POSITIVE WEIGHTED PSEUDO ALMOST AUTOMORPHIC
SOLUTION FOR A CLASS OF SYSTEMS OF NEUTRAL
NONLINEAR DELAY INTEGRAL EQUATIONS

ABDELLATIF SADRATI, ABDERRAHIM ZERTITI

ABsTrRACT. In this work, we shall explain a new result concerning weighted
pseudo almost automorphic solutions for more general systems of nonlinear
neutral infinite delay integral equations. We establish a new fixed point theo-
rem in the cone, which extend some existing results even in the case of scalar
version, and then, we apply it to prove our results.

1. INTRODUCTION

Since the work of Bochner in [7], almost automorphy, as a natural generaliza-
tion of the concept of almost periodicity in the sense of Bohr [6], has been of
great interest for many authors to study almost automorphic solutions to various
equations including linear and nonlinear evolution equations, integro-differential
equations, delay integral equations, functional-differential equations, etc. For more
details about this topics we refer to the recent book [22], where the author gave
an important overview about the theory of almost automorphic functions and their
applications to differential equations.

The concept of weighted pseudo almost automorphic functions with values in a
Banach space, was introduced by G.M.N’Guerekata et al. [§] as a generalization
of that of pseudo almost automorphic functions, which generalizes that of pseudo
almost periodic functions introduced by Diagana [I3]. Since then, these functions
have generated lot of developments and applications. For more details we refer the
reader to [8, 13} 21} 22] and the references therein.

The study of the existence of almost periodic, almost automorphic, pseudo al-
most periodic, pseudo almost automorphic, weighted pseudo almost periodic and
weighted pseudo almost automorphic solutions is one of the most interesting topics
in the qualitative theory of differential and integral equations. In [25], we considered
the existence and uniqueness of positive almost periodic solution to the following
system of nonlinear finite delay integral equations

t
SR R (RO
. (1.1)
ot = [ gloals)us)ds
t—7a(t)
which is a model for the evolution in time of two species with interaction. Also,
in [9] 10} 23] [24] 27], the existence of positive periodic solutions for other forms of
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was studied by using the method of upper and lower solutions or by topological
methods.

In this work, we investigate the existence and uniqueness of a positive weighted
pseudo almost automorphic solution for the following more general system of non-
linear neutral infinite delay integral equations

t
o(t) = ar(t)at = ) + [ et = ). a5),(s)ds + b t,2(0)

oo (1.2)

M@Z%@M%ﬂﬂ+/ ealtt — 8)d(s, 2(s), y(s))ds + Ealt, y(1))

— o0
Note that the existence of pseudo almost periodic solutions to the scalar version of
system (|1.2]
t

z(t) = a(t)z(t — B) + / a(t,t —s)f(s,xz(s))ds + h(t,x(t)) (1.3)

— 00
was studied in [14]. Also, the existence of almost periodic, almost automorphic and
pseudo almost automorphic of various forms of was studied by many authors
(see, e.g. [1, 2 B [16] [I7] and references therein)

To the best of our knowledge, there is no work reported in the literature on
weighted pseudo almost automorphic solution to the system (L.2). Therefore, mo-
tivated by the works in [14] [15], the purpose of this paper is to establish a new
fixed point theorem in partially ordered Banach spaces, which extend some exist-
ing results even in the scalar cases, and then used to prove the existence of positive
weighted pseudo almost automorphic solution for . This paper is organized as
follows. In Section 2, we recall some notations and preliminaries. Namely some
basic results for almost automorphy and weighted pseudo almost automorphy. Sec-
tion 3, is divoted to extend and prove a fixed point theorem in the cone. In section
4, we prove our results for the existence and uniqueness of positive weighted pseudo
almost automorphic solution. In the last section, we give an example.

2. SOME DEFINITIONS AND PRELIMINARIES

We denote by R the set of real numbers, by RT the set of nonnegative real
numbers, by Q a closed subset in R? (¢ = 1,2) and by BC(X), where X is a metric
set, the space of continuous bounded functions defined on X with values in R. we
recall some definitions and notation for almost automorphy and weighted pseudo
almost automorphy.

2.1. Almost automorphy.

Definition 2.1 ([22]). A continuous function f : R — R is called almost au-

tomorphic if for every sequence of real numbers (S!,), there exists a subsequence
(Sn)n such that

lim lim f(t+ S, —Sn) = f(t), vt eR.

m—-+oon—-+oo
This limit means that
g(t) = lm f(t+Sn)
is well defined for each t € R and
f(t) = lim g(t—35,), vVt €R.
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The collection of all such functions will be denoted by AA(R).

Notice that some fundamental properties of almost periodic functions are not
verified by the almost automorphic functions, as exemple the property of uniform
continuity. A well known example of almost automorphic function not almost
periodic is

1
t) = sin .
) 2 + cost + cos /2t

Lemma 2.2 ([22]). Assume that f,g € AA(R) and X is any scalar. Then the
following hold true:

1) f+g, fg, N, f-(t)=ft+71), f(t)= f(=t) are almost automorphic.
ii) The range Ry = {f(t) : t € R} is precompact in R, and so f is bounded.
iii) If{fn} is a sequence of almost automorphic functions and f,, — f uniformly

on R, then f is almost automorphic.
iii) Fquipped with the sup norm

[[f[I = suplf(#)]
teR

AA(R) turns out to be a Banach space.

