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Abstract 

The paper outlines some structural properties of a partially ordered multiset (pomset). A set of 
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exploiting set-based partitioning into minimum number of mset chains and antichains, 

respectively. 
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1. Introduction 

An mset is an unordered collection of objects in which repetition of elements is significant. For an 

mset 𝑀 the root set (or support) of 𝑀, denoted by 𝑀∗, is given by the set {𝑥 ∈ 𝑀|𝑀(𝑥) > 0}. An 

mset is called finite if the root set is finite and also, multiplicities are finite. In this paper, we shall 

confine our attention to finite msets. The cardinality of an mset is the sum of the multiplicities of 

all its distinct elements. Objects in an mset 𝑀 represent the elements of the root set of 𝑀. An mset 

can be represented in various forms. For instance, the mset 𝑀 = [1,1,1,1,2,4,4,5,5] can be denoted 

by [1,2,4,5]4,1,2,2  or [14, 21, 42, 52] or {4/1, 1/2,2/4,2/5}. In this paper, we choose to denote an 

mset 𝑀 by [𝑚1𝑥1, 𝑚2𝑥2, … , 𝑚𝑛𝑥𝑛], where 𝑚𝑖 is the multiplicity of 𝑥𝑖 in 𝑀, hence 𝑚𝑖𝑥𝑖 will denote 

a point in 𝑀. We will denote the class of all finite mset defined on a set 𝑆 by 𝑀(𝑆). Let 𝑀, 𝑁 ∈

𝑀(𝑆), then 𝑀 is a submset of 𝑁, denoted by 𝑀 ⊆ 𝑁, if 𝑀(𝑥) ≤ 𝑁(𝑥) for all 𝑥 ∈ 𝑆, and 𝑀 ⊂ 𝑁 if 

and only if 𝑀(𝑥) < 𝑁(𝑥) for at least one 𝑥. A submset of a given mset that contains all 

multiplicities of common elements is called a whole submset. A full submset contains all objects 

of the parent mset. The union of two msets 𝑀 and 𝑁 is the mset given by (𝑀 ∪ 𝑁)(𝑥) =

𝑚𝑎𝑥{𝑚, 𝑛} such that 𝑚𝑥 ∈ 𝑀 and 𝑛𝑥 ∈ 𝑁  for all 𝑥 ∈ 𝑆. The intersection of 𝑀 and 𝑁 is the mset 

given by (𝑀 ∩ 𝑁)(𝑥) = 𝑚𝑖𝑛{𝑚, 𝑛} such that 𝑚𝑥 ∈ 𝑀 and 𝑛𝑥 ∈ 𝑁 for all 𝑥 ∈ 𝑆 (see [2], [17] 

and [17] for details on msets). Some works have appeared dealing with infinite multiplicities as 

mailto:yt2002ng@yahoo.com


2 
 

well as involving negative multiplicities [3, 22]. In this work, we consider only nonnegative 

integral multiplicities of objects in an mset. 

It is well-known that partially ordered multisets constitute one of the most basic models of 

concurrency [8, 15, 16]. The problem of extending various mathematical notions and results 

related to partially ordered sets (posets) (see [20] and [21] for an exposition on posets) to pomsets 

has attracted serious attention during the last couple of decades [6, 9, 11, 10]. In this paper, we 

introduce an ordering ≼≤ on an mset 𝑀 and study some properties of the structure ℳ = (𝑀, ≼≤

), in particular, characterization of the width and height of a pomset. In section 2, we define the 

ordering ≼≤ and investigate some properties of the multiset structure ℳ. We discuss mset chains 

and mset antichains in section 3 and prove some related results. In section 4, we present bounds of 

pomsets. An extension of Dilworth’s decomposition theorem and its dual to pomsets are presented 

in section 5. 

2. Partially ordered multiset (Pomsets) 

Let 𝑀 = [𝑚1𝑥1, 𝑚2𝑥2, … , 𝑚𝑛𝑥𝑛] be an ordered mset. We write 𝑚𝑖𝑥𝑖 ⋈ 𝑚𝑗𝑥𝑗  whenever the two 

points 𝑚𝑖𝑥𝑖 and 𝑚𝑗𝑥𝑗 in 𝑀 are comparable under the defined order and 𝑚𝑖𝑥𝑖||𝑚𝑗𝑥𝑗 whenever 

𝑚𝑖𝑥𝑖 and 𝑚𝑗𝑥𝑗 are incomparable. 

