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Abstract. We give the exact contributions of Harish-Chandra
transform, (Hf)(λ), of Schwartz functions f to the harmonic
analysis of spherical convolutions and the corresponding Lp−
Schwartz algebras on a connected semisimple Lie group G (with
finite center). One of our major results gives the proof of how the
Trombi-Varadarajan Theorem enters into the spherical convolu-
tion transform of Lp− Schwartz functions.
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1 Introduction

Let G be a connected semisimple Lie group with finite center, and de-
note the Harish-Chandra-type Schwartz spaces of functions on G by Cp(G),
0 < p ≤ 2. We know that Cp(G) ⊂ Lp(G) for every such p, and if K is a max-
imal compact subgroup of G such that Cp(G//K) represents the subspace
of Cp(G) consisting of the K−bi-invariant functions, Trombi and Varadara-

jan ([9.]) have shown that the spherical Fourier transform f 7→ f̂ is a linear
topological isomorphism of Cp(G//K) onto the spaces Z̄(Fϵ), ϵ = (2/p)− 1,
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consisting of rapidly decreasing functions on certain sets Fϵ of elementary
spherical functions.

We show the existence of a hyper-function on both G and F1 (here named
a spherical convolution) whose restriction to the group identity element, e,

coincides with the spherical Fourier transforms, f 7→ f̂ , of Schwartz functions
f on G and which affords us the opportunity of embarking on a more inclu-
sive harmonic analysis on G. Indeed [8a.] contains a more general Plancherel
formula for the collection of these functions. As a function on G its series
expansion is in the present paper studied. We show that, aside from the
fact that the spherical Fourier transforms, f̂(λ), is the constant term of this
series expansion, there is a region in G where the spherical convolution is
essentially f̂(λ). Various algebras of these functions are thus studied and
ultimately embedded in L2(G). It is however clear that the results in [8.] and
in the present paper may be extended to include what may be termed as the
Harish-Chandra-type Schwartz spaces of Eisenstein Integrals on G. The au-
thor has recently used the idea of a spherical convolution to give an explicit
computation of the image of C2(G) under the Harish-Chandra transform, [8b.]
thus giving a concrete realization of the abstract results of Arthur, [2.], and
showing the direct contribution of the Plancherel formula to Harish-Chandra
transform on G.

The following is the breakdown of each of the remaining sections of the
paper. §2. contains the preliminaries to the research containing the struc-
ture theory, spherical functions and Schwartz algebras on G, while the series
analysis of spherical convolutions on G is the subject of §3. The relationship
existing among the Schwartz algebras of functions and those of spherical con-
volutions is considered in §4.

2 Preliminaries

For the connected semisimple Lie group G with finite center, we denote
its Lie algebra by g whose Cartan decomposition is given as g = t⊕p. Denote
by θ the Cartan involution on g whose collection of fixed points is t. We also
denote by K the analytic subgroup of G with Lie algebra t. K is then a
maximal compact subgroup of G. Choose a maximal abelian subspace a of p
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with algebraic dual a∗ and set A = exp a. For every λ ∈ a∗ put

gλ = {X ∈ g : [H,X] = λ(H)X, ∀H ∈ a},

and call λ a restricted root of (g, a) whenever gλ ̸= {0}.

Denote by a′ the open subset of a where all restricted roots are ̸= 0, and
call its connected components the Weyl chambers. Let a+ be one of the Weyl
chambers, define the restricted root λ positive whenever it is positive on a+

and denote by △+ the set of all restricted positive roots. Members of △+

which form a basis for △ and can not be written as a linear combination of
other members of △+ are called simple. We then have the Iwasawa decom-
position G = KAN , where N is the analytic subgroup of G corresponding
to n =

∑
λ∈△+ gλ, and the polar decomposition G = K · cl(A+) · K, with

A+ = exp a+, and cl(A+) denoting the closure of A+.

If we set M = {k ∈ K : Ad(k)H = H, H ∈ a} and M ′ = {k ∈
K : Ad(k)a ⊂ a} and call them the centralizer and normalizer of a in K,
respectively, then (see [5.], p. 284); (i) M and M ′ are compact and have
the same Lie algebra and (ii) the factor w = M ′/M is a finite group called
the Weyl group. w acts on a∗C as a group of linear transformations by the
requirement

(sλ)(H) = λ(s−1H),

H ∈ a, s ∈ w, λ ∈ a∗C, the complexification of a∗. We then have the Bruhat
decomposition

G =
⊔
s∈w

BmsB

where B = MAN is a closed subgroup of G and ms ∈ M ′ is the represen-
tative of s (i.e., s = msM). The Weyl group invariant members of a space
shall be denoted by the superscript w while | w | represents the cardinality
of w.