Definition 2.3 ([22]). A continuous function f : R x Q@ — R is called almost
automorphic in t uniformly for x in compact subset of Q@ C R ( respectively for
(z,y) in compact subset of Q@ C R x R) if for every compact subset K of Q0 and
every real sequence (Sm)m, there exists a subsequence (Sy), such that

glt.@) = lm f(t+Sn ) (resp.g(t.z,y) = lm f(t+ Sn,x,y))
is well defined for each t € R, x € K (resp.(z,y) € K) and
ft,z) = lim g(t—Sn, @) (resp.f(t,x,y) = lm g(t =S, z,y)), Vi € R.
The collection of all such functions will be denoted by AA(R x ).

2.2. Weighted pseudo almost automorphy. Let U denote the collection of all
functions (weights) p : R — (0, 4-00) which are locally integrable over R such that
p(t) > 0 for almost each ¢ € R. For p € U and r > 0, we set

mir) = [ ooy

Throughout this paper, the set of weights U, stands for
U ={peU: Tl}rfoom(r, p) = oo}.
Obviously, Uy, C U, with strict inclusions.
Let p € Us. Set
. 1 "
PAA(R.p) = {f € BO®): lim —o— [ |f(®lp(e)at =0}

Ti}+00m(r7 p) -Tr

In the same way, we define PAAG(R x RT,p) (PAA(R x RT x RT,p)) as the
collection of continuous functions f defined on R x RT (R x R* x R*) such that
f(,x) (f(.,z,y)) is bounded for each z € RT ((z,y) € RT x RT) and

! / () p(t)dt = 0 ( lim / (b2, 9)p(0)dt = 0)

rteom(r,p) ), r=teom(r,p) J_,
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uniformly in z € RT ((z,y) € RT x RT).

Definition 2.4 ( [8] ). Let p € Us. A functon f € BC(R) is called weighted
pseudo almost automorphic (or p-pseudo almost autornorphic ) if it can be expressed
as f = f*+ f¢, where f** € AA(R) and f¢ € PAAW(R, p). The collection of such
functions is denoted by WPAA(R, p).

The functions f** and f¢ appearing in definition above are respectively called
the almost periodic and the weighted ergodic perturbation components of f.

Example 2.5 ([26]). Consider the functions

1
n
2 + cost + cos /2t

1 ift<0

J(t) =si e Pt if t>0

+ e and p(t) = {

If 0 < a < B, we have f € WPAA(R, p) and f does not belongs to PAA(R), the
space of all pseudo almost automorphic functions.

In the followng lemma we give some properties of the space WPAA(R, p).

Lemma 2.6 ( [8,20] ). Let p € Us.
(i) WPAA(R, p) equipped with the sup norm is a Banach space .
(ii) If f = fo* + f©c € WPAA(R, p) with f** € AA(R) and f¢ € PAA(R, p),
then f**(R) C f(R).
(iii) If f € BC(R), then f € PAAW(R, p) if and only if for every e > 0

1
lim / p(t)dt =0,
r—+oom(r, p M, (f)

where M, (f) ={t € [-r,r] : | f(t)| > €}.
(iv) If we consider that p = 1, then we obtain the standard spaces PAA(R).

Definition 2.7. A subset B of BC(R) is said to be translation invariant if for any
x € B we have x(.+ 1) € B for any 7 € R.

Lemma 2.8 ([19]). Let p € Uy. Assume that PAAy(R, p) is translation invariant.
Then the decomposition of weighted pseudo almost automorphic is unique.

Lemma 2.9. Let us fiz p € Uo.

1) Following the same reasoning as in the proof of [5] it follows that If f,g €
WPAA(R, p), then f.g € WPAA(R, p)
2) We know from Agarwal et al. [4] that if the limits

t
1imsupp( +7) < oo and limsupm
e p(t) t—oo (T, p)

(2.1)

exist for each 7 € R. Then the spase PAAy(R, p) is translation invariant.

Definition 2.10 ( [8] ). A functon f € BC(R x R*") (f € BC(R x Rt x R")) is
called weighted pseudo almost automorphic (or p-pseudo almost automorphic ) if it
can be expressed as f = f% + f¢, where f** € AAR x RT) and f¢ € PAAo(R x
R*,p) (f** € AARxRT xRT) and f¢ € PAA)(R x RT xR*,p)). The collection
of such functions is denoted by WPAA(R x R, p) (WPAA(R x RT x R, p)).
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Theorem 2.11 ([8 18]). Fiz p € Ux. Let o,7 € WPAAR,p) and f = f* +
f¢ € WPAAR x Rt,p) (f = f+ f¢ € WPAAR x Rt x Rt,p)). Assume
both f and f% are uniformly continuous in any bounded subset K € RT (K €
RT x RY) uniformly in t € R. Then, f(.,0(.)) € WPAA(R,p) (f(.,a(.),7(.)) €
WPAA(R, p)).

