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Abstract. In this work, we shall explain a new result concerning weighted
pseudo almost automorphic solutions for more general systems of nonlinear
neutral in�nite delay integral equations. We establish a new �xed point theo-
rem in the cone, which extend some existing results even in the case of scalar
version, and then, we apply it to prove our results.

1. Introduction

Since the work of Bochner in [7], almost automorphy, as a natural generaliza-
tion of the concept of almost periodicity in the sense of Bohr [6], has been of
great interest for many authors to study almost automorphic solutions to various
equations including linear and nonlinear evolution equations, integro-di�erential
equations, delay integral equations, functional-di�erential equations, etc. For more
details about this topics we refer to the recent book [22], where the author gave
an important overview about the theory of almost automorphic functions and their
applications to di�erential equations.

The concept of weighted pseudo almost automorphic functions with values in a
Banach space, was introduced by G.M.N'Guerekata et al. [8] as a generalization
of that of pseudo almost automorphic functions, which generalizes that of pseudo
almost periodic functions introduced by Diagana [13]. Since then, these functions
have generated lot of developments and applications. For more details we refer the
reader to [8, 13, 21, 22] and the references therein.

The study of the existence of almost periodic, almost automorphic, pseudo al-
most periodic, pseudo almost automorphic, weighted pseudo almost periodic and
weighted pseudo almost automorphic solutions is one of the most interesting topics
in the qualitative theory of di�erential and integral equations. In [25], we considered
the existence and uniqueness of positive almost periodic solution to the following
system of nonlinear �nite delay integral equations

x(t) =

∫ t

t−τ1(t)
f̃(s, x(s), y(s))ds

y(t) =

∫ t

t−τ2(t)
g̃(s, x(s), y(s))ds

(1.1)

which is a model for the evolution in time of two species with interaction. Also,
in [9, 10, 23, 24, 27], the existence of positive periodic solutions for other forms of
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(1.1) was studied by using the method of upper and lower solutions or by topological
methods.

In this work, we investigate the existence and uniqueness of a positive weighted
pseudo almost automorphic solution for the following more general system of non-
linear neutral in�nite delay integral equations

x(t) = α1(t)x(t− β1) +

∫ t

−∞
c1(t, t− s)f̃(s, x(s), y(s))ds+ k1(t, x(t))

y(t) = α2(t)y(t− β2) +

∫ t

−∞
c2(t, t− s)g̃(s, x(s), y(s))ds+ k2(t, y(t))

(1.2)

Note that the existence of pseudo almost periodic solutions to the scalar version of
system (1.2)

x(t) = α(t)x(t− β) +

∫ t

−∞
a(t, t− s)f(s, x(s))ds+ h(t, x(t)) (1.3)

was studied in [14]. Also, the existence of almost periodic, almost automorphic and
pseudo almost automorphic of various forms of (1.3) was studied by many authors
(see, e.g. [1, 2, 3, 16, 17] and references therein)

To the best of our knowledge, there is no work reported in the literature on
weighted pseudo almost automorphic solution to the system (1.2). Therefore, mo-
tivated by the works in [14, 15], the purpose of this paper is to establish a new
�xed point theorem in partially ordered Banach spaces, which extend some exist-
ing results even in the scalar cases, and then used to prove the existence of positive
weighted pseudo almost automorphic solution for (1.2). This paper is organized as
follows. In Section 2, we recall some notations and preliminaries. Namely some
basic results for almost automorphy and weighted pseudo almost automorphy. Sec-
tion 3, is divoted to extend and prove a �xed point theorem in the cone. In section
4, we prove our results for the existence and uniqueness of positive weighted pseudo
almost automorphic solution. In the last section, we give an example.

2. some definitions and Preliminaries

We denote by R the set of real numbers, by R+ the set of nonnegative real
numbers, by Ω a closed subset in Rq (q = 1, 2) and by BC(X), where X is a metric
set, the space of continuous bounded functions de�ned on X with values in R. we
recall some de�nitions and notation for almost automorphy and weighted pseudo
almost automorphy.

2.1. Almost automorphy.

De�nition 2.1 ([22]). A continuous function f : R −→ R is called almost au-
tomorphic if for every sequence of real numbers (S′m)m there exists a subsequence
(Sn)n such that

lim
m→+∞

lim
n→+∞

f(t+ Sn − Sm) = f(t), ∀t ∈ R.

This limit means that

g(t) = lim
n→+∞

f(t+ Sn)

is well de�ned for each t ∈ R and

f(t) = lim
n→+∞

g(t− Sn), ∀t ∈ R.
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The collection of all such functions will be denoted by AA(R).

Notice that some fundamental properties of almost periodic functions are not
veri�ed by the almost automorphic functions, as exemple the property of uniform
continuity. A well known example of almost automorphic function not almost
periodic is

f(t) = sin
1

2 + cos t+ cos
√

2t
.

Lemma 2.2 ([22]). Assume that f, g ∈ AA(R) and λ is any scalar. Then the
following hold true:

i) f + g, f.g, λf, fτ (t) = f(t+ τ),
∼
f (t) = f(−t) are almost automorphic.

ii) The range Rf = {f(t) : t ∈ R} is precompact in R, and so f is bounded.
iii) If {fn} is a sequence of almost automorphic functions and fn → f uniformly

on R, then f is almost automorphic.
iii) Equipped with the sup norm

‖f‖ = sup
t∈R
|f(t)|

AA(R) turns out to be a Banach space.

De�nition 2.3 ([22]). A continuous function f : R × Ω −→ R is called almost
automorphic in t uniformly for x in compact subset of Ω ⊂ R ( respectively for
(x, y) in compact subset of Ω ⊂ R × R) if for every compact subset K of Ω and
every real sequence (Sm)m, there exists a subsequence (Sn)n such that

g(t, x) = lim
n→+∞

f(t+ Sn, x) (resp.g(t, x, y) = lim
n→+∞

f(t+ Sn, x, y))

is well de�ned for each t ∈ R, x ∈ K (resp.(x, y) ∈ K) and

f(t, x) = lim
n→+∞

g(t− Sn, x) (resp.f(t, x, y) = lim
n→+∞

g(t− Sn, x, y)), ∀t ∈ R.