Some of the most important functions on G are the spherical functions
which we now discuss as follows. A non-zero continuous function φ on G shall
be called a (zonal) spherical function whenever φ(e) = 1, φ ∈ C(G//K) :=
{g ∈ C(G): g(k1xk2) = g(x), k1, k2 ∈ K, x ∈ G} and f ∗φ = (f ∗φ)(e) ·φ for
every f ∈ Cc(G//K), where (f ∗g)(x) :=

∫
G
f(y)g(y−1x)dy. This leads to the
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existence of a homomorphism λ : Cc(G//K) → C given as λ(f) = (f ∗φ)(e).
This definition is equivalent to the satisfaction of the functional relation∫

K

φ(xky)dk = φ(x)φ(y), x, y ∈ G.

It has been shown by Harish-Chandra [6.] that spherical functions on G
can be parametrized by members of a∗C. Indeed every spherical function on
G is of the form

φλ(x) =

∫
K

e(iλ−p)H(xk)dk, λ ∈ a∗C,

ρ = 1
2

∑
λ∈△+ mλ · λ, where mλ = dim(gλ), and that φλ = φµ iff λ = sµ for

some s ∈ w. Some of the well-known properties of spherical functions are
φ−λ(x

−1) = φλ(x), φ−λ(x) = φ̄λ̄(x), | φλ(x) |≤ φℜλ(x), | φλ(x) |≤ φiℑλ(x),
φ−iρ(x) = 1, λ ∈ a∗C, while | φλ(x) |≤ φ0(x), λ ∈ ia∗, x ∈ G. Also if Ω is the
Casimir operator on G then

Ωφλ = −(⟨λ, λ⟩+ ⟨ρ, ρ⟩)φλ,

where λ ∈ a∗C and ⟨λ, µ⟩ := tr(adHλ adHµ) for elements Hλ, Hµ ∈ a. This
differential equation may be written simply as Ωφλ = γ(Ω)(λ)φλ, where
λ 7→ γ(Ω)(λ) is the well-known Harish-Chandra homomorphism. The ele-
ments Hλ, Hµ ∈ a are uniquely defined by the requirement that λ(H) =
tr(adH adHλ) and µ(H) = tr(adH adHµ) for every H ∈ a ([5.], Theorem
4.2). Clearly Ωφ0 = 0.

Due to a hint dropped by Dixmier [4.] (cf. [9.]) in his discussion of some
functional calculus, it is necessary to recall the notion of a ‘positive-definite’
function and then discuss the situation for positive-definite spherical func-
tions. We call a continuous function f : G → C (algebraically) positive-
definite whenever, for all x1, . . . , xm in G and all α1, . . . , αm in C, we have

m∑
i,j=1

αiᾱjf(x
−1
i xj) ≥ 0.

It can be shown (cf. [5.]) that f(e) ≥ 0 and |f(x)| ≤ f(e) for every x ∈ G
implying that the space P of all positive-definite spherical functions on G is
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a subset of the space F1 of all bounded spherical functions on G.

We know, by the Helgason-Johnson theorem ([7.]), that

F1 = a∗ + iCρ

where Cρ is the convex hull of {sρ : s ∈ w} in a∗. Defining the involution

f ∗ of f as f ∗(x) = f(x−1), it follows that f = f ∗ for every f ∈ P , and if
φλ ∈ P , then λ and λ̄ are Weyl group conjugate, leading to a realization of
P as a subset of w \ a∗C. P becomes a locally compact Hausdorff space when
endowed with the weak ∗−topology as a subset of L∞(G).

Let

φ0(x) :=

∫
K

exp(−ρ(H(xk)))dk

be denoted as Ξ(x) and define σ : G → C as

σ(x) = ∥X∥

for every x = k expX ∈ G, k ∈ K, X ∈ a, where ∥ · ∥ is a norm on the
finite-dimensional space a. These two functions are spherical functions on G
and there exist numbers c, d such that

1 ≤ Ξ(a)eρ(log a) ≤ c(1 + σ(a))d.

Also there exists r > 0 such that c =:
∫
G
Ξ(x)2(1 + σ(x))rdx < ∞ ([11.], p.