Corollary 2.12 ( [20]). Fiz p € Us. Let 0,7 € WPAA(R, p) and f = f** + f¢ €
WPAAR x RY, p) (f = f* + f¢ € WPAAR x Rt x R, p)). Assume both f
and f* are lipschitzian in v € RT ((z,y) € RT x RT) uniformly in t € R. Then,
f(,,0(.) e WPAAR, p) (f(.,0(.),7(.)) € WPAA(R, p)).

3. FIXED POINT THEOREM

Definition 3.1 ( [12]). Let E be a real Banach space. A closed convex set P in E
is called a convex cone if the following conditions are satisfied

(1) If x € P, then A\x € P for any X € RT;
(2) If € P and —x € P, then x = 0.

A cone P induces a partial ordering < in E by x < y if and only if y — x € P.
A cone P is called normal if there exists a constant N > 0 such that 0 < x < y

implies ||z|| < N||y||, where ||.|| is the norm on E. We denote by P the interior set
of P. A cone P is called a solid cone if P # ().

In the following theorem, we extend the results obtained in |14, Theorem 3.1]
and [15, Theorem 2.1], used in the scalar case, to other used in the case of systems.

Theorem 3.2. Let P be a normal solid cone in a real Banach space X. Dy, Do
are linear operators from P to P and A1,As,B1,By : PX Px P x P — P are
operators with

Al(x7uaya€) = Bl(%“»%f) + Dl(.’l?),

such that
(S1) Bi(.,u,y,&) is increasing and By (z, .,y,§), B1(z,u, .,£), B1(z,u,y,.) are de-
creasing;
By (z,u, ., &) is increasing and Ba(.,u,y,§), Ba(z, ., y,€), Ba(z,u,y,.) are dec-
creasing.

(S2) There exist positive functions ¢1, @2 defined on (0,1) x P X P x P such that
for each z,u,y, & € P and a € (0,1), ¢i(c,z,u,y) >« (i =1,2)and

1 1
Bl(axv auv Eyvf) > ¢1(OZ,.’E,’LL, y)Bl(wvuvyag)v

11
By(-x, —u,09,€) > é(0, 2, u,y) B (2, 1,y ).

(S3) There exist xg,2°,yo,y° € P with xo < 2°,y9 < 4° such that
Zo S Al(x07x07y07x0)7141(x03‘TanO,‘TO) S xO’

Yo S A2($07y07y0,y0)7AQ(xO7y07y07y0) S yO
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and for each o € (0,1)

inf ¢1(aaxvuvy) > a,
y€[yo,y°],x,u€lro,2°] (3 2)

inf Pa(a,z,v,y) > a.
z€[wo,2°],v,y€y0,y°]

(S4) There exist constants Ly, Lo > 0 such that for all x,u,y,&1,& € P with

61 2627

Bi(l'vuvyagl) - Bi(x,uvya£2) 2 _Li(fl - 52) (Z = 1a2)

Then operator A: Px P X Px P x P x P— P x P defined by
A(%U,Ua%fy V) = (Al(xauayvf)ﬂAZ(‘rav7y7V))

has a unique fized point (x*,y*) € [xo,2°] X [yo,y"]; that is

Az a* g y" 2", y") = (2%, y7).

[e]
Moreover, if is true for all ug,u®,vy,v° € P with ug < u® and vy < v°:
¢1(O[,(E,’U,7y) > o,

y€E[vo,v°],x,u€[ug,u’)

¢2(O¢,J)7U,y) > a.

mn
z€[uo,u’],v,y€lvo,v°]

Then (x*,y*) is the unique fized point of A in 103 X 103

Proof. From (S;) and the linearity of the operators D1, Do : P — P, we obtain

A1(u,y,8), As(z,u, ., &) are increasing and Ay (x, ., y, §), A1(z,u, ., &), A1(z,u,y,.),
AQ('7u7ya§)7 A2($7 '7ya§)7 AQ(x7u7y’ ) are decreaSing'

Let A € (0,1]. Denote by
Lo Lololop
ex =sup{r >0: TAl(Xx , Ao, AYo, Axo) < Bi(Axo, BN ) and
1

1 1 1
rAz(Azo, Ayo, Xyo, Ayo) < BQ(XJJO, Xyo’ Ao, Xyo)}

and by
¢1,)\(7‘,.T, va) =71+ 6/\[¢1(T7$,U,, Z/) - TL

¢2,A(T71'7U7y) =7+ 6)\[¢2(T,I,’U,y) - TL

for all r € (0,1),z,u € [Azo, 2%, v,y € [Ayo, 33°].

