u(t)|2dt.

Figure 1.1: The IADM solution (dot-dashed line), ADM∗ (dashed line)

and ADM solution (dot line) at α = 1.0.

Figure 1.2: The IADM solution (dot-dashed line), ADM∗(dashed line)

and ADM solution (dot line) at α = 0.75.
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Method ||u1||
||u0||

||u2||
||u1||

IADM 0.064130 0.727540

ADM∗ 0.130161 1.123870

ADM 0.408004 0.940325

Table 1.2: The convergence behavior of the truncated solutions at α = 0.75

using IADM, ADM∗ and ADM.

Example 2:

Consider the initial value problem for higher fractional-order differential equation

u(4α)(t) = 16u(t) + 40u3(t) + 24u5(t), 0 < α ≤ 1, (28)

subject to the following initial conditions

u(0) = 0, u(α)(0) =
1

Γ(1 + α)
, u(2α)(0) = 0 and u(3α)(0) =

2

Γ(1 + 3α)
.

The exact solution of Eq.(28) at α = 1 is u(t) = tan(t).

In this example, we consider the series solution of Eq.(28) using IADM, as follows:

1: Rewrite Eq.(28) in the operator form

L4αu(t) = Ru(t) +N1u(t) +N2u(t) + g(t), (29)

where L4α = d4α

d t4α
, Ru(t) = 16u(t), N1u(t) = 40u3, N2u(t) = 24u5 and g(t) = 0.

2: Apply the inverse operator which is defined by

L−4α(.) =
1

Γ(1 + 4α)

∫ t

0

∫ t

0

∫ t

0

∫ t

0

(.)(dτ)α(dτ)α(dτ)α(dτ)α, (30)

to both sides of Eq.(29) gives

u(t) =
3∑
i=0

u(i α)(0)

Γ(1 + i α)
ti α + L−4α

[
Ru(t) +N1u(t) +N2u(t) + g(t)

]
. (31)

Substituting by Eqs.(14) and (15) in Eq.(31) gives

∞∑
n=0

un(t) =
3∑
i=0

u(i α)(0)

Γ(1 + i α)
ti α + L−4α

[
16

∞∑
n=0

un +
∞∑
n=0

An +
∞∑
n=0

Bn

]
, (32)

substituting by initial conditions, then, the components un(t) of the solution u(t) can be written

as

u0(t) =
tα

Γ(1 + α)
+

2t3α

Γ(1 + 3α)
,

un+1(t) = L−4α
[
16un(t) + An +Bn

]
, n ≥ 0,

(33)

where An and Bn can be obtained by the formula (16) at (s = 4).
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3: To obtain the components un(t) of the solution u(t) using the iteration formula (33), follow

the following

u0(t) =
tα

Γ(1 + α)
+

2t3α

Γ(1 + 3α)
= h0 + h1t

α + h2t
2α + h3t

3α,

i.e., h0 = 0, h1 =
1

Γ(1 + α)
, h2 = 0, h3 =

2

Γ(1 + 3α)
,

and,

A0 = 40h3
0 + 120tαh2

0h1 + 240(h0h
2
1 + h2

0h2)t2α,

B0 = 24h5
0 + 120tαh4

0h1 + 120(2h3
0h

2
1 + h4

0h2)t2α + 120(2h2
0h

3
1 + 4h3

0h1h2 + h4
0h3)t3α.

Therefore, using Eq.(33) the first component u1(t) is given by

u1(t) = L−4α [16u0(t) + A0 +B0]

=
α4

Γ4(1 + α)
(−16Γ3(α)Γ(1 + α) 2F1[1, 1 + 4α, 2 + 5α, 1]) t5α+

α4

Γ4(1 + α)
(−16Γ3(α)Γ(1 + α) 2F1[1, 1 + 6α, 2 + 7α, 1]) t7α

= h4 t
4α + h5 t

5α + h6 t
6α + h7 t

7α,

i.e.,

h4 = 0, h5 =
α4

Γ4(1 + α)
(−16Γ3(α)Γ(1 + α) 2F1[1, 1 + 4α, 2 + 5α, 1]),

h6 = 0, h7 =
α4

Γ4(1 + α)
(−16Γ3(α)Γ(1 + α) 2F1[1, 1 + 6α, 2 + 7α, 1]).