231). For each 0 ≤ p ≤ 2 define Cp(G) to be the set consisting of functions
f in C∞(G) for which

µa,b;r(f) := sup
G

[|f(a; x; b)|Ξ(x)−2/p(1 + σ(x))r] < ∞

where a, b ∈ U(gC), the universal enveloping algebra of gC, r ∈ Z+, x ∈ G,
f(x; b) := d

dt

∣∣
t=0

f(x · (exp tb)) and f(a;x) := d
dt

∣∣
t=0

f((exp ta) · x). We call
Cp(G) the Schwartz space on G for each 0 < p ≤ 2 and note that C2(G) is the
well-known (see [1.]) Harish-Chandra space of rapidly decreasing functions on
G. The inclusions

C∞
c (G) ⊂ Cp(G) ⊂ Lp(G)

hold and with dense images. It also follows that Cp(G) ⊆ Cq(G) whenever
0 ≤ p ≤ q ≤ 2. Each Cp(G) is closed under involution and the convolution, ∗.
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Indeed Cp(G) is a Fréchet algebra ([10.], p. 69). We endow Cp(G//K) with
the relative topology as a subset of Cp(G).

We shall say a function f on G satisfies a general strong inequality if for
any r ≥ 0 there is a constant c = cr > 0 such that

| f(y) |≤ crΞ(y
−1x)(1 + σ(y−1x))−r ∀ x, y ∈ G.

We observe that if x = e then, using the fact that Ξ(y−1) = Ξ(y) and
σ(y−1) = σ(y), ∀ y ∈ G, such a function satisfies

| f(y) |≤ crΞ(y
−1)(1 + σ(y−1))−r = crΞ(y)(1 + σ(y))−r, ∀ y ∈ G,

showing that a function on G which satisfies a general strong inequality
satisfies in particular a strong inequality (in the classical sense of Harish-
Chandra, [11.]). Members of C2(G) =: C(G) are those functions f on G for
which f(g1; ·; g2) satisfies the strong inequality, for all g1, g2 ∈ U(gC). We may
then define C(x)(G) to be those functions f on G for which f(g1; ·; g2) satisfies
the general strong inequality, for all g1, g2 ∈ U(gC) and a fixed x ∈ G. It is
clear that C(e)(G) = C(G) and that

∪
x∈G C(x)(G), which contains C(G), may

be given an inductive limit topology. The seminorms defining this topology
will be explicitly given in §4.

For any measurable function f on G we define the spherical Fourier trans-
form f̂ as

f̂(λ) =

∫
G

f(x)φ−λ(x)dx,

λ ∈ a∗C. It is known (see [3.]) that for f, g ∈ L1(G) we have:

(i.) (f ∗ g)∧ = f̂ · ĝ on F1 whenever f (or g) is right - (or left-) K-invariant;

(ii.) (f ∗)∧(φ) = f̂(φ∗), φ ∈ F1; hence (f ∗)∧ = f̂ on P : and, if we define
f#(g) :=

∫
K×K

f(k1xk2)dk1dk2, x ∈ G, then

(iii.) (f#)∧ = f̂ on F1.

We shall denote the spherical Fourier transform f̂(λ) of f ∈ C(G) by
(Hf)(λ) and refer to it as the Harish-Chandra transforms of f. Its major
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properties are well-known and may be found in [9.]. It should be noted that

(Hf)(λ) = f̂(λ) =
∫
G
f(y)φ−λ(y)dy =

∫
G
f(y)φλ(y

−1)dy =
∫
G
f(y)φλ(y

−1e)dy
= (f ∗φλ)(e). That is, the Harish-Chandra transforms of f is the restriction
of the function

x 7→ (f ∗ φλ)(x) =: sλ,f (x)

on G to the identity element. It is therefore worthwhile to explore sλ,f (x)
in some details for all x ∈ G in order to put its behaviour at x = e (as the
Harish-Chandra transforms of f) in a proper and larger perspective.

The beauty of studying the entirety of the function sλ,f (x), for λ ∈
a∗C, f ∈ Cp(G), x ∈ G, which we shall explore in this paper, is that it
could be viewed as a transformation in six (6) different ways; As

(1.) x 7→ k1(λ) := sλ,f (x), for any f ∈ Cp(G)

and
(2.) x 7→ k2(f) := sλ,f (x), for any λ ∈ a∗C,

(from where the Plancherel formula for the space of functions x 7→ k2(f) has
recently been computed in [8a.]) both of which are maps on G; or as

(3.) f 7→ l1(λ) := sλ,f (x), for any x ∈ G

(which, at x = e, led Harish-Chandra to the consideration of f 7→ (Hf)(λ) :
cf. [9.]) and