It is clear that 0 < ) < 1, and for each A € (0,1], r € (0,1)
in r,x,u,y) > T,
yE[yo,yo],a;,ue[a;o,azo]¢17)\( y)

inf o\ (r,x,0,y) > 7.
z€[wo,2°],v,y€y0,y°]

Also, we have

1 1 1 1
EAAI(X:I;O7 )\LL’O, Ayo» )\.’I}()) S Bl<)\$07 X:L'O7 Xy07 X'/I;O)a

1 1 1
5/\142()\3)0, )‘yOa Xyoa )‘yo) S B2(X-/I:0a Xyoa )‘y07 Xyo)
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1 1
It follows that for all y € [Ayo, Xyo], x,u, & € [Axo, Xmo]

1 1 1 1
6AA1($,U, yvg) < €>\A1(Xx0a )‘an )‘y()v )\.’Eo) < Bl()‘an XSUO, Xyoa X{EO)
< Bl(xauﬂyvg)
1 0 1 0
and for all v,y,v € [Ayo, Y |,z € [Axo, 32 ]
1 0 1 0 1 0 1 0
SAAZ('T7U7:U’ V) S E)\AQ()‘II;(%)‘:UO? Xy 7>\y0) S BQ(X:I: 7Xy 7>\y03 Xy )
S B2($7U7ya V)'

1 1
Therefore, for all r € (0,1), z,u,& € [Axo, Xxo],y € [Ayo, Xyo]

1 1 1 1
Al(’l"l',*u7*y7£) Bl(rxafuafyag) +D1(7"I)
r r r r

2 ¢1(r7m,u,y)B1($,u7y,f) +7'D1(5E)
= rAl(x,u,y,§)+[¢1(r,x,u,y) 7T}B1(Z,u7ya€)
2 rAl(xa Uu, y7£) + €)\[¢1(T7I,u, y) - T]Al(ma vavf)

¢1,>\(T7 z,u, y)Al (l’, u,y, f)

1 1
Similarly, fo all r € (0,1), x € [Axzo, Xaro],v,y, v € [Ayo, Xyo], we obtain

11
Ap(—t, —0,7y,v) 2 G2.(r, 2,0, 9) A (0,4, v).

[e]
Now, we prove that for each ¢ = 1,2 and z,u,y € P, there exists a unique point in
P, which we denote by ®;(z,u,y), such that
Ai(CU, u,y, (I)i(x7 U, y)) = CI)Z(J:7 U, y)v i=1,2.
o 1
Fix z,u,v,y € P.Then, there exists A € (0,1] such that z,u € [Axo,xxo] and
1
v,y € [Ayo, Xyo]. Let

Al(xaua yaf) + ng
1+ 1L,

A2(I7vvya§) +L2£ 2

\Ill(:c’uvy)(g) = 1+ Ly , LEP.

) \Ilg(x,v,y)(ﬁ) =

It is clear that Uy (x,u,y)(.), Ua(x,v,y)(.) are operators from P to P and by (S4)
they are increasing in P. From (S;1)-(S3) we have for every A € (0,1)

1 1
A1($,U7y7A$O) > A1(>\$0, Xx07 Xyowxo)

> (A 2o, 2°,y") A1 (w0, 2°,9°, 20) > Axo.

And if A = 1, we have A;(z,u,y,z0) > xo. Thus, Ai(z,u,y, Axg) > Az, VA €
(0,1]. Similarly, we obtain

1
Al(x7u7ya 7$0) S 170-

1
A A
And analogously, one can show that

1 1
As(2,v,y, \yo) > Ay, As(z,v,v, Xyo) < Xyo-
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It follows that

1
‘1’1(a:,u,y)()\x0) Z )‘an qf]_(.]?,ﬂ, y)(Xl‘o) S

: (3.3)
Vo (2, v,y)(Ayo) > Ayo, ‘1’2($,va)(§:90) <
Set

X;Luy =11 (CC, u, y) (X;L_yl)’ anuy =11 ('737 U, y)(U;Lu_yl)v

1
0o _ o _ 1.0
Xouy = A0, Upyy = Xm ,

Y:ﬁ;y = 1/)2(1:7 v, y)(Y:ZZ;l)a erz)y = 1/)2(1:7 U, y)(vﬁil)»

1
Yxovy = Ayo, Vaé)vy = Xyo'
Next, a similar proof to [28, Theorem 2.1] yields that ¥4 (z, u,y)(.) has a unique

1
fixed point ®q(z,u,y) € P\ﬂCo,XﬂfO] and Uy(x,v,y)(.) has a unique fixed point
1
Dy (z,v,y) € [Ayo, Xyo], that is

Al(%%y, q)l(x,u,y)) = (I)l(x’u’ y) and Ag(aj,v,y,fl)g(x,v,y)) = (I)Q(l‘,’l},y),
with
Xouy — ®1(z,u,y), Up,, — ®1(2,u,y) as n — +o0,

TuYy

Yooy — ®a2(x,v,9), Vi, — P2(z,v,y) as n — +oo.

