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1 Introduction And Main Results

This article is devoted to the study of generic property of the historic set for er-

godic automorphisms of the compact metric abelian groups. Before stating our results,

we first give some notations and backgrounds about the historic set and the specifi-

cation property for group automorphisms. By a topological dynamical system (TDS)

(X, d, T ), we mean that (X, d) is a compact metric space and T is a continuous map

from X to X. Let C(X,R) be the Banach algebra of real-valued continuous functions

of X equipped with the supremum norm. For a continuous function ϕ : X → R, X

can be divided into the following parts:

X =
⋃

α∈R
X(ϕ, α) ∪ X̂(ϕ, T ),
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where for α ∈ R,

X(ϕ, α) =

{
x ∈ X : lim

n→∞
1

n

n−1∑
i=0

ϕ(T ix) = α

}
,

and

X̂(ϕ, T ) =

{
x ∈ X : lim

n→∞
1

n

n−1∑
i=0

ϕ(T ix) does not exist

}
.

The level set X(ϕ, α) is so-called multifractal decomposition set of ergodic average of ϕ

in multifractal analysis. The set X̂(ϕ, T ) is called the historic set of ergodic average of

ϕ. The historic set was introduced by Ruelle in [22]. X̂(ϕ, T ) is also called non-typical

points set(see [5]), irregular set (see [25, 26]) and divergence points set(see [6, 16, 17]).

By Birkhoff’s ergodic theorem, X̂(ϕ, T ) is not detectable from the view of an invariant

measure. However, the recent works [7, 10, 11] have shown that in many cases X̂(ϕ, T )

can have full Hausdorff dimension, that is, for any invariant measure µ, µ(X̂(ϕ, T )) = 0,

but dimH(X̂(ϕ, T )) = dimH(X).

Barreira and Schmeling [5] confirmed this in the uniformly hyperbolic setting in

the symbolic dynamical system. In 2005, Chen, Kupper and Shu [6] proved that either

X̂(ϕ, T ) is empty, or it carries full entropy for the map with the specification property.

Thompson [25] extended it to topological pressure for maps with the specification

property. In [26], Thompson obtained the same result for maps with g-almost product

property, which can be applied to every β-shift. Zhou and Chen [28] also investigated

the multifractal analysis for the historic set for systems with g-almost product property.

The specification property for group automorphisms has been studied by several

authors (see [1, 2, 13]). In [13], Lind showed that non-hyperbolic toral automorphisms

do not obey specification property. According to [2], an automorphism of a solenoidal

group has the specification property if and only if it is ergodic under Haar measure

and has central spin, so ergodic group automorphisms do not always satisfy specifica-

tion property. However, Dateyama [9] proved that every ergodic group automorphism

satisfies a weak specification property which was introduced by Marcus [15].

In [27], Yamamoto studied the relationships between the specification property,

g-almost product property and the almost weak specification property. In [12], Kwiet-

niak, Oprocha and Rams proved that these properties are not equivalent to each other.

They constructed a dynamical system with g-almost product property, which does not

have the almost weak specification property.

In a metric space X, a subset B is residual when its complement is of the first

category. In a complete metric space a set is residual if it contains a dense Gδ set (see

[18]). From the topological point of view, a set is large if it is residual. During these

years, some results show that some irregular sets can be residual. In 2008, Takens

[23] indicated why historic behavior is often generic, in particular in the basins of
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attraction of hyperbolic attractions. He used a result that if a map g : X → X has

an orbit {x0, x1, . . .} which is dense and has historic behavior, then there is a residual

subset of X such that every orbit starting in that set has historic behavior. In [14],

under the hypothesis that a continuous map f satisfies the specification property, Li

and Wu prove that the set consisting of those points for which the Birkhoff ergodic

average does not exist is either residual or empty.

Motivated by the work of Li and Wu [14], etc, our purpose here is to study generic

property of the historic set for ergodic automorphisms of the compact metric abelian

groups. The main result of this paper is the following theorem.

Theorem 1.1. Let X be a compact metric abelian group, σ be an automorphism of X

and ϕ ∈ C(X,R). σ is ergodic under the Haar measure. Then the historic set X̂(ϕ, σ)

is residual if it is not empty.