(4.) f 7→ l2(x) := sλ,f (x), for any λ ∈ a∗C,

both of which are maps on Cp(G); or as

(5.) λ 7→ m1(f) := sλ,f (x), for any x ∈ G

and
(6.) λ 7→ m2(x) := sλ,f (x), for any f ∈ Cp(G),

both of which are maps on a∗C. Hence the function x 7→ sλ,f (x) may rightly be
called an hyper-function on G whose major contribution to harmonic analysis
would be to absorb other known functions of the subject and put their re-
sults in proper perspectives, as we shall establish here for the Harish-Chandra
transform.
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In order to know the image of the spherical Fourier transform when re-
stricted to Cp(G//K) we need the following spaces that are central to the
statement of the well-known result of Trombi and Varadarajan [9.]. Let Cρ

be the closed convex hull of the (finite) set {sρ : s ∈ w} in a∗, i.e.,

Cρ =

{
n∑

i=1

λi(siρ) : λi ≥ 0,
n∑

i=1

λi = 1, si ∈ w

}

where we recall that, for every H ∈ a, (sρ)(H) = 1
2

∑
λ∈△+ mλ · λ(s−1H).

Now for each ϵ > 0 set Fϵ = a∗ + iϵCρ. Each Fϵ is convex in a∗C and

int(Fϵ) =
∪

0<ϵ′<ϵ

Fϵ
′

([9.], Lemma (3.2.2)). Let us define Z(F0) = S(a∗) and, for each ϵ > 0, let
Z(Fϵ) be the space of all C-valued functions Φ such that (i.) Φ is defined and
holomorphic on int(Fϵ), and (ii.) for each holomorphic differential operator
D with polynomial coefficients we have supint(Fϵ) |DΦ| < ∞.

The space Z(Fϵ) is converted to a Fréchet algebra by equipping it with
the topology generated by the collection, ∥ · ∥Z(Fϵ), of seminorms given by
∥Φ∥Z(Fϵ) := supint(Fϵ) |DΦ|. It is known that DΦ above extends to a continu-
ous function on all of Fϵ ([9.], pp. 278− 279). An appropriate subalgebra of
Z(Fϵ) for our purpose is the closed subalgebra Z̄(Fϵ) consisting ofw-invariant
elements of Z(Fϵ), ϵ ≥ 0. The following (known as the Trombi-Varadarajan
Theorem) is the major result of [9.] : Let 0 < p ≤ 2 and set ϵ = (2/p) − 1.

Then the spherical Fourier transform f 7→ f̂ is a linear topological algebra
isomorphism of Cp(G//K) onto Z̄(Fϵ). That is, the topological algebra Z̄(Fϵ)
is an isomorphic copy or a realization of Cp(G//K).

In order to find other isomorphic copies or realizations of Cp(G//K) under
the more inclusive general transformation map

f 7→ l1(λ) := sλ,f (x), for any x ∈ G,

we shall now introduce a more general algebra, Z̄G(F
ϵ), of C−valued func-

tions on int(Fϵ) × G which, when restricted to int(Fϵ) × exp(N0), coincides
with Z̄(Fϵ). The form of this new algebra is suggested by Theorem 3.5. Set
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ZG(F
0) = S(a∗)×G and let ZG(F

ϵ), ϵ > 0, be the collection of all C−valued
functions Ψ ((λ, x) 7→ Ψ(λ, x), ∀ (λ, x) ∈ int(Fϵ)×G) such that

(i.) Ψ is holomorphic in the variable λ, analytic in x and spherical on G;

(ii.) supint(Fϵ) |D1Ψ| < ∞ and supG |ΨD2| < ∞, for every holomorphic
differential operator D1 with polynomial coefficients and every left-invariant
differential operator D2 on G and

(iii.) the restriction of Ψ to int(Fϵ)× {e} (or to int(Fϵ)× exp(N0(A
+)),

for some zero neighbourhood N0(A
+) in g, as will later be seen in Theo-

rem 3.5) is (a non-zero constant multiple of) the Harish-Chandra transform,
(Hf)(λ) = f̂ .

It may be shown, in exact manner as for Z(Fϵ) above, that the space
ZG(F

ϵ) is converted to a Fréchet algebra by equipping it with the topology
generated by the collection, ∥ · ∥ZG(Fϵ), of seminorms given by

∥Ψ∥ZG(Fϵ) := sup
int(Fϵ)×G

|D1ΨD2|.

An appropriate subalgebra of ZG(F
ϵ) for our purpose is the closed subalge-

bra Z̄G(F
ϵ) consisting of w-invariant elements of ZG(F

ϵ), ϵ ≥ 0. By the time
Theorem 3.5 is established it will be clear that Z̄{x}(F

ϵ) ≃ Z̄(Fϵ), for every
x in some zero neighbourhood N0(A

+) in g. In particular, Z̄{e}(F
ϵ) ≃ Z̄(Fϵ).

3 Series Analysis of Spherical Convolutions

Let f ∈ C(G) and λ ∈ a∗C, we recall from [8a.] the definition of spherical
convolutions, sλ,f , on G corresponding to the pair (λ, f) as

sλ,f (x) := (f ∗ φλ)(x), x ∈ G.