The collection of all such functions will be denoted by AA(R× Ω).

2.2. Weighted pseudo almost automorphy. Let U denote the collection of all
functions (weights) ρ : R −→ (0,+∞) which are locally integrable over R such that
ρ(t) > 0 for almost each t ∈ R. For ρ ∈ U and r > 0, we set

m(r, ρ) =

∫ r

−r
ρ(t)dt.

Throughout this paper, the set of weights U∞ stands for

U∞ = {ρ ∈ U : lim
r→+∞

m(r, ρ) =∞}.

Obviously, U∞ ⊂ U , with strict inclusions.
Let ρ ∈ U∞. Set

PAA0(R, ρ) = {f ∈ BC(R) : lim
r→+∞

1

m(r, ρ)

∫ r

−r
|f(t)|ρ(t)dt = 0}.

In the same way, we de�ne PAA0(R × R+, ρ) (PAA0(R × R+ × R+, ρ)) as the
collection of continuous functions f de�ned on R × R+ (R × R+ × R+) such that
f(., x) (f(., x, y)) is bounded for each x ∈ R+ ((x, y) ∈ R+ × R+) and

lim
r→+∞

1

m(r, ρ)

∫ r

−r
|f(t, x)|ρ(t)dt = 0 ( lim

r→+∞

1

m(r, ρ)

∫ r

−r
|f(t, x, y)|ρ(t)dt = 0)
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uniformly in x ∈ R+ ((x, y) ∈ R+ × R+).

De�nition 2.4 ( [8] ). Let ρ ∈ U∞. A functon f ∈ BC(R) is called weighted
pseudo almost automorphic (or ρ-pseudo almost automorphic ) if it can be expressed
as f = faa + fe, where faa ∈ AA(R) and fe ∈ PAA0(R, ρ). The collection of such
functions is denoted by WPAA(R, ρ).

The functions faa and fe appearing in de�nition above are respectively called
the almost periodic and the weighted ergodic perturbation components of f .

Example 2.5 ([26]). Consider the functions

f(t) = sin
1

2 + cos t+ cos
√

2t
+ eαt and ρ(t) =

{
1 if t < 0

e−βt if t ≥ 0

If 0 < α ≤ β, we have f ∈ WPAA(R, ρ) and f does not belongs to PAA(R), the
space of all pseudo almost automorphic functions.

In the followng lemma we give some properties of the space WPAA(R, ρ).

Lemma 2.6 ( [8, 20] ). Let ρ ∈ U∞.

(i) WPAA(R, ρ) equipped with the sup norm is a Banach space .
(ii) If f = faa + fe ∈ WPAA(R, ρ) with faa ∈ AA(R) and fe ∈ PAA0(R, ρ),

then faa(R) ⊂ f(R).
(iii) If f ∈ BC(R), then f ∈ PAA0(R, ρ) if and only if for every ε > 0

lim
r→+∞

1

m(r, ρ

∫
Mr,ε(f)

ρ(t)dt = 0,

where Mr,ε(f) = {t ∈ [−r, r] : |f(t)| ≥ ε}.
(iv) If we consider that ρ ≡ 1, then we obtain the standard spaces PAA(R).

De�nition 2.7. A subset B of BC(R) is said to be translation invariant if for any
x ∈ B we have x(.+ τ) ∈ B for any τ ∈ R.

Lemma 2.8 ([19]). Let ρ ∈ U∞. Assume that PAA0(R, ρ) is translation invariant.
Then the decomposition of weighted pseudo almost automorphic is unique.

Lemma 2.9. Let us �x ρ ∈ U∞.

1) Following the same reasoning as in the proof of [5] it follows that If f, g ∈
WPAA(R, ρ), then f.g ∈WPAA(R, ρ)

2) We know from Agarwal et al. [4] that if the limits

lim sup
t→∞

ρ(t+ τ)

ρ(t)
<∞ and lim sup

t→∞

m(r + τ, ρ)

m(r, ρ)
<∞. (2.1)

exist for each τ ∈ R. Then the spase PAA0(R, ρ) is translation invariant.

De�nition 2.10 ( [8] ). A functon f ∈ BC(R× R+) (f ∈ BC(R× R+ × R+)) is
called weighted pseudo almost automorphic (or ρ-pseudo almost automorphic ) if it
can be expressed as f = faa + fe, where faa ∈ AA(R × R+) and fe ∈ PAA0(R ×
R+, ρ) (faa ∈ AA(R×R+×R+) and fe ∈ PAA0(R×R+×R+, ρ)). The collection
of such functions is denoted by WPAA(R× R+, ρ) (WPAA(R× R+ × R+, ρ)).
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Theorem 2.11 ([8, 18]). Fix ρ ∈ U∞. Let σ, τ ∈ WPAA(R, ρ) and f = faa +
fe ∈ WPAA(R × R+, ρ) (f = faa + fe ∈ WPAA(R × R+ × R+, ρ)). Assume
both f and faa are uniformly continuous in any bounded subset K ∈ R+ (K ∈
R+ × R+) uniformly in t ∈ R. Then, f(., σ(.)) ∈ WPAA(R, ρ) (f(., σ(.), τ(.)) ∈
WPAA(R, ρ)).

Corollary 2.12 ( [20]). Fix ρ ∈ U∞. Let σ, τ ∈WPAA(R, ρ) and f = faa + fe ∈
WPAA(R × R+, ρ) (f = faa + fe ∈ WPAA(R × R+ × R+, ρ)). Assume both f
and faa are lipschitzian in x ∈ R+ ((x, y) ∈ R+ × R+) uniformly in t ∈ R. Then,
f(., σ(.)) ∈WPAA(R, ρ) (f(., σ(.), τ(.)) ∈WPAA(R, ρ)).