Definition 2.1 

For any pair of points 𝑚𝑖𝑥𝑖 𝑎𝑛𝑑 𝑚𝑗𝑥𝑗  in 𝑀 ∈ 𝑀(𝑆), 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑗𝑥𝑗  if and only if 𝑥𝑖 ≼ 𝑥𝑗, and the 

points 𝑚𝑖𝑥𝑖 and 𝑚𝑗𝑥𝑗 coincide i.e., 𝑚𝑖𝑥𝑖 == 𝑚𝑗𝑥𝑗 if and only if 𝑥𝑖 = 𝑥𝑗. Also, 𝑚𝑖𝑥𝑖 ≠≠ 𝑚𝑗𝑥𝑗 if 

and only if 𝑥𝑖 ≠ 𝑥𝑗. Moreover, 𝑚𝑖𝑥𝑖 ⋈ 𝑚𝑗𝑥𝑗  if and only if  𝑥𝑖 ⋈ 𝑥𝑗  otherwise 𝑚𝑖𝑥𝑖||𝑚𝑗𝑥𝑗. 

Note that the condition 𝑚𝑖𝑥𝑖 == 𝑚𝑗𝑥𝑗 if and only if 𝑥𝑖 = 𝑥𝑗 implies that 𝑚𝑖 = 𝑚𝑗 . This follows 

from the principle of uniqueness of the multiplicity of an object in an mset. 

The strict order associated with ≼≤ is the ordering ≺<, where 𝑚𝑖𝑥𝑖 ≺< 𝑚𝑗𝑥𝑗 implies that 𝑚𝑖𝑥𝑖 ≼

≤ 𝑚𝑗𝑥𝑗 and 𝑚𝑖𝑥𝑖 ≠≠ 𝑚𝑗𝑥𝑗. 

Definition 2.2  

The ordering ≼≤ on 𝑀 is said to be reflexive if and only if  𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑖𝑥𝑖 for all  𝑚𝑖𝑥𝑖 ∈ 𝑀, 

symmetric if and only if 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑗𝑥𝑗 implies 𝑚𝑗𝑥𝑗 ≼≤ 𝑚𝑖𝑥𝑖, antisymmetric if and only if 

𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑗𝑥𝑗 ∧ 𝑚𝑗𝑥𝑗 ≼≤ 𝑚𝑖𝑥𝑖 implies that  𝑚𝑖𝑥𝑖 == 𝑚𝑗𝑥𝑗, and transitive if and only if 𝑚𝑖𝑥𝑖 ≼

≤ 𝑚𝑗𝑥𝑗 ∧ 𝑚𝑗𝑥𝑗 ≼≤ 𝑚𝑘𝑥𝑘 implies 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑘𝑥𝑘. 

Definition 2.3 

A relation 𝑅 is called a quasi-mset order (or a pre-mset order) if it is reflexive and transitive, and 

a strict mset order if it is irreflexive and transitive. The relation 𝑅 is called a partial mset order (or 

simply mset order) if it is reflexive, antisymmetric and transitive. 𝑅 is a linear (or total) mset order 

if it is a partial mset order and for all pairs of point 𝑚𝑖𝑥𝑖 , 𝑚𝑗𝑥𝑗 in 𝑀, we have 𝑚𝑖𝑥𝑖𝑅𝑚𝑗𝑥𝑗 ∨

𝑚𝑗𝑥𝑗𝑅𝑚𝑖𝑥𝑖. 
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Definition 2.4 

A pomset ℳ is a pair (𝑀, ≼≤), where 𝑀 ∈ 𝑀(𝑆), and ≼≤ is a partial mset order defined on 𝑀. 

Theorem 2.1 

Let (𝑆, ≼) be a poset and 𝑀 ∈ 𝑀(𝑆). Then ℳ = (𝑀, ≼≤) is a pomset. 

Proof 

For any 𝑚𝑖𝑥𝑖 in 𝑀, since 𝑥𝑖 ≼ 𝑥𝑖 we have 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑖𝑥𝑖 , implying that (𝑀, ≼≤) is reflexive. 