We already know that sλ,f (e) = (Hf)(λ), where e is the identity element of
G and λ ∈ ia∗. This relation between a function on G at the identity element
and another function on ia∗ suggests we study the full contribution of the
Harish-Chandra transforms, (Hf)(λ), of f to the properties of x 7→ sλ,f (x)
and to seek other functions on ia∗ which have not been known in the har-
monic analysis of G, but still contribute to a deeper understanding of the

9



structure of G.

In order to explore the nature of this idea we consider opening up the
spherical convolutions x 7→ sλ,f (x) via its Taylor’s series expansion.

Lemma 3.1. Let N0 be a neighbourhood of origin in g and t be sufficiently
small in R (say 0 ≤ t ≤ 1). Then

sλ,f (x exp tX) =
∞∑
n=0

tn

n!
[X̃nsλ,f ](x),

where for every X ∈ N0 we set [X̃nsλ,f ](x) =
dn

dun sλ,f (x expuX)|u=0

Proof. The proof follows from a direct application of Taylor’s series ex-
pansion, [5.], p. 105. �

At x = e and t = 1 the formula in the Lemma becomes

sλ,f (expX) =
∞∑
n=0

1

n!
[X̃nsλ,f ](e) = sλ,f (e) +

∞∑
n=1

1

n!
[X̃nsλ,f ](e)

= (Hf)(λ) +
∞∑
n=1

1

n!
[X̃nsλ,f ](e), X ∈ N0.

This observation leads quickly to the following result which gives the exact
contribution of the Harish-Chandra transforms to the study of spherical con-
volutions.

Lemma 3.2. The Harish-Chandra transforms, λ 7→ (Hf)(λ), f ∈ C(G),
is the constant term in the (Taylor’s) series expansion of spherical convolu-
tions, x 7→ sλ,f (x) around x = e, for every λ ∈ a∗. �

It may be deduced, from the expansion leading to the proof Lemma 3.2,
that the only time the remaining terms in sλ,f (expX), after the (non-zero)
constant term (Hf)(λ), could vanish is when the differential operator X̃ = 0.
That is, when X = 0. It therefore follows that the well-known (Harish-
Chandra) harmonic analysis on G ([1.], [2.], [9.] and [11.]) has always been
that of the consideration of the map X 7→ sλ,f (expX) at only X = 0, which
is the origin of g or which corresponds to the identity point of exp(g). Hence,
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since the constant term, (Hf)(λ), of sλ,f (expX) corresponds indeed to the
consideration of the constant term in the asymptotic expansion of (zonal)
spherical functions, φλ, it also follows that other terms in the expansion of
φλ may be needed to completely understand f 7→ sλ,f (x).

The expression for sλ,f (expX) therefore suggests that a full harmonic
analysis of G may be attained from a close study of the remaining contribu-
tions of the transform of f given as

λ 7−→ tn

n!
[X̃nsλ,f ](x),

for all X ∈ N0, n ∈ N ∪ {0}, x ∈ G, f ∈ C(G) and sufficiently small values
of t, in the same manner that its constant term,

λ 7−→ (Hf)(λ)

had been considered.

However before considering the transformational properties of spherical
convolutions we note the following lemmas which lead to a more inclusive
view of the Trombi-Varadarajan Theorem and prepares the ground for its
generalization.

Lemma 3.3. Let N0 be a neighbourhood of origin in g, λ ∈ a∗C and t be
sufficiently small in R (say 0 ≤ t ≤ 1). Then

sλ,f (x exp tX) = [
∞∑
n=0

tn

n!
γ(

dn

dun
)(λ)|u=0 ] · sλ,f (x),

for every X ∈ N0, x ∈ G, f ∈ C(G).
Proof. We note here that

[X̃sλ,f ](x) =
d

du
sλ,f (x expuX)|u=0 =

d

du
(f ∗ φλ)(x expuX)|u=0

= (f ∗ d

du
φλ)(x expuX)|u=0 = γ(

d

du
)(λ) · (f ∗ φλ)(x expuX)|u=0 .

Hence

[X̃nsλ,f ](x) = γ(
dn

dun
)(λ)|u=0·(f∗φλ)(x expuX)|u=0 = γ(

dn

dun
)(λ)|u=0·sλ,f (x). �
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The particular case of setting x = e and t = 1 in Lemma 3.3 introduces
the Harish-Chandra transforms, (Hf)(λ), into the analysis of this series,
proving the following.