3. Fixed point theorem

De�nition 3.1 ( [12]). Let E be a real Banach space. A closed convex set P in E
is called a convex cone if the following conditions are satis�ed

(1) If x ∈ P , then λx ∈ P for any λ ∈ R+;
(2) If x ∈ P and −x ∈ P , then x = 0.

A cone P induces a partial ordering ≤ in E by x ≤ y if and only if y − x ∈ P .
A cone P is called normal if there exists a constant N > 0 such that 0 ≤ x ≤ y

implies ‖x‖ ≤ N‖y‖, where ‖.‖ is the norm on E. We denote by
◦
P the interior set

of P . A cone P is called a solid cone if
◦
P 6= ∅.

In the following theorem, we extend the results obtained in [14, Theorem 3.1]
and [15, Theorem 2.1], used in the scalar case, to other used in the case of systems.

Theorem 3.2. Let P be a normal solid cone in a real Banach space X. D1, D2

are linear operators from P to P and A1, A2, B1, B2 :
◦
P ×

◦
P ×

◦
P ×

◦
P −→

◦
P are

operators with

A1(x, u, y, ξ) = B1(x, u, y, ξ) +D1(x),

A2(x, u, y, ξ) = B2(x, u, y, ξ) +D2(y)

such that

(S1) B1(., u, y, ξ) is increasing and B1(x, ., y, ξ), B1(x, u, ., ξ), B1(x, u, y, .) are de-
creasing;
B2(x, u, ., ξ) is increasing and B2(., u, y, ξ), B2(x, ., y, ξ), B2(x, u, y, .) are dec-
creasing.

(S2) There exist positive functions φ1, φ2 de�ned on (0, 1)×
◦
P ×

◦
P ×

◦
P such that

for each x, u, y, ξ ∈
◦
P and α ∈ (0, 1), φi(α, x, u, y) > α (i = 1, 2)and

B1(αx,
1

α
u,

1

α
y, ξ) ≥ φ1(α, x, u, y)B1(x, u, y, ξ),

B2(
1

α
x,

1

α
u, αy, ξ) ≥ φ2(α, x, u, y)B2(x, u, y, ξ).

(S3) There exist x0, x
0, y0, y

0 ∈
◦
P with x0 ≤ x0, y0 ≤ y0 such that

x0 ≤ A1(x0, x
0, y0, x0), A1(x0, x0, y0, x

0) ≤ x0,
y0 ≤ A2(x0, y0, y0, y0), A2(x0, y0, y

0, y0) ≤ y0
(3.1)



6 A. SADRATI, A. ZERTITI

and for each α ∈ (0, 1)

inf
y∈[y0,y0],x,u∈[x0,x0]

φ1(α, x, u, y) > α,

inf
x∈[x0,x0],v,y∈[y0,y0]

φ2(α, x, v, y) > α.
(3.2)

(S4) There exist constants L1, L2 > 0 such that for all x, u, y, ξ1, ξ2 ∈
◦
P with

ξ1 ≥ ξ2,

Bi(x, u, y, ξ1)−Bi(x, u, y, ξ2) ≥ −Li(ξ1 − ξ2) (i = 1, 2).

Then operator A :
◦
P ×

◦
P ×

◦
P ×

◦
P ×

◦
P ×

◦
P −→

◦
P ×

◦
P de�ned by

A(x, u, v, y, ξ, ν) = (A1(x, u, y, ξ), A2(x, v, y, ν))

has a unique �xed point (x∗, y∗) ∈ [x0, x
0]× [y0, y

0]; that is

A(x∗, x∗, y∗, y∗, x∗, y∗) = (x∗, y∗).

Moreover, if (3.2) is true for all u0, u
0, v0, v

0 ∈
◦
P with u0 ≤ u0 and v0 ≤ v0:

inf
y∈[v0,v0],x,u∈[u0,u0]

φ1(α, x, u, y) > α,

inf
x∈[u0,u0],v,y∈[v0,v0]

φ2(α, x, v, y) > α.

Then (x∗, y∗) is the unique �xed point of A in
◦
P ×

◦
P .

Proof. From (S1) and the linearity of the operators D1, D2 : P −→ P , we obtain
A1(., u, y, ξ), A2(x, u, ., ξ) are increasing andA1(x, ., y, ξ), A1(x, u, ., ξ), A1(x, u, y, .),
A2(., u, y, ξ), A2(x, ., y, ξ), A2(x, u, y, .) are decreasing.

Let λ ∈ (0, 1]. Denote by

ελ = sup{r > 0 : rA1(
1

λ
x0, λx0, λy0, λx0) ≤ B1(λx0,

1

λ
x0,

1

λ
y0,

1

λ
x0) and

rA2(λx0, λy0,
1

λ
y0, λy0) ≤ B2(

1

λ
x0,

1

λ
y0, λy0,

1

λ
y0)}

and by

φ1,λ(r, x, u, y) = r + ελ[φ1(r, x, u, y)− r],
φ2,λ(r, x, v, y) = r + ελ[φ2(r, x, v, y)− r],

for all r ∈ (0, 1), x, u ∈ [λx0,
1
λx

0], v, y ∈ [λy0,
1
λy

0].
It is clear that 0 < ελ ≤ 1, and for each λ ∈ (0, 1], r ∈ (0, 1)

inf
y∈[y0,y0],x,u∈[x0,x0]

φ1,λ(r, x, u, y) > r,

inf
x∈[x0,x0],v,y∈[y0,y0]

φ2,λ(r, x, v, y) > r.

Also, we have

ελA1(
1

λ
x0, λx0, λy0, λx0) ≤ B1(λx0,

1

λ
x0,

1

λ
y0,

1

λ
x0),

ελA2(λx0, λy0,
1

λ
y0, λy0) ≤ B2(

1

λ
x0,

1

λ
y0, λy0,

1

λ
y0).
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It follows that for all y ∈ [λy0,
1

λ
y0], x, u, ξ ∈ [λx0,

1

λ
x0]

ελA1(x, u, y, ξ) ≤ ελA1(
1

λ
x0, λx0, λy0, λx0) ≤ B1(λx0,

1

λ
x0,

1

λ
y0,

1

λ
x0)

≤ B1(x, u, y, ξ)

and for all v, y, ν ∈ [λy0,
1

λ
y0], x ∈ [λx0,

1

λ
x0]

ελA2(x, v, y, ν) ≤ ελA2(λx0, λy0,
1

λ
y0, λy0) ≤ B2(

1

λ
x0,

1

λ
y0, λy0,

1

λ
y0)

≤ B2(x, v, y, ν).