Following the same procedure, we obtain

u2(t) = L−4α
[
16u1(t) + A1 +B1

]
=

α4

Γ4(1 + α)

8(−15Γ(3α)Γ(5α)Γ(1 + 11α) + ...)

α4Γ(α)Γ(3α)Γ(1 + 9α)Γ(1 + 11α)
t9α+

α4

Γ4(1 + α)

(8(−70Γ(α)Γ(7α)Γ(1 + 9α)) + ...)

(α4Γ(α)Γ(3α)Γ(1 + 9α)Γ(1 + 11α))
t11α.

Then, the solution u(t) using the standard IADM can be approximated as defined in (27)

φ2(t) = u0(t) + u1(t) + u2(t)

=
tα

Γ(1 + α)
+

2t3α

Γ(1 + 3α)
− 16α4Γ3(α)Γ(1 + α)

Γ4(1 + α)
2F1[1, 1 + 4α, 2 + 5α, 1] t5α+

−16α4Γ3(α)Γ(1 + α)

Γ4(1 + α)
2F1[1, 1 + 6α, 2 + 7α, 1] t7α+

α4

Γ4(1 + α)

(8(−15Γ(3α)Γ(5α)Γ(1 + 11α) + ...))

α4Γ(α)Γ(3α)Γ(1 + 9α)Γ(1 + 11α)
t9α+

α4

Γ4(1 + α)

(
8(−70Γ(α)Γ(7α)Γ(1 + 9α) + ...))

α4Γ(α)Γ(3α)Γ(1 + 9α)Γ(1 + 11α)
t11α.
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In order to obtain the numerical solutions for Eq.(28) using ADM, we compute the first compo-

nents as follows

u0(t) =
tα

Γ(1 + α)
+

2t3α

Γ(1 + 3α)
,

u1(t) =
8

Γ(4α)

(
t5αΓ(4α)(

−2

Γ(1 + 5α)
+ ...+ t2α(

−4− 5Γ(1+3α)
Γ3(1+α)

Γ(1 + 7α)
+ ...)

)
,

u2(t) =
64

Γ(4α)

(4t9αΓ(4α)

Γ(1 + 9α)
+

8t11αΓ(4α)

Γ(1 + 11α)
+ ...+

23040t35αΓ(4α)Γ(1 + 15α)Γ(1 + 31α)

Γ(1 + 19α)Γ(1 + 35α)Γ9(1 + 3α)

)
.

The solution u(t) using the standard ADM can be approximated as defined in (27)

φ2(t) = u0(t) + u1(t) + u2(t)

=
tα

Γ(1 + α)
+

2t3α

Γ(1 + 3α)
+

8

Γ(4α)

(
t5αΓ(4α)(

−2

Γ(1 + 5α)
+ ...+ t2α(

−4− 5Γ(1+3α)
Γ3(1+α)

Γ(1 + 7α)
+ ...)

)
+

64

Γ(4α)

(4t9αΓ(4α)

Γ(1 + 9α)
+

8t11αΓ(4α)

Γ(1 + 11α)
+ ...+

23040t35αΓ(4α)Γ(1 + 15α)Γ(1 + 31α)

Γ(1 + 19α)Γ(1 + 35α)Γ9(1 + 3α)

)
.

The behavior of the approximate solution using our modified method (IADM) compared with

ADM and approximate solution using ADM∗ is given in figures 2.1 and 2.2 at α = 1 and α = 0.75,

respectively.

The convergence analysis of the approximate solution using our modified method IADM com-

pared with ADM is given in tables 2.1 and 2.2, respectively.

Method ||u1||
||u0||

||u2||
||u1||

||u3||
||u2||

IADM 0.036352 0.059154 0.0042309

ADM 0.051605 0.008104 0.0175610

Table 2.1: The convergence behavior of the truncated solutions

at α = 1.0 using IADM and ADM.

