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1. Preliminaries
A monoid is a set M together with an associative product x; y 7�! xy and a unit 1.

If X � M , we write X� for the submonoid of M generated by X, that is the set of
�nite products x1x2:::xn with x1; x2; :::; xn 2 X, including the empty product 1. It is the
smallest submonoid of M containing X.
An alphabet is a �nite nonempty set. The elements of an alphabet � are called letters

or symbols. Aword over an alphabet � is a �nite string consisting of zero or more letters of
�, whereby the same letter may occur several times. The string consisting of zero letters
is called the empty word, written �. Thus, �; 0; 1; 011; 1111 are words over the alphabet
f0; 1g. The set of all words over an alphabet � is denoted by ��. the set �� is in�nite for
any �. Algebraically, �� is the free monoid generated by �. If u and v are words over an
alphabet �, then so is their catenation uv. Catenation is an associative operation, and
the empty word is an identity with respect to catenation: u� = �u = u holds for all words
u. For a word u and a natural number i, the notation ui means the word obtained by
catenating i copies of the word u. By de�nition, u0 is the empty word �. The length of a
word u, in symbols juj, is the number of letters in u when each letter is counted as many
times as it occurs. Again by de�nition, j�j = 0. The length function possesses some of
the formal properties of logarithm:

juvj = juj+ jvj ; juij = i juj ;

for any words u and v and integers i � 0. For example j011j = 3 and j1111j = 4.
Let f : S �! U be a mapping of sets.
�We say that f is one-to-one if for every a; b 2 S where f (a) = f (b), we have a = b.
� We say that f is onto if for every y 2 U , there exists a 2 S such that f (a) = y.
A mapping h : �� �! ��, where � and � are alphabets, satisfying the condition



2

h(uv) = h(u)h(v), for all words u and v,

is called a morphism, de�ne a morphism h, it su¢ ces to list all the words h (�), where
a ranges over all the (�nitely many) letters of �. If M is a monoid, then any mapping
f : � �! M extends to a unique morphism ef : �� �! M . For instance, if M is the
additive monoid N, and f is de�ned by f (�) = 1 for each � 2 �, then ef (u) is the length
juj of the word u.
Let h : �� �! �� be a morphism of monoids. if h is one-to-one and onto, then h is

an isomorphism and the monoids �� and �� are isomorphic. we denote Hom (��;��)
the set of morphisms from �� to �� and Isom (��;��) the set of isomorphisms from �� to
��. We say that h 2 Hom (��;��) is non trivial if there exists � 2 � such that h(�) 6= �.
A binary reation on �� is a subset R � �� ���. If (x; y) 2 R, we say that x is related

to y by R, denoted xRy. The inverse relation of R is the binary reation R�1 � �� � ��
de�ned by yR�1x() (x; y) 2 R.
The relation I�� = f(x; x) ; x 2 ��g is called the identity relation. The relation (��)2 is

called the complete relation.
Let R � �� � �� and S � �� � �� binary relations. The composition of R and S is a

binary relation S �R � �� � �� de�ned by

x (S �R) z () 9y 2 �� such that xRy and ySz.

A binary relation R on a set �� is said to be

� re�exive if xRx for all x in ��;
� symmetric if xRy implies yRx;

� transitive if xRy and yRz imply xRz.

The relation R is called an equivalence relation if it is re�exive, symmetric, and tran-
sitive. And in this case, if xRy, we say that x and y are equivalent.
Let R be a relation on a set ��. The re�exive closure of R is the smallest re�exive

relation r (R) on �� that contains R; that is,
� R � r (R)
� if R0 is a re�exive relation on �� and R � R0, then r (R) � R0.
The symmetric closure of R is the smallest symmetric relation s (R) on �� that contains

R; that is,
� R � s (R)
� if R0 is a symmetric relation on �� and R � R0, then s (R) � R0.
The transitive closure of R is the smallest transitive relation t (R) on �� that contains

R; that is,
� R � t (R)
� if R0 is a transitive relation on �� and R � R0, then t (R) � R0.
Let R be a relation on a set ��. Then

� r (R) = R [ I�� ;
� s (R) = R [R�1

� t (R) =
k=+1[
k=1

Rk.
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A congruence on a monoid M is an equivalence relation � on M compatible with the
operation of M , i.e, for all m;m0 2 M;u; v 2M

m � m0 =) umv � um0v

A Thue system is a pair (�; R) where � is an alphabet and R is a non-empty �nite
binary on ��, we write urv !R ur

0v whenever u; v 2 �� and (r; r0) 2 R. We write u!�R v
if there words u0; u1; :::; un 2 �� such that,

u0 = u;
ui �!R ui+1;80 � i � n� 1
and un = v.