VY

Now, if ®}(z, u,y) is a fixed point of ¥;(x, u,y)(.) in P, then there exists 8 € (0, \)
such that ®)(z,u,y) € [Bmo,%xo]. Since, by the above proof, 1 (x,u,y) has a
unique fixed point in [Szo, %xo], it follows that ®}(z,u,y) = ®1(x, u,y). Also, we
have the uniqueness of ®s(x,v,y) in P. Moreover, by a similar proof to step 2 and

step 3 of [I5, Theorem 2.1], one can show that ®4(.,u,y), P2(x,u,.) are increasing
and ¢4 (z,.,y), P1(z,u,.), P2(.,u,y), ®1(x,.,y) are decreasing. Therefore,

1 1 1 1 1 1
@1(045(}, —u, *y) = Al(a‘r’ —u, —Yy, (I)l (013?, —u, 7y))
(6% « (0% (0% (6% (6%

Y

1 1
A —u, —y, P
1(043%0[“70[% 1(.7},’&,:(]))
2 ¢1,>\(a7$»u7y)@1($7u7y)a

1 1
for all a € (0,1), z,u € [Azo, X:UO], y € [Ayo, Xyo]. Also, we obtain
1 1
(1)2(a$7 Eu>ay) > ¢2’)\<O[7.’17,U/, y)¢2(x7ua y)7

1 1
for all @ € (0,1), z € [Axo, XJTO], u, Y € [Ayo, Xyo].
Finally, ®;, ®, satisfy all hypotheses of [25, Theorem 2.7]. Thus, the operator
®:PxPxPxP — Px P defined by ®(x,u,v,y) = (P1(x,u,y), Pa(z,v,y))
has a unique fixed point (2*,y*) € [x0,2°] X [yo,y"]; that is

Q(z*, ",y y") = (2%, y7).
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Hence
A(:L'*,:c*,y*,y*,fI)l(x*,x*,y*),q)g(a?*,y*,y*))
= (Al(x*ax*vy*vq)l(x*vx*7y*))vA2(x*7y*7y*vq>2(x*vy*7y*)))
= (¢1($*a$*ay*>7®2($*7y*7y*)>
=o(z", 2"y, ") = (2%, y").

4. WEIGHTED PSEUDO ALMOST AUTOMORPHIC SOLUTION

In this section, our goal is to prove the existence and uniqueness of weighted
pseudo almost automorphic solution for . Throughout the rest of this paper,
we consider p € Uy such that PAA(R, p) is translation invariant and that the
functions f and g in admit the decomposition

f(taxvy) = hl(tax)f(taz7y) and Q(t,x,y) = hg(t,y)g(t,x,y).

As in [I4, Lemma 3.2], we have the following lemma.

Lemma 4.1. Suppose that f € WPAA(R x R, p) and one of the following two
conditions holds:
(i) f(t,.) is increasing in RT, and there exists » : (0,1) x (0,4+00) — (0,1]
such that p(a,z) > a and f(t,azx) > p(a,z)f(t,x) for allxz >0, a € (0,1)
and t € R.
(i) f(t,.) is decreasing in R*, and there exists ¢ : (0,1) x (0,+0c0) — (0,1]
such that ¥ (o, x) > o and f(t, 2z) > ¢(a, ) f(t,x) for allz > 0, o € (0,1)
andt € R.
Then, for each [a,b] C (0,+00), there exists L > 0 such that

|f(t,u) — f(t,v)| < Llu—v|, Vt € R, Yu,v € [a,b].

Lemma 4.2. Suppose that f € WPAAR x RT x RT, p) and one of the following
two conditions holds:
(i) f(t,.,y) is increasing in RY, f(t,z,.) is decreasing in RY, and there ex-
ists ¢ : (0,1) x (0,+00) x (0,+00) — (0,1] such that (o, x,y) > a and
[t ax, 2y) > (o, x,y) f(t, 2, y) for all x,y >0, a € (0,1) and t € R,
(i) f(t,.,y) is decreasing in RY, f(t,x,.) is increasing in RT, and there ex-
ists ¢ : (0,1) x (0,400) x (0,+00) — (0,1] such that ¥(a,x,y) > o and
flt, ax, ay) > Y(a,z,y) f(t,z,y) for all z,y >0, a € (0,1) and t € R.
Then, for each [a,b],[c,d] C (0,400), there exists L > 0 such that

|f(t,z,y1) — f(t,z2,y2)] < Ll(z1,951) — (z2,92) ||
= L(|lz1 — x| + |1 — y2)),
Vit € R, Yoy, 29 € [a,b], Yy1,y2 € [c,d].

Proof. Suppose (i). Let [a,b], [c,d] C (0,+00). Since f € WPAA(R x RT x R*, p),
we have

sup  sup  f(t,z,y)
I tGRmG[a,b],.ye[C»d] < 400.
min(a, ¢)
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Let x1,72 € [a,b], y1,92 € [c,d]. If 21 > 22, y1 < yo, then

ft,z1,91) — f(t22,92) > 0 > —L[(z1 — 22,91 — y2)]|-
If 21 < z2, y1 < Yo, then

X
f(taxlvyl)_f(tax%yQ) = f(tv ;;x27y1)_f(t1x27y2)
x i)
> f(t, —xa, —y1) — f(t, w2, y2)
xZ2 X1
X
= @(jvﬂ?%yl)f(t’x%yl) — f(t,z2,y2)
2
X
Z jf(t7m2ay2) _f(tam2ay2)
2
t
_ 7|z17$2|f(7x27y2) Z*L|$1*I2
T2

> —L|[(z1,y1) — (w2,92)].
Similarely if 1 > o, y1 > yo. If 1 < z2, y1 > y2, then

i
Flta,yn) — Ftaa,90) = F(t 2as, L) — F(t, 22, 90)
T2 Y2
. X
> mi (i’zfz)f(tyxzayz)—f(t7$2,y2)
1

> —L|(z1,y1) — (w2,2)].