Therefore, for all r ∈ (0, 1), x, u, ξ ∈ [λx0,
1

λ
x0], y ∈ [λy0,

1

λ
y0]

A1(rx,
1

r
u,

1

r
y, ξ) = B1(rx,

1

r
u,

1

r
y, ξ) +D1(rx)

≥ φ1(r, x, u, y)B1(x, u, y, ξ) + rD1(x)

= rA1(x, u, y, ξ) + [φ1(r, x, u, y)− r]B1(x, u, y, ξ)

≥ rA1(x, u, y, ξ) + ελ[φ1(r, x, u, y)− r]A1(x, u, y, ξ)

= φ1,λ(r, x, u, y)A1(x, u, y, ξ).

Similarly, fo all r ∈ (0, 1), x ∈ [λx0,
1

λ
x0], v, y, ν ∈ [λy0,

1

λ
y0], we obtain

A2(
1

r
x,

1

r
v, ry, ν) ≥ φ2,λ(r, x, v, y)A2(x, v, y, ν).

Now, we prove that for each i = 1, 2 and x, u, y ∈
◦
P , there exists a unique point in

◦
P , which we denote by Φi(x, u, y), such that

Ai(x, u, y,Φi(x, u, y)) = Φi(x, u, y), i = 1, 2.

Fix x, u, v, y ∈
◦
P .Then, there exists λ ∈ (0, 1] such that x, u ∈ [λx0,

1

λ
x0] and

v, y ∈ [λy0,
1

λ
y0]. Let

Ψ1(x, u, y)(ξ) =
A1(x, u, y, ξ) + L1ξ

1 + L1
, Ψ2(x, v, y)(ξ) =

A2(x, v, y, ξ) + L2ξ

1 + L2
, ξ ∈

◦
P .

It is clear that Ψ1(x, u, y)(.),Ψ2(x, v, y)(.) are operators from
◦
P to

◦
P and by (S4)

they are increasing in
◦
P . From (S1)-(S3) we have for every λ ∈ (0, 1)

A1(x, u, y, λx0) ≥ A1(λx0,
1

λ
x0,

1

λ
y0, x0)

≥ φ1(λ, x0, x
0, y0)A1(x0, x

0, y0, x0) ≥ λx0.
And if λ = 1, we have A1(x, u, y, x0) ≥ x0. Thus, A1(x, u, y, λx0) ≥ λx0, ∀λ ∈
(0, 1]. Similarly, we obtain

A1(x, u, y,
1

λ
x0) ≤ 1

λ
x0.

And analogously, one can show that

A2(x, v, y, λy0) ≥ λy0, A2(x, v, y,
1

λ
y0) ≤ 1

λ
y0.
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It follows that

Ψ1(x, u, y)(λx0) ≥ λx0, Ψ1(x, u, y)(
1

λ
x0) ≤ 1

λ
x0,

Ψ2(x, v, y)(λy0) ≥ λy0, Ψ2(x, v, y)(
1

λ
y0) ≤ 1

λ
y0.

(3.3)

Set

Xn
xuy = ψ1(x, u, y)(Xn−1

xuy ), Unxuy = ψ1(x, u, y)(Un−1xuy ),

X0
xuy = λx0, U

0
xuy =

1

λ
x0,

Y nxvy = ψ2(x, v, y)(Y n−1xvy ), V nxvy = ψ2(x, u, y)(V n−1xvy ),

Y 0
xvy = λy0, V

0
xvy =

1

λ
y0.

Next, a similar proof to [28, Theorem 2.1] yields that Ψ1(x, u, y)(.) has a unique

�xed point Φ1(x, u, y) ∈ [λx0,
1

λ
x0] and Ψ2(x, v, y)(.) has a unique �xed point

Φ2(x, v, y) ∈ [λy0,
1

λ
y0], that is

A1(x, u, y,Φ1(x, u, y)) = Φ1(x, u, y) and A2(x, v, y,Φ2(x, v, y)) = Φ2(x, v, y),

with

Xn
xuy −→ Φ1(x, u, y), Unxuy −→ Φ1(x, u, y) as n −→ +∞,

Y nxvy −→ Φ2(x, v, y), V nxvy −→ Φ2(x, v, y) as n −→ +∞.

Now, if Φ′1(x, u, y) is a �xed point of Ψ1(x, u, y)(.) in
◦
P , then there exists β ∈ (0, λ)

such that Φ′1(x, u, y) ∈ [βx0,
1
βx

0]. Since, by the above proof, ψ1(x, u, y) has a

unique �xed point in [βx0,
1
βx

0], it follows that Φ′1(x, u, y) = Φ1(x, u, y). Also, we

have the uniqueness of Φ2(x, v, y) in
◦
P . Moreover, by a similar proof to step 2 and

step 3 of [15, Theorem 2.1], one can show that Φ1(., u, y), Φ2(x, u, .) are increasing
and Φ1(x, ., y), Φ1(x, u, .), Φ2(., u, y), Φ1(x, ., y) are decreasing. Therefore,

Φ1(αx,
1

α
u,

1

α
y) = A1(αx,

1

α
u,

1

α
y,Φ1(αx,

1

α
u,

1

α
y))

≥ A1(αx,
1

α
u,

1

α
y,Φ1(x, u, y))

≥ φ1,λ(α, x, u, y)Φ1(x, u, y),

for all α ∈ (0, 1), x, u ∈ [λx0,
1

λ
x0], y ∈ [λy0,

1

λ
y0]. Also, we obtain

Φ2(
1

α
x,

1

α
u, αy) ≥ φ2,λ(α, x, u, y)Φ2(x, u, y),

for all α ∈ (0, 1), x ∈ [λx0,
1

λ
x0], u, y ∈ [λy0,

1

λ
y0].