If n = o, we get u = v, and if n = 1, we get u !R v. !�R is the re�exive transitive
closure of !R.
The congruence generated by R is de�ned as follows:

� urv  !R ur
0v whenever u; v 2 ��, and rRr0 or r0Rr;

� u !�R v whenever u = u0  !R u1  !R ::: !R un = v.

 !�R is the re�exive symmetric transitive closure of !R. Let �R : �� �! ��=  !�R
be the canonical surjective monoid morphism that maps a word w 2 �� to its equivalence
class with respect to  !�R. A monoid M is �nitely generated if it is ithenmorphic to a
monoid of the form ��= !�R. In this case, we also say thatM is �nitely generated by �.
If in addition to � also R is �nite, thenM is a �nitely presented monoid. The word prob-
lem of M ' ��=  !�R with respect to R is the set f(u; v) 2 �� � �� : �R (u) = �R (v)g
it is undecidable in general [8; 13]. In some cases, the word problem can be much easier.
Indeed, for � � �� �, we say that:

u; v 2 �� are equivalence with respect to �, if and only if, u !�R� v,

where !�R� is the re�exive symmetric transitive closure of�!R� , withR� = f(ab; ba) : (a; b) 2 �g.
In the Thue system S = (�; R�), R. V. Book and H. N. Liu showed [16] that the

word problem is decidable in linear time. This is mainly based on the following theorem
R. Cori and D. Perrin[3].
Let u; v 2 ��; � � �� � and a sub alphabet � � �. we de�ne, P� : �� �! �� by:�

P�(�) = �, if � 2 �, and
P�(�) = �, if � =2 �:

Then:

u !�R� v ()
�
Pf�g(u) = Pf�g(v); for everything � of � and
Pf�;�g(u) = Pf�;�g(v); for everything (�; �) =2 �
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Public-Key cryptography, also called asymmetric cryptography, was invented by Di¢ e
And Hellman more than forty years ago. In Public-Key cryptography, a user U has a
pair of related keys (pK; sK): the key pK is public and should be available to everyone,
while the key sK must be kept secret by U . The fact that sK is kept secret by a single
entity creates an asymmetry, hence the name asymmetric cryptography.
A one-way function f is a function that maps a domain into range sush that every

function value has a unique inverse, with the condition that the calculation of the function
is easy whereas the calculation of the inverse is infeasible:

y = f (x) easy
x = f�1 (y) infeasible

Trapdoor one-way functions are a family of invertible functions fk such that y = fk (x)
is easy if k and x known, and x = f�1k (y) is infeasible if y is known but k is not known.
The devlopment of a partical Public-Key scheme depends on the discovery of a suitable
trapdoor one-way function.

2. The ATS-monoid protocol
P. J. Abisha, D. G. Thomas and K. G. Subramanian, use the theorem of R.

Cori and D. Perrin. To build the ATS-monoid protocol,the idea is transform a system
of Thue S1 = (�; R) for which the word problem is undecidable in a Thue system
S2 = (�; R�) with � � ��� and R� = f(ab; ba) : (a; b) 2 �g for which the word problem
is decidable in linear time.
Public-Key (pK): AThue system S1 = (�; R) and two wordsw0; w1 of ��. (�; R; w0; w1)

constitute a public-key.
Secret-key (sK): A Thue system S2 = (�; R�) where � alphabet of size smaller

than �, a morphism h from �� to ��, such that for all (r; s) 2 R:�
(h(r); h(s)) 2 f(ab; ba) ; (ba; ab)g , for a pair (a; b) 2 �, or

h(r) = h(s).

Therefore:

for all u; v 2 ��; u !�R v =) h(u) !�R� h(v).

thus if h(u) and h(v) are not equivalent with respect to  !�R� , then u and v are not
equivalent with respect to  !�R.
And, we also we have two words x0; x1 of �� such that x0  !�R� h(w0); x1  !

�
R�
h(w1)

with h(w0) and h(w1) are not equivalent with respect to !�R� . (�; R�; h 2 Hom (�
�;��))

constitute a secret-key.
Encryption: for encrypt a bit b 2 f0; 1g, Bob chooses a word c of �� in the equivalence

class of wb with respect to !�R, i. e, c 2 [wb] !�
R
where [wb] !�

R
denotes the equivalence

class of wb with respect to  !�R and then sent to Alice.
Decryption: Upon receipt of a word c of ��, Alice calculated h(c) 2 ��, since

c  !�R wb and according to the result for all u; v 2 ��; u  !�R v =) h(u)  !�R� h(v)
we have h(c) !�R� h(wb), for example if h(c) !