As we know, every automorphism of a compact metric abelian group is ergodic

under the Haar measure if and only if it satisfies almost weak specification (see [9]). To

obtain the result, we first study the historic set for maps with almost weak specification.

Let (X, d, T ) be a TDS. For ϕ ∈ C(X,R) and n ≥ 1, let Snϕ(x) :=
∑n−1

i=0 ϕ(T ix), and

for c > 0, let Var(ϕ, c) := sup{|ϕ(x)− ϕ(y)| : d(x, y) ≤ c}.
For every ε > 0, n ∈ N and a point x ∈ X, we define

Bn(x, ε) = {y ∈ X : d(T ix, T iy) < ε, ∀ 0 ≤ i ≤ n− 1},

and

Bn(x, ε) = {y ∈ X : d(T ix, T iy) ≤ ε, ∀ 0 ≤ i ≤ n− 1}.

Denote by M(X), M(X,T ) and E(X,T ) the collection of all Borel probability measures

on X, the collection of all T -invariant Borel probability measures and the collection

of all ergodic T -invariant Borel probability measures, respectively. It is well known

that M(X) and M(X,T ) equipped with the weak* topology are both convex, compact

spaces.

Definition 1.1. [9] We say the map T has almost weak specification property if for

any ε > 0, there is a function Mε : N → N with Mε(n)/n → 0 as n → ∞, so

that for any k ≥ 1 and k points x1, · · · , xk ∈ X and for any sequence of integers

0 ≤ a1 ≤ b1 < a2 ≤ b2 < · · · < ak ≤ bk with ai − bi−1 ≥ Mε(bi − ai)(2 ≤ i ≤ k), there

exists a point x ∈ X such that

d(T ai+jx, T jxi) < ε (0 ≤ j ≤ bi − ai, 1 ≤ i ≤ k).

Theorem 1.2. Let (X, d, T ) be a TDS, T satisfies the almost weak specification prop-

erty, ϕ ∈ C(X,R). Then the historic set X̂(ϕ, T ) is residual if it is not empty.
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This article is organized as follows. Section 2 is devoted to the proof of Theorem

1.2, which implies Theorem 1.1. A specific example about the k-dimensional torus is

given in Section 3.

2 Proof of Main Results

In this section, we will prove Theorem 1.2. It suffices to show that if X̂(ϕ, T ) is

not empty, there exists some set F ⊂ X satisfying the following properties: (1)F ⊂
X̂(ϕ, T ); (2)F is dense in X; (3)F is a Gδ set.

We separate the proof into steps.

Step 1. Construction of a specific set F .

Fix ε > 0. Let {nk}k≥0 be a sequence of positive integers with n0 = 1, {pk}k≥1

be the sequence of integers defined by pk = M2−kε(nk). Let {Wk}k≥0 be a sequence of

finite sets in X with W0 = {x0} ⊂ X. Assume that

dnk
(x, y) ≥ 8ε (for any x, y ∈ Wk, x 6= y).

Let {Nk}k≥0 be another sequence of positive integers with N0 = 1. Using these data,

we are going to construct a subset of Cantor type, which will be denoted by F =

F (ε, {x0}, {Wk}, {nk}, {Nk}).
We enumerate the points in the set Wi and consider the set WNi

i . Let xi =

(xi
1, · · · , xi

Ni
) ∈ WNi

i . For any (x1, · · · , xk) ∈ WN1
1 × · · · × WNk

k , by almost weak

specification property, we have

B(x1) = Bn0(x0,
ε

2
)∩T−p1Bn1(x

1
1,

ε

2
) ∩ T−(n1+p1)−p1Bn1(x

1
2,

ε

2
) ∩ · · · ∩

T−(N1−1)(n1+p1)−p1Bn1(x
1
N1

,
ε

2
)) 6= ∅.

Let l1 = N0n0 + N1(p1 + n1), then

B(x1, · · · , xk) = B(x1)∩
(

N2⋂
i=1

T−t1−(i−1)(p2+n2)−p2Bn2(x
2
i ,

ε

22
)

)
∩ · · · ∩

(
Nk⋂
i=1

T−t1−
∑k

j=2 Nj(pj+nj)−(i−1)(pk+nk)−pkBnk
(xk

i ,
ε

2k
)

)
6= ∅.