Finally, Φ1,Φ2 satisfy all hypotheses of [25, Theorem 2.7]. Thus, the operator

Φ :
◦
P ×

◦
P ×

◦
P ×

◦
P −→

◦
P ×

◦
P de�ned by Φ(x, u, v, y) = (Φ1(x, u, y),Φ2(x, v, y))

has a unique �xed point (x∗, y∗) ∈ [x0, x
0]× [y0, y

0]; that is

Φ(x∗, x∗, y∗, y∗) = (x∗, y∗).
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Hence

A(x∗, x∗, y∗, y∗,Φ1(x∗, x∗, y∗),Φ2(x∗, y∗, y∗))

= (A1(x∗, x∗, y∗,Φ1(x∗, x∗, y∗)), A2(x∗, y∗, y∗,Φ2(x∗, y∗, y∗)))

= (Φ1(x∗, x∗, y∗),Φ2(x∗, y∗, y∗))

= Φ(x∗, x∗, y∗, y∗) = (x∗, y∗).

�

4. weighted pseudo almost automorphic solution

In this section, our goal is to prove the existence and uniqueness of weighted
pseudo almost automorphic solution for (1.2). Throughout the rest of this paper,
we consider ρ ∈ U∞ such that PAA0(R, ρ) is translation invariant and that the

functions f̃ and g̃ in (1.2) admit the decomposition

f̃(t, x, y) = h1(t, x)f(t, x, y) and g̃(t, x, y) = h2(t, y)g(t, x, y).

As in [14, Lemma 3.2], we have the following lemma.

Lemma 4.1. Suppose that f ∈ WPAA(R × R+, ρ) and one of the following two
conditions holds:

(i) f(t, .) is increasing in R+, and there exists ϕ : (0, 1) × (0,+∞) → (0, 1]
such that ϕ(α, x) > α and f(t, αx) ≥ ϕ(α, x)f(t, x) for all x > 0, α ∈ (0, 1)
and t ∈ R.

(ii) f(t, .) is decreasing in R+, and there exists ψ : (0, 1) × (0,+∞) → (0, 1]
such that ψ(α, x) > α and f(t, 1

αx) ≥ ψ(α, x)f(t, x) for all x > 0, α ∈ (0, 1)
and t ∈ R.

Then, for each [a, b] ⊂ (0,+∞), there exists L > 0 such that

|f(t, u)− f(t, v)| ≤ L|u− v|, ∀t ∈ R, ∀u, v ∈ [a, b].

Lemma 4.2. Suppose that f ∈WPAA(R× R+ × R+, ρ) and one of the following
two conditions holds:

(i) f(t, ., y) is increasing in R+, f(t, x, .) is decreasing in R+, and there ex-
ists ϕ : (0, 1) × (0,+∞) × (0,+∞) → (0, 1] such that ϕ(α, x, y) > α and
f(t, αx, 1

αy) ≥ ϕ(α, x, y)f(t, x, y) for all x, y > 0, α ∈ (0, 1) and t ∈ R.
(ii) f(t, ., y) is decreasing in R+, f(t, x, .) is increasing in R+, and there ex-

ists ψ : (0, 1) × (0,+∞) × (0,+∞) → (0, 1] such that ψ(α, x, y) > α and
f(t, αx, αy) ≥ ψ(α, x, y)f(t, x, y) for all x, y > 0, α ∈ (0, 1) and t ∈ R.

Then, for each [a, b], [c, d] ⊂ (0,+∞), there exists L > 0 such that

|f(t, x1, y1)− f(t, x2, y2)| ≤ L‖(x1, y1)− (x2, y2)‖
= L(|x1 − x2|+ |y1 − y2|),

∀t ∈ R, ∀x1, x2 ∈ [a, b], ∀y1, y2 ∈ [c, d].

Proof. Suppose (i). Let [a, b], [c, d] ⊂ (0,+∞). Since f ∈WPAA(R×R+×R+, ρ),
we have

L =

sup
t∈R

sup
x∈[a,b],y∈[c,d]

f(t, x, y)

min(a, c)
< +∞.



10 A. SADRATI, A. ZERTITI

Let x1, x2 ∈ [a, b], y1, y2 ∈ [c, d]. If x1 ≥ x2, y1 ≤ y2, then

f(t, x1, y1)− f(t, x2, y2) ≥ 0 ≥ −L‖(x1 − x2, y1 − y2)‖.

If x1 < x2, y1 ≤ y2, then

f(t, x1, y1)− f(t, x2, y2) = f(t,
x

1

x2
x2, y1)− f(t, x2, y2)

≥ f(t,
x1

x2
x2,

x2
x1
y1)− f(t, x2, y2)

≥ ϕ(
x

1

x2
, x2, y1)f(t, x2, y1)− f(t, x2, y2)

≥ x1

x2
f(t, x2, y2)− f(t, x2, y2)

= −|x1 − x2|
f(t, x2, y2)

x2
≥ −L|x1 − x2|

≥ −L‖(x1, y1)− (x2, y2)‖.

Similarely if x1 ≥ x2, y1 > y2. If x1 < x2, y1 > y2, then

f(t, x1, y1)− f(t, x2, y2) = f(t,
x1
x2
x2,

y1
y2
y2)− f(t, x2, y2)

≥ min(
x1
x2
,
y2
y1

)f(t, x2, y2)− f(t, x2, y2)

≥ −L‖(x1, y1)− (x2, y2)‖.