Method ||u1||
||u0||

||u2||
||u1||

||u3||
||u2||

IADM 0.116501 0.17505 0.059415

ADM 0.218764 0.07414 0.116187

Table 2.2: The convergence behavior of the truncated solutionsn

at α = 0.75 using IADM and ADM.
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Figure 2.1: The exact solution (solid line), IADM solution ϕ2(t), (dot-dashed line),

ADM∗ (dashed line) and ADM solution (dot line) at α = 1.

Figure 2.2: The IADM solution ϕ2(t), (dot-dashed line), ADM∗ solution (dashed line)

and ADM solution (dot line) at α = 0.75.

Example 3:

Fisher equation appears in many scientific fields such as financial mathematics and economics

in which it estimates the relationship between nominal and real interest rates under inflation.

Here in this example we deal with its fractional version.

Consider the initial value problem for non-linear fractional Fisher differential equation [19]

Dα
t u(x, t) = uxx(x, t) + 6u(x, t)[1− u(x, t)], t > 0, 0 < α ≤ 1, (34)

13



subject to the initial condition u(x, 0) = 1
(1+ex)2

.

The exact solution of this problem at α = 1 is u(x, t) = 1
(1+ex+5t)2

.

In order to obtain the numerical solutions by using our treatment (IADM), we follow the following

steps:

1: Rewrite Eq.(34) in the following operator form

Lαu(x, t) = Ru(x, t) +Nu(x, t), (35)

where Lα = ∂α

∂tα
, Ru = uxx + 6u and N(u) = −6u2.

2: Apply the inverse operator which is defined by

L−α(.) =
1

Γ(1 + α)

∫ t

0

(.)(dτ)α, (36)

to both sides of (35) gives

u(x, t) = u(x, 0) + L−α
[
Ru(x, t) +Nu(x, t)

]
. (37)

Substituting by Eqs.(14) and (15) in Eq.(37) gives

∞∑
n=0

un(x, t) = u(x, 0) + L−α
[
R
∞∑
n=0

un(x, t) +
∞∑
n=0

An

]
, (38)

substituting by initial condition, then the components un(x, t) of the solution u(x, t) can be

written as

u0(x, t) =
1

(1 + ex)2
, un+1(x, t) = L−α

[
Run + An

]
, n ≥ 0, (39)

where An can be obtained by the formula (16) at s = 1.

3: To obtain the components un(x, t) of the solution using the iteration formula (39), follow the

following

u0(x, t) =
1

(1 + ex)2
= h0(x) and A0 = −6(h0(x))2,

u1(x, t) = L−α
[
6u0(x, t) +

∂2u0(x, t)

∂x2
+ A0

]
=

10ex

(1 + ex)3Γ(1 + α)
tα = h1(x)tα,

i.e., h1(x) =
10ex

(1 + ex)3Γ(1 + α)
and A1 = −12h0(x)h1(x)tα,

u2(x, t) = L−α
[
6u1(x, t) +

∂2u1(x, t)

∂x2
+ A1

]
=

50ex(2ex − 1)

(1 + ex)4Γ(1 + 2α)
t2α = h2(x)t2α,

following the same procedure we obtain

u3(x, t) =
50αex((5− 6ex − 15e2x + 20e3x)Γ2(1 + α)− 12exΓ(1 + 2α))

(1 + ex)6Γ3(1 + α)Γ(1 + 2α)
×

Γ(1 + α)Γ(1 + 2α) 2F1[1, 1 + 2α, 2 + 3α, 1]t3α.
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So, the solution can be approximated by φn(x, t) as defined in (27)

φ2(x, t) = u0(x, t) + u1(x, t) + u2(x, t)

=
1

(1 + ex)2
+

10ex

(1 + ex)3Γ(1 + α)
tα +

50ex(2ex − 1)

(1 + ex)4Γ(1 + 2α)
t2α,

φ3(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t)

=
1

(1 + ex)2
+

10ex

(1 + ex)3Γ(1 + α)
tα +

50ex(2ex − 1)

(1 + ex)4Γ(1 + 2α)
t2α+

50αex((5− 6ex − 15e2x + 20e3x)Γ2(1 + α)− 12exΓ(1 + 2α))

(1 + ex)6Γ3(1 + α)Γ(1 + 2α)
×

Γ(1 + α)Γ(1 + 2α) 2F1[1, 1 + 2α, 2 + 3α, 1] t3α.