Lemma 3.4. Let N0 be a neighbourhood of origin in g, f ∈ C(G) and
λ ∈ a∗. Then the spherical convolution function, x 7→ sλ,f (x) is a non-zero
constant multiple of the Harish-Chandra transforms, (Hf)(λ), on exp(N0).

Proof. Set x = e and t = 1 into Lemma 3.3 to have

sλ,f (expX) = [
∞∑
n=0

1

n!
γ(

dn

dun
)(λ)|u=0 ]·sλ,f (e) = [

∞∑
n=0

1

n!
γ(

dn

dun
)(λ)|u=0 ]·(Hf)(λ),

with
∑∞

n=0
1
n!
γ( dn

dun )(λ)|u=0 = 1 + [
∑∞

n=1
1
n!
γ( dn

dun )(λ)|u=0 ] ̸= 0. �

Let us denote the non-zero constant in Lemma 3.4 above by κ. The fol-
lowing theorem is a consequence of normalizing the spherical convolutions in
Lemma 3.4.

Theorem 3.5. (Trombi-Varadarajan Theorem for Spherical Con-
volutions) Let 0 < p ≤ 2, set ϵ = (2/p) − 1 and x ∈ exp(N0). Set

f̂x(λ) = 1
κ
sλ,f (x) for f ∈ Cp(G//K). Then the spherical convolution trans-

forms f 7→ f̂x is a linear topological algebra isomorphism of Cp(G//K) onto
Z̄(Fϵ). �

We recover the Trombi-Varadarajan Theorem for Harish-Chandra trans-
forms by setting x = e in Theorem 3.5. Indeed, Theorem 3.5 above says
that every x ∈ exp(N0) (and not just x = e) gives a topological algebra
isomorphism between Cp(G//K) and Z̄(Fϵ). However if x ∈ G \ exp(N0), for
any neighborhood N0 of zero in g, Trombi-Varadarajan Theorem may not
be appropriate and it may be necessary to seek a more general realization
of Cp(G//K) under the map f 7→ l1(λ) := sλ,f (x), for any x ∈ G. Before
considering another major result of this paper, giving the fine structure of
spherical convolution functions, we state a result on the finiteness of a central
integral usually used in the estimation of many other integrals of harmonic
analysis on semisimple Lie groups.
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To this end we define, for every x ∈ G, the function x 7→ d(x) as

d(x) =

∫
G

Ξ2(y−1x)(1 + σ(y−1x))−rdy.

We observe here that

d(e) =

∫
G

Ξ2(y−1)(1 + σ(y−1))−rdy =

∫
G

Ξ2(y)(1 + σ(y))−rdy,

which is a constant whose proof of finiteness may be found in [11.], p. 231.
This constant is crucial to all harmonic analysis of C(G) and, in particular,
to the embedding of C(G) in L2(G). It is therefore important to understand
the nature of d(x) for all x ∈ G in order to employ it in a more inclusive har-
monic analysis on G. We consider the nature of this integral in the following.

Lemma 3.6. Let x ∈ G. Then there exist r ≥ 0 such that

d(x) =

∫
G

Ξ2(y−1x)(1 + σ(y−1x))−rdy < ∞.

Proof. We already know that Ξ(y−1x) ≤ 1. Also

1 + σ(y−1x) ≤ (1 + σ(y−1))(1 + σ(x)) = (1 + σ(y))(1 + σ(x)).

It follows therefore that

d(x) ≤
∫
G

(1 + σ(y−1x))−rdy ≤ (1 + σ(x))

∫
G

(1 + σ(y))dy.

The last integral in the above inequality is finite if we embark on its compu-
tation via the polar decomposition, G = K · cl(A+) ·K, of G. �

Theorem 3.7. Let N0 be a neighbourhood of origin in g where f is a
measurable function on G which satisfies the general strong inequality. The
integral defining the spherical convolution function, x 7→ sλ,f (x), is absolutely
and uniformly convergent for all x ∈ exp(N0), λ ∈ ia∗. Moreover the trans-
forms λ 7→ sλ,f (x) of f, with x ∈ exp(N0), is a continuous function on ia∗.
If r ≥ 0 is such that d(x) =

∫
G
Ξ2(y−1x)(1+σ(y−1x))−rdy < ∞, x ∈ G, then

| sλ,f (x) |≤ d(x) · µ1,1,r(f), x ∈ G, λ ∈ ia∗.
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Proof. We recall that | φλ(x) |≤ φ0(x) = Ξ(x), x ∈ G, λ ∈ ia∗. Hence

| (f∗φλ)(x) |≤
∫
G

| f(y)φλ(y
−1x) | dy ≤ µ1,1,r(f)

∫
G

Ξ2(y−1x)(1+σ(y−1x))−rdy

= d(x) · µ1,1,r(f). Continuity follows from the use of the Lebesgue’s domi-
nated convergence theorem. �

The following well-known result on the foundational properties of the
Harish-Chandra transforms, λ 7→ (Hf)(λ), λ ∈ ia∗, now follows from the
general outlook given by Theorem 3.7.