ThuS, f<t7m1ayl)_f(t7m2ay2) Z _L”(ml_x??yl_yQ)H for all T1,T2 € [a’7b]?y17y2 S
[e,d] and t € R. Then by changing the role of (x1,y1) and (z2,y2), we obtain
||f(t75017y1)—f(t;5172ay2)|| < L”(xl —Z2,Y1 _yQ)” for all T1,T2 € [avb]7y13y2 € [Cv d}
and t € R. The proof in the case of f satisfying (ii) is similar. a

Lemma 4.3. Let ¢ : R x Rt — R be such that the function t — c(t,.) is in
WPAA(LY(RT), p). we assume that there exists b € L'(RT) such that |c*%(t, s)| <
b(s) for all t € R and almost everywhere in RY. If f € WPAA(R,p), then the
function

t
h(t) = / c(t,t —s)f(s)ds
—o0

is in WPAA(R, p). Furthermore the almost automorphic component of h is given
by

¢
h(t) = / A (t, t — 8)f*(s)ds
Proof. Tt is easy to show that h®* € AA(R). In addition, by a similar proof of [3]

Lemma 5.4] and using the fact that PAAy(R, p) is translation invariant , one can
show that liI'+n I(r,p) = 0, where
r—+00

1) = s [ 1 (el =a)1(6) = (0.t = ) (sl (0.
This means that h € WPAA(R, p) and h%*(t) = ffoo c(t, t —s)f*(s)ds. O

Next, we list the following assumptions that we will use them throughout the
rest of this paper.
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(Hl) o1, € WPAA(R,,O) and hl, hg, k?1, ky € WPAA(R X R+,p) are non-
negative functions such that h{®, h$®, k{®, k$® are uniformly continu-
ous in any bounded subset K € R uniformly in s € R. Also, f,g €
WPAA(R x Rt x RT, p) are nonnegative functions such that fe¢, g%® are
uniformly continuous in any bounded subset K € Rt x RT uniformly in
seR.

(Hy) For all s € R, f(s,.,y),9(s,x,.), are increasing and f(s,z,.), g(s,.,y),
hi(s,.), ha(s,.), k1(s,.), ka(s,.) are decreasing. Moreover, there exist con-
stants Ly, Lo > 0 such that for ¢ = 1,2

ki(S,f)—]ﬂ(S,V) > _Li(g_y)7 VSERa VfZVZO (41)

(Hs) There exist ¢1,p2 : (0,1) x (0,400) — (0,1], ¥1,%2 : (0,1) x (0,400) x
(0, +00) — (0,1] such that
1

h1(57 ax) Z @l(avx)hl(sux)v f(87 ax, éy) Z wl(OZ,x,y)f(S,x,y),

h2(s7 éx) Z @2(C¥7$)h2(37$)> 9(87 éQj?ay) Z 1/J2(04>$7y)f(3,$7y)7

and
(,01'(0[,.%) > a, wi(a7z7y) > Q, 1= 1727
Va,y > 0,Va € (0,1),Vs € R. Moreover, for any 0 < a < b < +o00 and
0<e<d< +oo
i f b ) b > )
el d]sol(a u)hr(a, z,y) >«

inf wa(a, u)ha(a, z,y) >
z€a,bl,u,y€c,d]
for every a € (0,1).

(Hy4) c1,co are functions from R x RT to Rt and the function t — ¢;(¢,.) is
in WPAA(L*(RY), p) for i = 1,2 . Moreover, there exist by,by € L'(RT)
such that |c?%(¢,s)| < bi(s), i = 1,2, for all t € R and almost everywhere
for s € RT.

Now, we are ready to present and prove our results for the existence and uniqueness

of positve solution.

Theorem 4.4. Assume that (Hy)-(Hy) hold. Moreover, for each T > 0 there exist
o1,09 € (0,7] and there exist 7 > o1, T2 > 09 such that

(i)
t
21’1]& Cl(t,t—S)hl(S,Tl)f(S,Ul,TQ)dS20'1,
€ — 00
. (4.2)
znﬂg co(t,t — s)ha(s, 2)g(s, 71, 02)ds > o9.
€ — 00
(ii)
t
supa ()71 JrSHP/ ci(t,t —s)hi(s,01) f(s,71,02)ds + ki(t,71) < 715
teR teR J —o0o (4.3)

t
supaa ()12 + sup/ co(t,t — 8)ha(s,02)g(s,01,72)ds + ka(t, 2) < To,
teR teR J —o00
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Then, system (-) has exactly one weighted pseudo almost automorphic solution
(x*,y*) € P xP.