Thus, f(t, x1, y1)−f(t, x2, y2) ≥ −L‖(x1−x2, y1−y2)‖ for all x1, x2 ∈ [a, b], y1, y2 ∈
[c, d] and t ∈ R. Then by changing the role of (x1, y1) and (x2, y2), we obtain
‖f(t, x1, y1)−f(t, x2, y2)‖ ≤ L‖(x1−x2, y1−y2)‖ for all x1, x2 ∈ [a, b], y1, y2 ∈ [c, d]
and t ∈ R. The proof in the case of f satisfying (ii) is similar. �

Lemma 4.3. Let c : R × R+ −→ R be such that the function t −→ c(t, .) is in
WPAA(L1(R+), ρ). we assume that there exists b ∈ L1(R+) such that |caa(t, s)| ≤
b(s) for all t ∈ R and almost everywhere in R+. If f ∈ WPAA(R, ρ), then the
function

h(t) =

∫ t

−∞
c(t, t− s)f(s)ds

is in WPAA(R, ρ). Furthermore the almost automorphic component of h is given
by

haa(t) =

∫ t

−∞
caa(t, t− s)faa(s)ds

Proof. It is easy to show that haa ∈ AA(R). In addition, by a similar proof of [3,
Lemma 5.4] and using the fact that PAA0(R, ρ) is translation invariant , one can
show that lim

r→+∞
I(r, ρ) = 0, where

I(r, ρ) =
1

m(r, ρ)

∫ r

−r
|
∫ t

−∞
(c(t, t− s)f(s)− caa(t, t− s)faa(s))ds|ρ(t)dt.

This means that h ∈WPAA(R, ρ) and haa(t) =
∫ t
−∞ caa(t, t− s)faa(s)ds. �

Next, we list the following assumptions that we will use them throughout the
rest of this paper.
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(H1) α1, α2 ∈ WPAA(R, ρ) and h1, h2, k1, k2 ∈ WPAA(R × R+, ρ) are non-
negative functions such that haa1 , haa2 , kaa1 , kaa2 are uniformly continu-
ous in any bounded subset K ∈ R+ uniformly in s ∈ R. Also, f, g ∈
WPAA (R× R+ × R+, ρ) are nonnegative functions such that faa, gaa are
uniformly continuous in any bounded subset K ∈ R+ × R+ uniformly in
s ∈ R.

(H2) For all s ∈ R, f(s, ., y), g(s, x, .), are increasing and f(s, x, .), g(s, ., y),
h1(s, .), h2(s, .), k1(s, .), k2(s, .) are decreasing. Moreover, there exist con-
stants L1, L2 > 0 such that for i = 1, 2

ki(s, ξ)− ki(s, ν) ≥ −Li(ξ − ν), ∀s ∈ R, ∀ξ ≥ ν ≥ 0. (4.1)

(H3) There exist ϕ1, ϕ2 : (0, 1) × (0,+∞) → (0, 1], ψ1, ψ2 : (0, 1) × (0,+∞) ×
(0,+∞)→ (0, 1] such that

h1(s,
1

α
x) ≥ ϕ1(α, x)h1(s, x), f(s, αx,

1

α
y) ≥ ψ1(α, x, y)f(s, x, y),

h2(s,
1

α
x) ≥ ϕ2(α, x)h2(s, x), g(s,

1

α
x, αy) ≥ ψ2(α, x, y)f(s, x, y),

and

ϕi(α, x) > α, ψi(α, x, y) > α, i = 1, 2,

∀x, y > 0,∀α ∈ (0, 1),∀s ∈ R. Moreover, for any 0 < a ≤ b < +∞ and
0 < c ≤ d < +∞

inf
x,u∈[a,b],y∈[c,d]

ϕ1(α, u)ψ1(α, x, y) > α,

inf
x∈[a,b],u,y∈[c,d]

ϕ2(α, u)ψ2(α, x, y) > α,

for every α ∈ (0, 1).
(H4) c1, c2 are functions from R × R+ to R+ and the function t −→ ci(t, .) is

in WPAA(L1(R+), ρ) for i = 1, 2 . Moreover, there exist b1, b2 ∈ L1(R+)
such that |caai (t, s)| ≤ bi(s), i = 1, 2, for all t ∈ R and almost everywhere
for s ∈ R+.

Now, we are ready to present and prove our results for the existence and uniqueness
of positve solution.

Theorem 4.4. Assume that (H1)-(H4) hold. Moreover, for each τ > 0 there exist
σ1, σ2 ∈ (0, τ ] and there exist τ1 ≥ σ1, τ2 ≥ σ2 such that

(i)

inf
t∈R

∫ t

−∞
c1(t, t− s)h1(s, τ1)f(s, σ1, τ2)ds ≥ σ1,

inf
t∈R

∫ t

−∞
c2(t, t− s)h2(s, τ2)g(s, τ1, σ2)ds ≥ σ2.

(4.2)

(ii)

sup
t∈R

α1(t)τ1 + sup
t∈R

∫ t

−∞
c1(t, t− s)h1(s, σ1)f(s, τ1, σ2)ds+ k1(t, τ1) ≤ τ1,

sup
t∈R

α2(t)τ2 + sup
t∈R

∫ t

−∞
c2(t, t− s)h2(s, σ2)g(s, σ1, τ2)ds+ k2(t, τ2) ≤ τ2,

(4.3)
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Then, system (1.2) has exactly one weighted pseudo almost automorphic solution

(x∗, y∗) ∈
◦
P ×

◦
P .

Proof. It consist to prove that all hypotheses of Theorem 3.2 are satis�ed for ad-
equate operators A1 and A2. Denote by P the following set in the Banach space
WPAA(R, ρ)

P = {x ∈WPAA(R, ρ) : x(t) ≥ 0, ∀t ∈ R}.
It is not di�cult to verify that P is a normal and solid cone in WPAA(R, ρ) and

◦
P = {x ∈ P : ∃ε > 0 such that x(t) ≥ ε, ∀t ∈ R}.