Corollary 3.8. ([9.]) Let f be a measurable function on G which satisfies
the strong inequality. The integral defining the Harish-Chandra transforms,

(Hf)(λ) =

∫
G

f(x)φλ(x)dx,

is absolutely and uniformly convergent for all λ ∈ ia∗ and is continuous on
ia∗. If r ≥ 0 is such that d =

∫
G
Ξ2(y)(1 + σ(y))−rdy < ∞, then

(Hf)(λ) |≤ dµ1,1,r(f), λ ∈ ia∗.

Proof. SetX = 0 in Theorem 3.7 to have the first results. The inequality
follows if we set x = e and observe that d(e) =

∫
G
Ξ2(y−1)(1+σ(y−1))−rdy =

d. �

We now consider the image of Cp(G//K) under the full spherical convo-
lution map, f 7→ l1(λ) := sλ,f (x), for any x ∈ G. In order to discuss this we
have two options. One of the options is to introduce wave-packet that will
still have its domain as Z̄(Fϵ) while using an appropriate Plancherel measure
on Fϵ. This option has been explored in [8a.], p. 34, where the L2 Plancherel
measure, dζx,λ on F1 for the spherical convolution function (when viewed as
a function on G) was defined to absorb the group variable, x. The results
therein suggest that the image of Cp(G//K) under the full spherical convo-
lution map is indeed possible.
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The second option is to retain the spherical Bochner measure, dλ, on (a
subset of) Fϵ and define the wave-packet as a map on the Fréchet algebra
Z̄G(F

ϵ). This will reflect the nature of the full spherical convolution map as
a transform of members of Cp(G//K) whose arguments are (generally) taken
from int(Fϵ)×G (and not just from int(Fϵ) as in the first option).

To this end recall the Fréchet algebra Z̄G(F
ϵ), ∀ ϵ > 0, let Ψ ∈ Z̄G(F

ϵ)
and set

N0(A
+) = N0 ∩ A+,

where N0 is a zero neighbourhood in g. It is clear that N0(A
+) is also a zero

neighbourhood in g and that Ψ = Ψ(λ, x), for all (λ, x) ∈ int(Fϵ)×G. It fol-
lows, from Theorem 3.5, that Z̄{x}(F

ϵ) ≃ Z̄(Fϵ), for every x ∈ exp(N0(A
+)).

We then have the following.

Lemma 3.9. For every x ∈ exp(N0(A
+)) and Ψ ∈ Z̄G(F

ϵ), we have that
Ψ(λ, x) = Φ(λ), for some Φ ∈ Z̄(Fϵ).

We now employ these remarks to define a map from Z̄G(F
ϵ) to Cp(G//K)

as follows. Let a ∈ Z̄G(F
ϵ) and λ 7→ c(λ) be the Harish-Chandra c−function

defined on FI := ia∗. We associate to every a ∈ Z̄G(F
ϵ) the function φa on G

defined as

φa(x) =| w |−1

∫
FI

a(−λ, x)φ−λ(x)c(−λ)−1c(λ)−1dλ, x ∈ G.

It should be noted here that

φa(x) =| w |−1

∫
FI

a(−λ, x)φ−λ(x)c(−λ)−1c(λ)−1dλ

=| w |−1

∫
FI

a(λ, x)φλ(x)c(λ)
−1c(−λ)−1d(−λ)

=| w |−1

∫
FI

a(λ, x)φλ(x)c(λ)
−1c(−λ)−1dλ,

which is due to the invarianve of dλ, and that

φa(k1xk2) = φa(x),
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∀ x ∈ G, k1, k2 ∈ K, being a property inherited from a and φλ.

The (extra) requirement of being spherical on G placed on members of
Z̄G(F

ϵ) may at first be seen as a restriction, when compared to the require-
ments on members of Z̄(Fϵ). It however turns out that this extra require-
ment is what is needed to assure us of the generalization of the classical
wave-packets (of Trombi-Varadarajan) on G to all of x 7→ φa(x). This is
established as follows.

Lemma 3.10. Let a ∈ Z̄G(F
ϵ) and N0(A

+) be as defined above. Then, for
every x ∈ exp(N0(A

+)), the map x 7→ φa(x) is the classical wave-packet of G.