In order to obtain the numerical solution of the fractional Fisher equation (34) using ADM in

which we use the Riemann-Liouville fractional derivatives and the Adomian polynomials defined

in (17), we compute the first components of the solution as follows

u0(x, t) =
1

(1 + ex)2
,

u1(x, t) =
10ex

(1 + ex)3Γ(1 + α)
tα,

u2(x, t) =
50ex(2ex − 1)

(1 + ex)4Γ(1 + 2α)
t2α,

u3(x, t) =
50ex((5− 6ex − 15e2x + 20e3x)Γ2(1 + α))− 12exΓ(1 + 2α))

(1 + ex)6Γ3(1 + α)Γ(1 + 3α)
t3α.

So, the solution can be approximated by φn(x, t) which is defined by (27)

φ2(x, t) = u0(x, t) + u1(x, t) + u2(x, t)

=
1

(1 + ex)2
+

10ex

(1 + ex)3Γ(1 + α)
tα +

50ex(2ex − 1)

(1 + ex)4Γ(1 + 2α)
t2α,

φ3(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t)

=
1

(1 + ex)2
+

10ex

(1 + ex)3Γ(1 + α)
tα +

50ex(2ex − 1)

(1 + ex)4Γ(1 + 2α)
t2α+

50ex((5− 6ex − 15e2x + 20e3x)Γ2(1 + α))− 12exΓ(1 + 2α))

(1 + ex)6Γ3(1 + α)Γ(1 + 3α)
t3α.
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Figure 3.1: The exact solution (solid line), IADM solution, φ2(x, t) (dot-dashed line), ADM∗

solution (dashed line) and ADM solution (dot line) at α = 1.

Figure 3.2: The IADM solution, φ2(x, t) (dot-dashed line), ADM∗ solution (dashed line)

and ADM solution (dot line) at α = 0.75.

The behavior of the approximate solutions using our modified method IADM compared with

ADM and approximate solution using ADM∗ (ADM with Jumarie derivative) are given in figures

3.1 and 3.2 at α = 1 and α = 0.75, respectively, with t = 0.25.
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α = 1.0 α = 0.75

x ||u1||
||u0||

||u2||
||u1||

||u3||
||u2|| x ||u1||

||u0||
||u2||
||u1||

||u3||
||u2||

0.00 2.88675 0.72169 0.96225 0.00 3.44076 1.09315 1.22731

0.25 3.24573 0.99092 0.37434 0.25 3.86863 1.50096 0.37674

0.50 3.59377 1.25195 0.05251 0.50 4.28347 1.89634 0.26252

0.75 3.92124 1.49755 0.39212 0.75 4.67379 2.26836 0.78562

1.00 4.22077 1.72220 0.67245 1.00 5.03080 2.60863 1.22714

Table 3.1: The convergence analysis of the truncated solution using IADM of

fractional Fisher equation at different values of x at t = 0.5.

α = 1.0 α = 0.75

x ||u1||
||u0||

||u2||
||u1||

||u3||
||u2|| x ||u1||

||u0||
||u2||
||u1||

||u3||
||u2||

0.00 2.88675 0.72169 0.96225 0.00 3.44076 1.09315 1.46989

0.25 3.24573 0.99092 0.37434 0.25 3.86863 1.50096 0.58014

0.50 3.59377 1.25195 0.05251 0.50 4.28347 1.89634 0.09071

0.75 3.92124 1.49755 0.39213 0.75 4.67379 2.26836 0.64100

1.00 4.22077 1.72220 0.67245 1.00 5.03080 2.60863 1.10637

Table 3.2: The convergence analysis of the truncated solution using ADM of

fractional Fisher equation at different values of x at t = 0.5.

Example 4:

It is well known that the non-linear Klein-Gordon equation has many applications in physics.

It is equation of motion of a quantum scalar or pseudoscalar field, a field whose quanta are spin

less particles. It is a relativistic version of the Schrödinger equation. In this example we solve

the non-linear fractional Klein-Gordon equation using IADM and ADM.