Pmof. It consist to prove that all hypotheses of Theorem [3.2] are satisfied for ad-
equate operators A; and As. Denote by P the following set in the Banach space
WPAA(R, p)

P ={x e WPAA(R,p) : z(t) > 0, Vt € R}.
It is not difficult to verify that P is a normal and solid cone in WPAA(R, p) and

P ={x € P:3e > 0such that z(t) > ¢, Vt € R}.
Consider the nonlinear operator A(z,u,v,y,&,v) = (Ai(z,u,y,§), As(z,v,y,v))
with
A1($7u7y,§) = Bl(x,u, %f) + D1<.'L‘), AQ(.%‘,U,y, V) = BQ(x’ v, Y, V) + D2<y)

such that for all z,u,v,y,{,v € Pand t € R
t

Bi(z,u,y,€)(t) =/ ci(t,t = s)ha(s,u(s))f (s, 2(s), y(s))ds + k1 (¢, £(1),

—oo
t

Bo(z,v,y,v)(t) = / co(t,t — s)ha(s,v(s))f(s,x(s),y(s))ds + ka(t, v(t)).

and
Dy ()(t) = ar(t)z(t — Br), D2(y)(t) = az(t)y(t — B2).
By Lemma [2.9] it is easy to show that D, D5 are linear operators from P to P.
In addition, it follows from (H;)-(Hj3), Lemma Lemma and Theorem [2.11]
that
ha( (), ha(2()), f(52(),y()), 9( 2(.), () € WPAA(R, p), Va,y € P.

Also, since k1 (t,.) and ks(t,.) are decreasing in R™ and satisfying (4.1), one can
obtain for i = 1,2

|ki(t, &) — ki(t,v)| < Lil§ —v|,Vt € R,VE, v > 0,
which, with (H;) and Theorem|2.11], yields that k1 (., £(.)), k2(.,&(.)) € WPAA(R, p), V€ €
F , Lemma [2.9, Lemma and (Hy) we obtain
A (z,u,y, ), As(z,u,y,€) € WPAA( 7p) for all z,U, Y, ¢ € P
Next, we prove that By, By : P X P X P X P — P Let x,u,y,& € P Denote

P. Combining this with Lemma |2

e = infz(t) and 7 = max{supu(t), supy(t)}.
teR teR teR
Then,

gglgBl(x,u,y,f)(t) > inf/ cr(t,t — s)hi(s,u(s)) f(s,x(s),y(s))ds

teR J_ o

¢
> inf/ cr(t,t — s)hi(s,7)f(s,e,7)ds.
teR J_ o
By (4.2), there exist 01,092 € (0, 7] and there exist 7 > 01, T2 > 02 such that
t
inf/ c1(t,t — s)hi(s,m1)f(s,01,m2)ds > o1.

teR J_ oo
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Suppose that € < o1, 7 > 71, T > 7o (the other cases are similar and easier to
prove), then

t
€
inf By (x,u,y,£)(t) > inf/ c1(t,t — s)hi(s, lﬁ)f(s,—al,lrz)ds
teR teR J_ o T1 o1 T2
t
€
> 7lmin(—,g)inf/ c1(t,t — s)hi(s,m1)f(s,01,72)ds
T o1’ T ter J_
> T—lmin(i 2)01 > 0.
T o1 T

Thus, Bi(z,u,y,£) 6 P and hence Al(x u,y,&) € P Analogously, one can show

thatAg(xuyf)EPforallxuySEP
Now, let us prove (S51)-(Ss) of Theorem [3.2] It is easy to see that (S1) and (Sy)

follow from (Hz). To prove (S2), suppose z,u,y,§ € P and o € (0,1). Set

f inf inf
e, u,y) = min{inf o(s), inf u(s), inf y(s)},
b(x,u,y) = max{sup z(s),sup u(s),sup y(s)}.

seR seR seR
Then, 0 < a(z,u,y) < b(z,u,y) < +oo and x(s),u(s),y(s) € [a(z,u,y),b(z,u,y)]
for all s € R. We difine

¢i(a7$7u7y) = inf @i(%’Y)ﬂ%(%ﬁﬂ?); = 172

Byvm€la(z,u,y),b(z,u,y)]

By (Hj), we have

1 1 t 1 1
Bilow oo 0,80 = [ (s u(o) (s ans), Su(s))ds + b (.€(0)
t
> o) [ s u(s)f(s2(0) y(5)ds + k(0,60
which means that
B]_(OZZL'7 é’uﬂ %ya 6) Z (bl (O[, x,u, y)Bl (ma u,y, f)
for each z,u,y,£ € 1(3 and « € (0,1). Similarly, we obtain

1 1
BQ(ax’ au’ay’g) > ¢2(OZ,IL’,U, y)BQ(I,U,yaf)

for each z,u,y,& € P and « € (0,1). Finally, (S3) follows from , and
(H3). The proof is completed.