Let lk = l1 +
∑k

i=2 Ni(pi + ni), k ≥ 2. We define Fk by

Fk =
⋃
{B(x1, · · · , xk) : (x1, · · · , xk) ∈ WN1

1 × · · · ×WNk
k }.

Obviously, Fk+1 ⊂ Fk.

Lemma 2.1. Let x and y be distinct elements of WN1
1 × · · · ×WNk

k . Then z1 = z(x)

and z2 = z(y) are (lk, 6ε) separated points.
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Proof. Since x 6= y, there exist i, j such that xi
j 6= yi

j. We may assume i ≥ 2, then

dni
(xi

j, T
ti−1+(j−1)(pi+ni)+piz1) < ε,

dni
(yi

j, T
ti−1+(j−1)(pi+ni)+piz2) < ε.

Together with dni
(xi

j, y
i
j) ≥ 8ε, we have

dlk(z1, z2) ≥dni
(T ti−1+(j−1)(pi+ni)+piz1, T

ti−1+(j−1)(pi+ni)+piz2)

≥dni
(xi

j, y
i
j)− dni

(xi
j, T

ti−1+(j−1)(pi+ni)+piz1)− dni
(yi

j, T
ti−1+(j−1)(pi+ni)+piz2)

≥8ε− ε− ε = 6ε.

Finally, define

F (ε, {x0}) := F (ε, {x0}, {Wk}, {nk}, {Nk}) =
∞⋂

k=0

Fk.

Remark 2.1 d(x0, y) < ε for any y ∈ F (ε, {x0}).
Now we introduce some notations. Let

Lϕ = {α ∈ R : X(ϕ, α) 6= ∅}.

Note that | α |≤ ‖ϕ‖ for any α ∈ Lϕ, where ‖ϕ‖ = maxx∈X | ϕ(x) |. For α ∈ Lϕ,

δ > 0, and n ∈ N, let

P (α, δ, n) = {x ∈ X : | Snϕ(x)

n
− α |< δ},

where Snϕ(x) is defined as the first section. Clearly, for α ∈ Lϕ and any δ > 0, the set

P (α, δ, n) is not empty for sufficiently large n.

Lemma 2.2. When X̂(ϕ, T ) is not empty, Lϕ is not equal to a single point.

Proof. By Birkhoff’s ergodic theorem, there exists an ergodic invariant probability

measure µ such that

1

n
Snϕ(x) →

∫
ϕdµ, as n →∞

for µ-a.e. x ∈ X. Let c =
∫

ϕdµ. Because X̂(ϕ, T ) is not empty, 1
n
Snϕ does not

converge to a constant. Hence there exists an ε > 0 and sequences nk →∞ and x ∈ X

such that

| 1

nk

Snk
ϕ(x)− c |> ε.
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Let vk = δx,nk
= 1

nk

nk−1∑
i=0

δf i(x) and µ2 be a limit point of the sequence vk. Then

µ2 ∈ M(X,T ) and
∫

ϕdµ2 6= c. Hence inf
µ∈M(X,T )

∫
ϕdµ < sup

µ∈M(X,T )

∫
ϕdµ.

Next we show inf
µ∈E(X,T )

∫
ϕdµ < sup

µ∈E(X,T )

∫
ϕdµ. Suppose µ ∈ M(X,T ), by Choquet

representation theorem, there is a unique measure τ on the Borel subsets of the compact

metrisable space M(X,T ) such that τ(E(X,T )) = 1 and for any f(x) ∈ C(X,R),
∫

X

f(x)dµ(x) =

∫

E(X,T )

(

∫

X

f(x)dµ(x))dτ(m).

Then for any ε > 0, there exists a Borel probability measure µ′ ∈ E(X,T ) such that∫
X

ϕ(x)dµ′(x) >
∫

X
ϕ(x)dµ(x)− ε. So we have

sup
µ∈M(X,T )

∫
ϕdµ = sup

µ∈E(X,T )

∫
ϕdµ.

Using the same method, we can get a Borel probability measure µ′′ ∈ E(X,T ) such

that
∫

X
ϕ(x)dµ′′(x) <

∫
X

ϕ(x)dµ(x) + ε, then

inf
µ∈M(X,T )

∫
ϕdµ = inf

µ∈E(X,T )

∫
ϕdµ.