Consider the non-linear fractional Klein-Gordan differential equation [6]

Dα
t u(x, t) = uxx + au+ bu2 + cu3, , 0 < α ≤ 1, (40)

for some constants, a = −1, b = 0 and c = 1, subject to the initial condition

u(x, 0) = −sech(x).

In this example, we consider the series solution of Eq.(40) using IADM as follows:

1: Rewrite Eq.(40) in the operator form

Lαu(x, t) = R(u) +N(u), (41)

where Lα = ∂α

∂tα
, R(u) = uxx − u and N(u) = u3.
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2: Apply the inverse operator which is defined by (36) to both sides of Eq.(41) gives

u(x, t) = u(x, 0) + L−α
[
Ru(x, t) +N(u(x, t))

]
. (42)

Substituting by Eqs.(14) and (15) gives

∞∑
n=0

un(x, t) = u(x, 0) + L−α
[
R(

∞∑
n=0

un) +
∞∑
n=0

An

]
. (43)

Substituting by initial condition, therefore, the components un(x, t) of the solution u(x, t) can

be written as

u0(x, t) = −sech(x),

un+1(x, t) = L−α
[∂2un(x, t)

∂x2
− un + An

]
, n ≥ 0,

(44)

where An can be obtained by the formula (16) at (s = 1).

3: To obtain the components un(x, t) using the iteration formula (44), follow the following

u0(x, t) = −sech(x) = h0(x), A0 = (h0(x))3,

therefore, the first component u1(x, t) is given from Eq.(44) as follows

u1(x, t) = L−α
[
∂2u0(x, t)

∂x2
− u0(x, t) + A0

]
=

sech3(x)

Γ(1 + α)
tα = h1(x)tα,

from that, h1(x) = sech3
(x)

Γ(1+α)
, A1 = 3(h0(x))2h1(x)tα,

therefore, the second component u2(x, t) is given from Eq.(44) as follows

u2(x, t) = L−α
[∂2u1(x, t)

∂x2
− u1(x, t) + A1

]
=
α sech5(x)

Γ(1 + α)
(−5 + 4cosh(2x))Γ(1 + α) 2F1[1, 1 + α, 2(1 + α), 1]t2α.

(45)

Following the same procedure we obtain

u3(x, t) =
α

Γ3(1 + α)
(−3 +α(123− 112cosh(2x) + 8cosh(4x))Γ2(1 +α) 2F1[1, 1 +α, 2(1 +α), 1])×

Γ(1 + α)Γ(1 + 2α) 2F1[1, 1 + 2α, 2 + 3α, 1]sech7(x)t3α.

So, the solution can be approximated by φn(x, t) as defined in (27)

φ2(x, t) = u0(x, t) + u1(x, t) + u2(x, t)

= −sech(x) +
sech3(x)tα

Γ(1 + α)
+
αsech5(x)t2α

Γ(1 + α)
(−5 + 4cosh(2x))Γ(1 + α) 2F1[1, 1 + α, 2(1 + α), 1],
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φ3(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t)

= −sech(x) +
sech3(x)tα

Γ(1 + α)
+
αsech5(x)t2α

Γ(1 + α)
(−5 + 4cosh(2x))Γ(1 + α) 2F1[1, 1 + α, 2(1 + α), 1]+

α

Γ3(1 + α)
(−3 + α(123− 112cosh(2x) + 8cosh(4x))Γ2(1 + α) 2F1[1, 1 + α, 2(1 + α), 1])×

Γ(1 + α)Γ(1 + 2α) 2F1[1, 1 + 2α, 2 + 3α, 1]sech7(x)t3α.

In order to obtain the numerical solutions for Eq.(40) using ADM, we compute the first com-

ponents of the solution as follows

u0(x, t) = −sech(x),

u1(x, t) =
sech3(x)

Γ(1 + α)
tα,

u2(x, t) =
4−α
√
π(−5 + 4cosh(2x))sech5(x)

αΓ(α)Γ(1
2

+ α)
t2α,

u3(x, t) =
4−αΓ(1 + 2α)(−3α4αΓ(α)Γ(1

2
+ α) +

√
π(123− 112cosh(2x) + 8cosh(4x))Γ2(1 + α))

αΓ(α)Γ(1 + 3α)Γ(1
2

+ α)Γ2(1 + α)
×

sech7(x)t3α.