�
R�
x0 the message is decrypted 0.
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Example :
Public-Key (pK):
� = f�1; �2; �3; �4g ;
R = f(�2�3; �3�2) ; (�2�4; �4�2) ; (�1�3; �3�1)g ;
w0 = �1�2�4�3�1�2�3�4;
w1 = �2�4�3�4�2�1.
Secret-key (sK):
� = fa; b; cg ; � = f(a; b) ; (a; c)g and h : �� �! �� is de�ned by :

h(�1) = �; h(�2) = a; h(�3) = b; h(�4) = c.

We have R� = f(ab; ba) ; (ac; ca)g, h(w0) = x0 = acbabc and h(w1) = x1 = acbca.
Now we verify the following conditions :
1: h(w0) et h(w0) are not equivalent with respect to  !�R� .
2: for all (r; s) 2 R:�

(h(r); h(s)) 2 f(ab; ba) ; (ba; ab)g , for a pair (a; b) 2 �, or
h(r) = h(s).

:

For condition 1: Just use the theorem of R. Cori and D. Perrin,
we have Pfbg(h(w0)) = Pfbg(acbabc) = bb and Pfbg(h(w1)) = Pfbg(acbca) = b, then h(w0)
and h(w1) are not equivalent with respect to  !�R� .
For condition 2: we have R = f(�2�3; �3�2) ; (�2�4; �4�2) ; (�1�3; �3�1)g then

(h(�2�3); h(�3�2)) = (ab; ba) 2 R�; (h(�2�4); h(�4�2)) = (ac; ca) 2 R�;
(h(�1�3); h(�3�1)) = (b; b) ( we have h(�1�3) = h(�3�1).
Therefore:

for all u; v 2 ��; u !�R v =) h(u) !�R� h(v).

Encryption: for example, for encrypt the 0, Bob chooses a word c of f�1; �2; �3; �4g�
in the equivalence class of w0 with respect to  !�R, i. e, c 2 [w0] !�

R
where [w0] !�

R

denotes the equivalence class of w0 with respect to  !�R, and then sent to Alice.
we have w0 = �1�2�4�3�1�2�3�4  !�R �1�4�2�3�1�2�3�4  !�R �1�4�3�2�1�2�3�4.
We choose c = �1�4�3�2�1�2�3�4.
Decryption: Upon receipt of a word c of f�1; �2; �3; �4g�,

Alice calculated h(c) = h(�1�4�3�2�1�2�3�4) = cbaabc 2 fa; b; cg�, Now using the theo-
rem of R. Cori and D. Perrin, such that h(c) !�R� h(w0). we have
Pfag(h(c)) = Pfag(h(w0)) = aa; Pfbg(h(c)) = Pfbg(h(w0)) = bb; Pfcg(h(c)) = Pfcg(h(w0)) =
cc:
then for all � of fa; b; cg, Pf�g(h(c)) = Pf�g(h(w0)). In addition it is veri�ed that

Pf�;�g(h(c)) = Pf�;�g(h(w0)); for all (�; �) =2 �, we have the complementary of � is
C���� = f(a; a) ; (b; a) ; (b; b) ; (b; c) ; (c; a) ; (c; b) ; (c; c)g,
then Pfb;cg(h(c)) = Pfb;cg(h(w0)) = cbbc. Finally h(c)  !�R� h(w0) = x0 and the word is
decrypted 0.
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3. Security of ATS-monoid protocol
An attack against ATS-monoid does not allow to �nd exactly the Secret-key. We

will get rather a key that is equivalent to it in the following direction:
We say that (�0; R�0 ; h0 2 H (��;�0�)) is an equivalent key to the Secret-key (�; R�; h 2 Hom (��;��))

if any message encrypted with the Public-Key (�; R; w0; w1) can be decrypted with
(�0; R�0 ; h

0 2 Hom (��;�0�)). This is the case for example if (�0; R�0 ; h0 2 Hom (��;�0�))
checks the following three conditions:
1: h0 is non trivial and j�0j � j�j.

2: 8(r; s) 2 R; (h
0(r); h0(s)) 2 f(ab; ba) ; (ba; ab)g , for a pair (a; b) 2 �0, or

h0(r) = h0(s).
3: h0(w0) et h0(w0) are not equivalent with respect to  !�R�0 .
Now we recall some keys that are equivalent to the Secret-key (�; R�; h 2 Hom (��;��)).
1: if h(�) = fh(�); � 2 �g and �0 = �\h(�)�h(�). then: (h(�); R�0 ; h 2 Hom (��;��))

is an equivalent key to the Secret-key (�; R�; h 2 Hom (��;��)).
2: if j�0j = j�j, i 2 Iso (��;�0�) and i(�) = f(i(a); i(b)) ; (a; b) 2 �g. then

�
�0; Ri(�); i � h 2 Hom (��;�0�)