Consider the nonlinear operator A(x, u, v, y, ξ, ν) = (A1(x, u, y, ξ), A2(x, v, y, ν))
with

A1(x, u, y, ξ) = B1(x, u, y, ξ) +D1(x), A2(x, v, y, ν) = B2(x, v, y, ν) +D2(y).

such that for all x, u, v, y, ξ, ν ∈
◦
P and t ∈ R

B1(x, u, y, ξ)(t) =

∫ t

−∞
c1(t, t− s)h1(s, u(s))f(s, x(s), y(s))ds+ k1(t, ξ(t)),

B2(x, v, y, ν)(t) =

∫ t

−∞
c2(t, t− s)h2(s, v(s))f(s, x(s), y(s))ds+ k2(t, ν(t)).

and
D1(x)(t) = α1(t)x(t− β1), D2(y)(t) = α2(t)y(t− β2).

By Lemma 2.9, it is easy to show that D1, D2 are linear operators from P to P .
In addition, it follows from (H1)-(H3), Lemma 4.1, Lemma 4.2 and Theorem 2.11
that

h1(., x(.)), h2(., x(.)), f(., x(.), y(.)), g(., x(.), y(.)) ∈WPAA(R, ρ), ∀x, y ∈
◦
P .

Also, since k1(t, .) and k2(t, .) are decreasing in R+ and satisfying (4.1), one can
obtain for i = 1, 2

|ki(t, ξ)− ki(t, ν)| ≤ Li|ξ − ν|,∀t ∈ R,∀ξ, ν ≥ 0,

which, with (H1) and Theorem 2.11 , yields that k1(., ξ(.)), k2(., ξ(.)) ∈WPAA(R, ρ), ∀ξ ∈
◦
P . Combining this with Lemma 2.6, Lemma 2.9, Lemma 4.3 and (H4) we obtain

A1(x, u, y, ξ), A2(x, u, y, ξ) ∈WPAA(R, ρ) for all x, u, y, ξ ∈
◦
P .

Next, we prove that B1, B2 :
◦
P ×

◦
P ×

◦
P ×

◦
P −→

◦
P . Let x, u, y, ξ ∈

◦
P . Denote

ε = inf
t∈R

x(t) and τ = max{sup
t∈R

u(t), sup
t∈R

y(t)}.

Then,

inf
t∈R

B1(x, u, y, ξ)(t) ≥ inf
t∈R

∫ t

−∞
c1(t, t− s)h1(s, u(s))f(s, x(s), y(s))ds

≥ inf
t∈R

∫ t

−∞
c1(t, t− s)h1(s, τ)f(s, ε, τ)ds.

By (4.2), there exist σ1, σ2 ∈ (0, τ ] and there exist τ1 ≥ σ1, τ2 ≥ σ2 such that

inf
t∈R

∫ t

−∞
c1(t, t− s)h1(s, τ1)f(s, σ1, τ2)ds ≥ σ1.
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Suppose that ε < σ1, τ > τ1, τ > τ2 (the other cases are similar and easier to
prove), then

inf
t∈R

B1(x, u, y, ξ)(t) ≥ inf
t∈R

∫ t

−∞
c1(t, t− s)h1(s,

τ

τ1
τ1)f(s,

ε

σ1
σ1,

τ

τ2
τ2)ds

≥ τ1
τ

min(
ε

σ1
,
τ2
τ

)inf
t∈R

∫ t

−∞
c1(t, t− s)h1(s, τ1)f(s, σ1, τ2)ds

≥ τ1
τ

min(
ε

σ1
,
τ2
τ

)σ1 > 0.

Thus, B1(x, u, y, ξ) ∈
◦
P and hence A1(x, u, y, ξ) ∈

◦
P . Analogously, one can show

that A2(x, u, y, ξ) ∈
◦
P for all x, u, y, ξ ∈

◦
P .

Now, let us prove (S1)-(S4) of Theorem 3.2. It is easy to see that (S1) and (S4)

follow from (H2). To prove (S2), suppose x, u, y, ξ ∈
◦
P and α ∈ (0, 1). Set

a(x, u, y) = min{ inf
s∈R

x(s), inf
s∈R

u(s), inf
s∈R

y(s)},

b(x, u, y) = max{sup
s∈R

x(s), sup
s∈R

u(s), sup
s∈R

y(s)}.

Then, 0 < a(x, u, y) ≤ b(x, u, y) < +∞ and x(s), u(s), y(s) ∈ [a(x, u, y), b(x, u, y)]
for all s ∈ R. We di�ne

φi(α, x, u, y) = inf
β,γ,η∈[a(x,u,y),b(x,u,y)]

ϕi(α, γ)ψi(α, β, η), i = 1, 2.

By (H3), we have

B1(αx,
1

α
u,

1

α
y, ξ)(t) =

∫ t

−∞
h1(s,

1

α
u(s))f(s, αx(s),

1

α
y(s))ds+ k1(t, ξ(t))

≥ φ1(α, x, u, y)

∫ t

−∞
h1(s, u(s))f(s, x(s), y(s))ds+ k1(t, ξ(t)),

which means that

B1(αx,
1

α
u,

1

α
y, ξ) ≥ φ1(α, x, u, y)B1(x, u, y, ξ)

for each x, u, y, ξ ∈
◦
P and α ∈ (0, 1). Similarly, we obtain

B2(
1

α
x,

1

α
u, αy, ξ) ≥ φ2(α, x, u, y)B2(x, u, y, ξ)

for each x, u, y, ξ ∈
◦
P and α ∈ (0, 1). Finally, (S3) follows from (4.2), (4.3) and

(H3). The proof is completed. �

In the following corollary, we give a concrete way to obtain the constants τ1, τ2, σ1, σ2
of the previous theorem. First, let us introduce some notations. We set uniformly
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in t ∈ R and p, q ∈ [0, 1]:

lim inf
(x,y)−→(0+,+∞)

f(t, x, y)

xp
= fp,(0+,+∞)(t), lim inf

u−→+∞

h1(t, u)

uq
= h1,q,+∞(t),

lim sup
(x,y)−→(+∞,0+)

f(t, x, y)

xp
= fp,(+∞,0

+)(t), lim sup
u−→0+

h1(t, u)

uq
= hq,0

+

1 (t),

lim inf
(x,y)−→(+∞,0+)

g(t, x, y)

yp
= gp,(+∞,0+)(t), lim inf

u−→+∞

h2(t, u)

uq
= h2,q,+∞(t),

lim sup
(x,y)−→(0+,+∞)

g(t, x, y)

yp
= gp,(0

+,+∞)(t), lim sup
u−→0+

h2(t, u)

uq
= hq,0

+

2 (t).