So, the solution can be approximated by φn(x, t) as defined in (27)

φ2(x, t) = u0(x, t) + u1(x, t) + u2(x, t)

= −sech(x) +
sech3(x)

Γ(1 + α)
tα +

4−α
√
π(−5 + 4cosh(2x))sech5(x)

αΓ(α)Γ(1
2

+ α)
t2α.

Figure 4.1: The IADM solution, φ2(x, t), (dot-dashed line), ADM∗ solution

(dashed line) and ADM solution (dot line) at α = 1.0.
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The behavior of the approximate solutions using our modified method IADM compared with

ADM and approximate solution using ADM∗ is given in figures 4.1 and 4.2 at α = 1 and

α = 0.75, respectively, with t = 0.25.

Figure 4.2: The IADM solution φ2(x, t) (dot-dashed line), ADM∗ solution (dashed line)

and ADM solution (dot line) at α = 0.75.

α = 1.0 α = 0.75

x ||u1||
||u0||

||u2||
||u1||

||u3||
||u2|| x ||u1||

||u0||
||u2||
||u1||

||u3||
||u2||

0.00 0.577350 0.288675 2.501850 0.00 0.688153 0.437259 4.70912

0.25 0.542718 0.132829 1.127400 0.25 0.646874 0.201198 2.74185

0.50 0.454056 0.266150 3.321530 0.50 0.541196 0.403140 5.40920

0.75 0.344439 0.759426 1.716570 0.75 0.410542 1.150310 2.88463

1.00 0.242472 1.218280 0.690909 1.00 0.289007 1.845330 1.16639

Table 4.1: The convergence analysis of the truncated solution using IADM of fractional

Klein-Gordan equation at different values of x at t = 0.75.

α = 1.0 α = 0.75

x ||u1||
||u0||

||u2||
||u1||

||u3||
||u2|| x ||u1||

||u0||
||u2||
||u1||

||u3||
||u2||

0.00 0.577350 0.288675 2.50185 0.00 0.688153 0.437259 4.70912

0.25 0.542718 0.132829 1.12740 0.00 0.646874 0.201198 2.74185

0.50 0.454056 0.266150 3.32153 0.50 0.541196 0.403140 5.40920

0.75 0.344439 0.759426 1.71657 0.75 0.410542 1.150310 2.88463

1.00 0.242472 1.218280 0.69091 1.00 0.289007 1.845330 1.16639

Table 4.2: The convergence analysis of the truncated solution using ADM of fractional

Klein-Gordan equation at different values of x at t = 0.75.
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From our obtained results, we can conclude that the solutions using IADM are in excellent

agreement with the exact solution, see examples 2 and 3, and satisfy the convergence analysis as

described in Theorem 1. Also, the proposed method IADM is applicable to solve a wide range

of fractional differential equations.

6. Conclusion and remarks

In this article, we constructed the approximate solutions of non-linear differential equations

of high fractional order. The main goal of this work has been achieved by introducing an

extension of Adomian’s polynomials to treatment Adomian decomposition method (IADM) using

the modified Riemann-Liouville fractional derivative.. From the comparison which introduced,

we observe the following notes

1. When (s=1) in Eq.(16), the results using IADM are the same as ADM∗ results as we see in

the examples of non-linear fractional Fisher and Klein-Gordan equations and more accurate

and convergent than ADM results;

2. When (s=2,3,...) in Eq.(16) the results using IADM are more accurate and convergent

than ADM∗ and ADM results as we had seen from examples 1 and 2;

3. Our treatment using IADM eliminates the calculations of all inaccurate terms in ADM

which deteriorate the convergence rate;

4. The series solution converges slowly as we are far from the initial values but its convergence

is acceptable near the initial values.

We support our treatment with some figures to illustrate its accuracy and efficiency and we use

Mathematica program to preform the calculations of the included examples.
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