Thus inf
µ∈E(X,T )

∫
ϕdµ < sup

µ∈E(X,T )

∫
ϕdµ.

Take µ1, µ2 ∈ E(X,T ) such that
∫

ϕdµ1 <
∫

ϕdµ2. We can find xi ∈ X such that
1
n
Snϕ(xi) →

∫
ϕdµi as n →∞ for i = 1, 2. Let αi =

∫
ϕdµi, i = 1, 2, then the result is

deserved.

Take α, β ∈ Lϕ with α 6= β. Let {δk} be a positive real number sequence satisfying

δk → 0 as k →∞. Choose δ, ε > 0 so small that

|α− β| > 4δ, Var(ϕ, ε) <
δ

4
.

Choose an increasing integer sequence {nk}k≥1 with n0 = 1 such that P (α, δ2j−1, n2j−1) 6=
∅ and P (β, δ2j, n2j) 6= ∅ for j = 1, 2, . . .. Let D = {d1, d2, . . . , di, . . .} ⊂ X be a count-

able dense set. Fix di ∈ D and W0 = {di}. For j ≥ 1, let W2j−1 be the (n2j−1, 8ε)-

separated set in P (α, δ2j−1, n2j−1) and W2j the (n2j, 8ε)-separated set in P (β, δ2j, n2j).

Finally, choose a sequence {Nk}k≥0 increasing to ∞ sufficiently quickly so that

lim
k→∞

nk+1 + pk+1

Nk

= 0, lim
k→∞

N0n0 + N1(n1 + p1) + · · ·+ Nk(nk + pk)

Nk+1

= 0. (2.1)

By the construction presented in the former section, we obtain a set

F (ε, {di}) := F (ε, {di}, {Wk}, {nk}, {Nk}).
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Write

F (ε) =
∞⋃
i=1

F (ε, {di}).

Finally, let

F =
∞⋃

j=1

F (
1

j
) =

∞⋃
j=1

∞⋃
i=1

F (
1

j
, {di}, {Wk}, {nk}, {Nk}).

Step 2. We prove F ⊂ X̂(ϕ, T ). It suffices to prove that F (ε, {di}) ⊂ X̂(ϕ, T ) for

any ε > 0 and any di ∈ D.

Lemma 2.3. For any q ∈ F (ε, {di}), lim
k→∞

1
lk

lk−1∑
i=0

ϕ(T iq) does not exist.

Proof. Choose q ∈ F (ε, {di}) and let qk = T lk−1(q). Then there exists (xk
1, · · · xk

Nk
) ∈

WNk
k such that

qk ∈
Nk⋂
i=1

T−(i−1)(pk+nk)−pkBnk
(xk

i ,
ε

2k
).

We first show
∣∣∣∣

1

N2k−1(p2k−1 + n2k−1)
SN2k−1(p2k−1+n2k−1)ϕ(q2k−1)− α

∣∣∣∣ → 0.

Let ti = (i− 1)(p2k−1 + n2k−1) + p2k−1, we have

∣∣SN2k−1(p2k−1+n2k−1)ϕ(q2k−1)−N2k−1(p2k−1 + n2k−1)α
∣∣

≤
∣∣∣∣∣
N2k−1∑

i=1

Sn2k−1
ϕ(T tiq2k−1)−N2k−1n2k−1α

∣∣∣∣∣ + 2N2k−1p2k−1‖ϕ‖

≤
N2k−1∑

i=1

∣∣Sn2k−1
ϕ(T tiq2k−1)− Sn2k−1

ϕ(x2k−1
i )

∣∣ +

N2k−1∑
i=1

∣∣Sn2k−1
ϕ(x2k−1

i )− n2k−1α
∣∣

+2N2k−1p2k−1‖ϕ‖
≤n2k−1N2k−1{Var(ϕ,

ε

22k−1
) + δ2k−1}+ 2N2k−1p2k−1‖ϕ‖.