In the following corollary, we give a concrete way to obtain the constants 71, 72, 01, 02
of the previous theorem. First, let us introduce some notations. We set, uniformly
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inte€R and p,q €[0,1]:

o ftzy) o ha(tu)
o T T neraen (), im0 = g (1),
t
lim sup ft2y) ’i’y) — fpy(+0010+)(t), lim sup Pt u) h%‘ﬁ (1),
(z,y)—(+o0,0t) T u—sot+ U7
- g(t,z,y) . ho(t u)
o L T T Inrooon)(8), HmRE T2 = ha g oo (1),
t
lim sup 9(t,z,y) = gp’(0+7+°°)(t), lim sup(7> = hg’0+ (t).
u
(2,y)—(0F ,+00)  YP u—s0+ 4

Corollary 4.5. Assume that (Hy)-(Hy) hold. Moreover there exist p,q € [0,1]
such that the following conditions hold:

(1)’

t

inf c1(t,t = 8)h1,g,400(5) fp, (0% +o0) (8)ds > 1,
teR J_ o
) (4.4)
inf ca(t,t — 5)h2,q,400(5)gp,(+00,01)(8)ds > 1.
ter J_ oo
t o .
sup/ cr(t,t — s)hY (5) fPH00 ) (s)ds < 1,
teR
(4.5)

¢
sup/ cot,t — s)hg’o+ (s)gp’(0+’+°°)(s)ds <1,
teR
@; =supa(t) <1, i=1,2.
teR

Then system has ezactly one weighted pseudo almost automorphic solution
[e] [e]
(x*,y*) € P x P.

Proof. We prove that hypotheses (i) and (ii) of Theorem [4.4] are satisfied.

From (i)’ and (ii)’,

inf

there exist € > 0 verifying

teR J_

sup
teR

t
/ citst = 8)(h1,q,+00(8) = €)(fp,(0+ +00)(5) = )ds > 1,

t
/ 1t t— 8)(hP" () + &) (fPE0) () 4 2)ds < 1.

It follows that there exist numbers 6, M with 0 < § < 1 < M such that

f(S z,y) 2

and
(s,
f(s,x

> (h1,g,400(8) —€)u?, Yu > M, Vs € R,
(fp, o+ +Oo)( )—E)l‘p, V(ES& VyZM7 VseR

2.0 (s)—|— )uq Vu <4, Vs € R,

u) < (h
y) < (e ()—i—e)x” Vo > M, Yy <6, Vs € R.
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Let 71,72 > M, 01,092 € (0,8] with 07 <1 —a; and 04 <1 —ay. Then,

t

inf [ c1(t,t —s)hi(s, 1) f(s,01,72)ds

t
> %gﬂfg cr(t t — S)(hl,q,Jroo(s) - €)Tf(fp,(0+,+oo)(s) - €)J;fds
> 7lol > oy.

This prove the first inequalitie of (4.2). We follow the same reasoning to get the
second inequalitie. On the other hand,

/ c1(t,t — s)hi(s,01)f(s,71,02)ds + ki(t, 1)

a1 T1 + sup
teR
¢
<aim + sup/ c(t,t — s)(h’f’0+ (s) + e)of(fp’(+°°’0+)(s) +e)Pds + k1(t,0)

teR

SalTl +0’?T{7 +k1(t,0) S (al +Utlz)71 +k1(t,0)

Since k1(.,0) is bounded, we can choose a sufficiently large constant 7, such that
(@ + of)m1 + k1(¢,0) < 71. This prove the first inequalitie of (4.3). To prove the
second inequalitie, one can follows the same reasoning. The proof is ended. ([

5. EXAMPLE

Example 5.1. Consider system by setting, for all (t,z,y) € R x RT x RT
and a € (0,1)

p(t) =€, ar(t) = a(t) = %, pr=PB2=1,
B 1 ot y+3)In(x +1)
f(t,x,y)—{1+cos 2—|—smt—|—bln\ft }\/ y+1
B 1 ot \/ 2+ 3)In(y + 1)
9(t,2,) = {1+ cos” 2—+—smt—|—smft ! z+1
c1(t,s) = ca(t,s) = ﬁlsw hi(t,x) = ha(t,z) = ¢ ii? and
bt ) = kot 2) = Lo
Toke p = %,q =0, Ly = Ly =1 and define
_ 4@+ 1)(@+3a) _ s/l + Dy +3a)In(ax +1)
o) = T ) ‘/“(O"m’y)¢ o)y
_ s+ Dy +30) _ /(@ +1)(z+3a)In(ay +1)
§02(aay) - m and wQ(aaxuy) - \/ ($+OZ)($+3) n(y+1)
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It is easy to verify that fori=1,2

QDZ'(O[,I) > OL%7 1/)71(047I7y) > Oé%, hi,0,+00(t) = 17 h?’OJr(t) = \3/5 and
1

+et
2 + sint + sin /2t

)

F1,0% 400) (B) = 91 (00,00 (£) = 1+ cos

JHE=OD ) = g3 1) = 0.

Then,we have all hypotheses of corollary are verified. Hence, system
with the above functions has a unique positive weighted pseudo almost automorphic
solution.
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