Corollary 4.5. Assume that (H1)-(H4) hold. Moreover there exist p, q ∈ [0, 1]
such that the following conditions hold:

(i)′

inf
t∈R

∫ t

−∞
c1(t, t− s)h1,q,+∞(s)fp,(0+,+∞)(s)ds > 1,

inf
t∈R

∫ t

−∞
c2(t, t− s)h2,q,+∞(s)gp,(+∞,0+)(s)ds > 1.

(4.4)

(ii)′

sup
t∈R

∫ t

−∞
c1(t, t− s)hq,0

+

1 (s)fp,(+∞,0
+)(s)ds < 1,

sup
t∈R

∫ t

−∞
c2(t, t− s)hq,0

+

2 (s)gp,(0
+,+∞)(s)ds < 1,

αi = sup
t∈R

αi(t) < 1, i = 1, 2.

(4.5)

Then system (1.2) has exactly one weighted pseudo almost automorphic solution

(x∗, y∗) ∈
◦
P ×

◦
P .

Proof. We prove that hypotheses (i) and (ii) of Theorem 4.4 are satis�ed.
From (i)′ and (ii)′, there exist ε > 0 verifying

inf
t∈R

∫ t

−∞
c1(t, t− s)(h1,q,,+∞(s)− ε)(fp,(0+,+∞)(s)− ε)ds > 1,

sup
t∈R

∫ t

−∞
c1(t, t− s)(hq,0

+

1 (s) + ε)(fp,(+∞,0
+)(s) + ε)ds < 1.

It follows that there exist numbers δ,M with 0 < δ < 1 < M such that

h(s, u) ≥ (h1,q,+∞(s)− ε)uq, ∀u ≥M, ∀s ∈ R,
f(s, x, y) ≥ (fp,(0+,+∞)(s)− ε)xp, ∀x ≤ δ, ∀y ≥M, ∀s ∈ R

and

h(s, u) ≤ (hq,0
+

1 (s) + ε)uq, ∀u ≤ δ, ∀s ∈ R,

f(s, x, y) ≤ (fp,(+∞,0
+)(s) + ε)xp, ∀x ≥M, ∀y ≤ δ, ∀s ∈ R.
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Let τ1, τ2 ≥M , σ1, σ2 ∈ (0, δ] with σq1 < 1− α1 and σq2 < 1− α2. Then,

inf
t∈R

∫ t

−∞
c1(t, t− s)h1(s, τ1)f(s, σ1, τ2)ds

≥ inf
t∈R

∫ t

−∞
c1(t, t− s)(h1,q,+∞(s)− ε)τ q1 (fp,(0+,+∞)(s)− ε)σp1ds

≥ τ q1σ
p
1 ≥ σ1.

This prove the �rst inequalitie of (4.2). We follow the same reasoning to get the
second inequalitie. On the other hand,

α1τ1 + sup
t∈R

∫ t

−∞
c1(t, t− s)h1(s, σ1)f(s, τ1, σ2)ds+ k1(t, τ1)

≤ α1τ1 + sup
t∈R

∫ t

−∞
c1(t, t− s)(hq,0

+

1 (s) + ε)σq1(fp,(+∞,0
+)(s) + ε)τp1 ds+ k1(t, 0)

≤ α1τ1 + σq1τ
p
1 + k1(t, 0) ≤ (α1 + σq1)τ1 + k1(t, 0).

Since k1(., 0) is bounded, we can choose a su�ciently large constant τ1 such that
(α1 + σq1)τ1 + k1(t, 0) ≤ τ1. This prove the �rst inequalitie of (4.3). To prove the
second inequalitie, one can follows the same reasoning. The proof is ended. �

5. Example

Example 5.1. Consider system (1.2) by setting, for all (t, x, y) ∈ R × R+ × R+

and α ∈ (0, 1)

ρ(t) = et, α1(t) = α2(t) ≡ 1

3
, β1 = β2 = 1,

f(t, x, y) = {1 + cos2
1

2 + sin t+ sin
√

2t
+ e−t} 3

√
(y + 3) ln(x+ 1)

y + 1

g(t, x, y) = {1 + cos2
1

2 + sin t+ sin
√

2t
+ e−t} 3

√
(x+ 3) ln(y + 1)

x+ 1

c1(t, s) = c2(t, s) =
1

1 + s2
, h1(t, x) = h2(t, x) = 3

√
x+ 3

x+ 1
and

k1(t, x) = k2(t, x) =
1 + sin t

1 + x
.

Take p = 1
2 , q = 0, L1 = L2 = 1 and de�ne

ϕ1(α, x) = 3

√
(x+ 1)(x+ 3α)

(x+ α)(x+ 3)
, ψ1(α, x, y) = 3

√
(y + 1)(y + 3α) ln(αx+ 1)

(y + α)(y + 3) ln(x+ 1)
,

ϕ2(α, y) = 3

√
(y + 1)(y + 3α)

(y + α)(y + 3)
and ψ2(α, x, y) = 3

√
(x+ 1)(x+ 3α) ln(αy + 1)

(x+ α)(x+ 3) ln(y + 1)
.
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It is easy to verify that for i = 1, 2

ϕi(α, x) > α
1
3 , ψi(α, x, y) > α

2
3 , hi,0,+∞(t) = 1, h0,0

+

i (t) =
3
√

3 and

f 1
2 ,(0

+,+∞)(t) = g 1
2 ,(+∞,0+)(t) = 1 + cos2

1

2 + sin t+ sin
√

2t
+ e−t,

f
1
2 ,(+∞,0

+)(t) = g
1
2 ,(0

+,+∞)(t) = 0.

Then,we have all hypotheses of corollary 4.5 are veri�ed. Hence, system (1.2)
with the above functions has a unique positive weighted pseudo almost automorphic
solution.
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