�
is an equivalent key to the Secret-key (�; R�; h 2 Hom (��;��)).
Now describe a general attack against the ATS-monoid protocol. In the �rst time we

notice that a key (�0; R�0 ; h0 2 Hom (��;�0�)) equivalent to the Secret-key (�; R�; h 2 Hom (��;��))
is independent of alphabet �,the only thing that matters is the size of �. On the other
hand, we observe that the relation R�0 is easily deduced from the knowledge of h0 2
Hom (��;�0�). Then for aPublic-Key (�; R; w0; w1) there is a algorithm noted byAlgo-
ATS-monoidwhich returns an equivalent key to the Secret-key (�; R�; h 2 Hom (��;��))

to complexity jRj
i=kX
i=1

(i+ 1)j�j, with k = j�j :

A lg orithm�ATS�monoid
Data : (�; R; w0; w1) ; Public�Key (pK) of ATS�monoid proto col :
Re sult : (�i; R�i ; hi 2 Hom (��;��i )) ; equivalent key to the Secret� key:
While i; 1 � i � j�j Do
�i is any alphabet of i lettres
While hi 2 Hom (��;��i ) Do
�i  � ;
While (r; s) 2 R Do
Calculate hi(r) and hi(s)
If hi(r) 6= hi(s) Then
If hi(r) = ab and hi(s) = ba; for a; b 2 �i Then
If (a; b) =2 �i and (b; a) =2 �i then �i  � �i [ f(a; b)g

If no Choose another morphism; i:e: Return to the second loopWhile
End If

End while
If hi(w0) and hi(w1) are not equivalent modulo  !�R�i Then
Return (�i; R�i ; hi 2 H (��;��i ))
End While

End while



7

4. Some attacks against ATS-monoid
In this section we give some attacks against ATS-monoid that is to say in each case

we return an equivalent key to the secret-key of this protocol.
Corollary 4.1
Let (�; R; w0; w1) be a Public-Key of ATS-monoid protocol.
If 8(r; s) 2 R; jrj = jsj, then (�1 = fag ; R� = ;; h1 2 Hom (��;��1)) where for all � 2

�; h1 (�) = a, is an equivalent key to the Secret-key.
Proof
The key (�1 = fag ; R� = ;; h1 2 Hom (��;��1)) where for all � 2 �; h1 (�) = a, checked

the following three conditions:
1: the morphism h1 is not trivial because for all � 2 �; h1 (�) = a 6= �.
2: 8(r; s) 2 R; h1 (r) = h1 (s) = (a)jrj = (a)jsj.
3: if R� = ;, then  !�R�= I�� consequently h1(w0) and h1(w1) are not equivalent

modulo  !�R� since h1 (w0) 6= h1 (w1). then (�1 = fag ; R� = ;; h1 2 Hom (��;��1)) is
an equivalent key to the Secret-key.
Corollary 4.2
Let (�; R; w0; w1) be a Public-Key of ATS-monoid protocol.
S�il existe (r; s) 2 R; jrj 6= jsj, then (�1 = fag ; R� = ;; h1 2 Hom (��;��1)) where

h1 (�) = fa; �g is an equivalent key to the Secret-key.
Example 4.3
Public-Key:
� = f�1; �2; �3; �4; �5g ;
R = f(�1�3; �3�1) ; (�1�4; �4�1) ; (�2�3; �3�2) ; (�2�4; �4�2) ; (�5�3�1; �3�5)g ;
w0 = �4�2�4�3�4�2�3�4; w1 = �2�4�3�4�2�1.
The key (�1 = fag ; R� = ;; h1 2 Hom (��;��1)) or h1 (�1) = h1 (�3) = �; h1 (�2) =

h1 (�4) = h1 (�5) = a is veri�ed the following conditions:
1: the morphism h1 is non trivial.
2: 8(r; s) 2 R; h1 (r) = h1 (s).
3: we have h1(w0) = a6 et h1(w1) = a4 and like  !�R�= I��, then h1(w0) and h1(w1)

are not equivalent with respect to  !�R� .
. then (�1 = fag ; R� = ;; h1 2 Hom (��;��1)) is an equivalent key to the Secret-key.
Corollary 4.4
Let (�; R; w0; w1) be a Public-Key of ATS-monoid protocol.
if there exists �k of the alphabet � such that for all (r; s) 2 R; jrj�k = jsj�k = 0, then
(�1 = fag ; R� = ;; h1 2 Hom (��;��1)) or for all � 2 � with � 6= �k; h1 (�) = � and

h1 (�k) = a, is an equivalent key to the Secret-key.
Proof
The key (�1 = fag ; R� = ;; h1 2 Hom (��;��1)) is checked three conditions:
1: the morphism h1 is non trivial. because h1 (�k) = a 6= �.
2: 8(r; s) 2 R; h1 (r) = h1 (s) = �.
3: if R� = ;, then  !�R�= I��, so it must verify that h1 (w0) 6= h1 (w1).
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