Since

Var(ϕ,
ε

22k−1
) <

δ

4
, lim

k→∞
δk = 0 and lim

k→∞
p2k−1

n2k−1

= lim
k→∞

Mε(n2k−1)

n2k−1

= 0,

for sufficiently large k, we have
∣∣∣∣

1

N2k−1(p2k−1 + n2k−1)
SN2k−1(p2k−1+n2k−1)ϕ(q2k−1)− α

∣∣∣∣ ≤
δ

2
.
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One can readily verify that N2k−1(p2k−1+n2k−1)

l2k−1
→ 1 as k →∞. Thus for sufficiently large

k, we have
∣∣∣N2k−1(p2k−1+n2k−1)

l2k−1
− 1

∣∣∣ ≤ δ
4‖ϕ‖ . We obtain that

∣∣∣∣
1

l2k−1

Sl2k−1
ϕ(q)− 1

N2k−1(p2k−1 + n2k−1)
SN2k−1(p2k−1+n2k−1)ϕ(q2k−1)

∣∣∣∣

≤
∣∣∣∣

1

l2k−1

Sl2k−1−N2k−1(p2k−1+n2k−1)ϕ(q)

∣∣∣∣

+

∣∣∣∣
SN2k−1(p2k−1+n2k−1)ϕ(q2k−1)

N2k−1(p2k−1 + n2k−1)

(
N2k−1(p2k−1 + n2k−1)

l2k−1

− 1

)∣∣∣∣

≤ l2k−2

l2k−1

‖ϕ‖+
δ

4

≤δ

2
.

Hence for sufficiently large k,

∣∣∣∣∣
1

l2k−1

l2k−1−1∑
i=0

ϕ(T iq)− α

∣∣∣∣∣ ≤ δ <
| α− β |

4
.

In a similar way, we can also prove the following estimate. For sufficiently large k,

∣∣∣∣∣
1

l2k

l2k−1∑
i=0

ϕ(T iq)− β

∣∣∣∣∣ ≤ δ <
| α− β |

4
,

the desired result follows.

Step 3. We show that F is dense in X and is a Gδ set.

To prove that F is dense in X, it suffices to show that F ∩ B(x, r) 6= ∅ for every

x ∈ X and r > 0. Given x ∈ X and r > 0, there exist j ∈ N with 2
j

< r and di ∈ D

such that d(x, di) < 1
j
. Choose any point y ∈ F (1

j
, di) ⊂ F , it follows from Remark 2.1

that d(y, di) < 1
j
. Hence

d(x, y) < d(x, di) + d(di, y) <
2

j
< r.

This implies that F ∩B(x, r) 6= ∅.
Clearly, the sets Fk’s are open sets, F (ε, di) =

⋂
k≥0 Fk. Because the intersection of

countable Gδ sets is also a Gδ set, it is obvious that F (ε, di) is a Gδ set for any ε > 0

and any di ∈ D.

3 An Example

In this section, we will give a specific case of Theorem 1.1.
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Take Tk = Rk/Zk to be the k-torus. Let A = (aij) be a k × k matrix with entries

in Z and with detA 6= 0. We can define a linear map Rk → Rk by (x1, . . . , xk)
′ 7→

A(x1, . . . , xk)
′, where the mark ′ denotes the transposition of a vector. Since A is an

integer matrix, it maps Zk to itself. We know that A allows us to define a map

T = TA : Rk/Zk → Rk/Zk;

(x1, . . . , xk)
′ 7→ A(x1, . . . , xk)

′ mod 1.

Definition 3.1. Let A = (aij) denote a k × k matrix with integer entries such that

detA 6= 0. We call the map TA : Rk/Zk → Rk/Zk a linear toral endomorphism.

The map T is not invertible in general. However, if detA = ±1, then A−1 exists

and is an integer matrix. Hence we have a map T−1 given by

T−1(x1, . . . , xk)
′ 7→ A(x1, . . . , xk)

′ mod 1.

Definition 3.2. Let A = (aij) denote a k × k matrix with integer entries such that

detA = ±1. We call the map TA : Rk/Zk → Rk/Zk a linear toral automorphism.

Now T denotes an ergodic automorphism of the torus Tk. Marcus [15] proved that

T satisfies the almost weak specification. Hence from Theorem 1.1, we can deserve the

following result.

Theorem 3.1. Let Tk = Rk/Zk be the k-dimensional torus. T denotes an ergodic

automorphism of the torus Tk and ϕ ∈ C(Tk,R). Then the historic set T̂k(ϕ, T ) is

residual if it is not empty.
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