Proof. We observe that, with exp tH ∈ exp(N0(A
+)),

a(λ, x) = a(λ, k1 exp tHk2) = a(λ, exp tH) = Φ(λ),

for some Φ ∈ Z̄(Fϵ). Here we have employed the spherical property of a on
G in the second equality and Lemma 3.9 in the third equality. �

The above Lemma shows that the definition and properties of the map
x 7→ φa(x), x ∈ G, is consistent with the relationship (in Lemma 3.4) existing
between spherical convolutions, sλ,f (x) and the Harish-Chandra transfroms,
(Hf)(λ). Hence in order to extend Trombi-Varadarajan Theorem (which
gives the image of the algebra Cp(G//K) under f 7→ (Hf)(λ)) to all x ∈ G
(under the spherical convolution tranform), it will be necessary to show that
x 7→ φa(x) is the wave-packet of f 7→ sλ,f (x) for all x ∈ G. According to
Lemma 3.10, this needs only be done for those x = k1 exp tHk2 in G with
exp tH /∈ exp(N0(A

+)), for any neighbourhood, N0, of zero in g. We however
give a self-contained discussion of these results, the first of which is given
below.

Theorem 3.11. φa ∈ Cp(G//K) for every a ∈ Z̄G(F
ϵ).

In order to finish the establishment of this Theorem we need some lemmas
which give appropriate background for it. Indeed we derive an appropriate
bound for | φa(h;u) |, where u ∈ U(gC) and h is well-chosen, and the appro-
priate collection of seminorms are also in place. These will be considered in
a forthcoming paper on Trombi-Varadarajan Theorem via the eigenfunction
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expansion of spherical convolution, which includes the extension of Theorem
3.5 to all x ∈ G.

4 Algebras of Spherical Convolutions

We now consider the various algebras of spherical convolutions that have
emanated in the course of this research and their relationship with the Harish-
Chandra Schwartz algebra, C(G), on G as well as its distinguished commu-
tative subalgebra, C(G//K), of (elementary) spherical functions.

Define Cλ(G) = {sλ,f : f ∈ C(G)} and set Cλ,0(G) = {sλ,φλ
}, for all

λ ∈ a∗C. It is clear that
∪

λ∈a∗C
Cλ(G) is contained in C(G). We may therefore

topologize
∪

λ∈a∗C
Cλ(G) by giving it the relative topology from the topology

defined on C(G) by the seminorms, µa,b,r.

Lemma 4.1. The inclusions

[
∪
λ∈a∗C

Cλ,0(G)] ⊂ C(G//K) ⊂ [
∪
λ∈a∗C

Cλ(G)] ⊂ C(G)

are all proper. �

Theorem 4.2.
∪

λ∈F1 Cλ(G) is a closed subalgebra of C(G).
Proof. We recall that µa,b;r(f ∗ φλ) ≤ cµ1,b;r+r0(f) · µa,1;r(φλ), where

c :=
∫
G
Ξ2(x)(1 + σ(x))−r0dx < ∞ for some r0 ≥ 0. However

µa,1;r(φλ) = sup
G

[|φλ(1;x; a)| · Ξ(x)−1(1 + σ(x))r]

=| γ(a)(λ) | · sup
G

[|φλ(x)| · Ξ(x)−1(1 + σ(x))r]

≤ M | γ(a)(λ) | · sup
G

[Ξ(x)−1(1 + σ(x))r] < ∞

(since φλ is bounded for all λ ∈ F1).

Hence µa,b;r(f ∗ φλ) < ∞, ∀ λ ∈ F1. �

It may be recalled that members of C(G) are exactly those functions on
G whose left and right derivatives satisfy the strong inequality. In the light
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of this observation we define C(x)(G) as exactly those functions on G whose
left and right derivatives satisfy the general strong inequality, for each x ∈ G.
Explicitly we set C(x)(G) as

C(x)(G) = {f : G 7→ C : sup
y∈G

[|f(a; y; b)| · Ξ(y−1x)−1(1 + σ(y−1x))r] < ∞},

x ∈ G. A collection of seminorms on each of C(x)(G) may be given by

µ
(x)
a,b;r(f) := sup

y∈G
[|f(a; y; b)| · Ξ(y−1x)−1(1 + σ(y−1x))r].

It is however clear that C(e)(G) = C(G), so that C(G) ⊂
∪

x∈G C(x)(G).

Theorem 4.3. The natural inclusion
∪

x∈G C(x)(G) ⊂ L2(G) has a dense
image.

Proof. It is known that the natural inclusion of C(G) in L2(G) has a
dense image, [1.]. The result therefore follows if we recall that, as sets of
functions,

C(G) ⊂
∪
x∈G

C(x)(G) ⊂ L2(G),

where the second inclusion holds from the fact that d(x) < ∞, x ∈ G. �
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