Let 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑗𝑥𝑗 and 𝑚𝑗𝑥𝑗 ≼≤ 𝑚𝑖𝑥𝑖 in ℳ. Then, 𝑥𝑖 ≼ 𝑥𝑗 and 𝑥𝑗 ≼ 𝑥𝑖, and hence 𝑥𝑖 = 𝑥𝑗.                                                                                    

In particular, 𝑚𝑖𝑥𝑖 == 𝑚𝑗𝑥𝑗, hence ≼≤ is antisymmetric. 

Let 𝑚𝑖𝑥𝑖 , 𝑚𝑗𝑥𝑗 , 𝑚𝑘𝑥𝑘 be points in 𝑀 such that 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑗𝑥𝑗  and 𝑚𝑗𝑥𝑗 ≼≤ 𝑚𝑘𝑥𝑘. 

We have 𝑥𝑖 ≼ 𝑥𝑗 ≼ 𝑥𝑘. 

Thus transitivity holds. 

Therefore, (𝑀, ≼≤) is a pomset.                                                                                                     □                 

Definition 2.5 

For two mset orders ≼1≤1 and ≼2≤2 on an mset 𝑀, the mset order ≼≤ is said to be an intersection 

of ≼1≤1 and ≼2≤2 if and only if 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑗𝑥𝑗 ⟹ 𝑚𝑖𝑥𝑖 ≼1≤1 𝑚𝑗𝑥𝑗 ∧ 𝑚𝑖𝑥𝑖 ≼2≤2 𝑚𝑗𝑥𝑗, for all 

𝑚𝑖𝑥𝑖 , 𝑚𝑗𝑥𝑗 ∈ 𝑀.  

Theorem 2.2 

If ℳ = (𝑀, ≼1≤1) and 𝒩 = (𝑀, ≼2≤2) are pomsets corresponding to (𝑆, ≼1) and (𝑆, ≼2), then 

ℳ ∩ 𝒩 = (𝑀, ≼≤) is also a pomset, where  ≼≤= ≼1≤1∩≼2≤2. 

Proof 

For any point 𝑚𝑖𝑥𝑖 in 𝑀, clearly 𝑚𝑖𝑥𝑖 ≼1≤1 𝑚𝑖𝑥𝑖 and 𝑚𝑖𝑥𝑖 ≼2≤2 𝑚𝑖𝑥𝑖 since ≼1≤1 and ≼2≤2 

are partial mset orders. 

Thus, 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑖𝑥𝑖 (reflexive property). 

Let 𝑚𝑖𝑥𝑖 and 𝑚𝑗𝑥𝑗 be points in 𝑀 such that  

𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑗𝑥𝑗 and 𝑚𝑗𝑥𝑗 ≼≤ 𝑚𝑖𝑥𝑖.                                                                                                 (1)      

From (1) we have, 

𝑚𝑖𝑥𝑖 ≼1≤1 𝑚𝑗𝑥𝑗  and 𝑚𝑗𝑥𝑗 ≼1≤1 𝑚𝑖𝑥𝑖.                                                                                             (2) 

Since ≼1≤1 is antisymmetric, we have 

 𝑚𝑖𝑥𝑖 == 𝑚𝑗𝑥𝑗.                                                                                                                                      (3)                                                                                                                

Similarly, 
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𝑚𝑖𝑥𝑖 ≼2≤2 𝑚𝑗𝑥𝑗 and 𝑚𝑗𝑥𝑗 ≼2≤2 𝑚𝑖𝑥𝑖  imply 𝑚𝑖𝑥𝑖 == 𝑚𝑗𝑥𝑗.                                                 (4) 

From (2) - (4) we can conclude that, 

𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑗𝑥𝑗 and 𝑚𝑗𝑥𝑗 ≼≤ 𝑚𝑖𝑥𝑖 imply 𝑚𝑖𝑥𝑖 == 𝑚𝑗𝑥𝑗. 

Therefore, ≼≤ is antisymmetric.   

For transitivity,                                       

let  𝑚𝑖𝑥𝑖 , 𝑚𝑗𝑥𝑗 and  𝑚𝑘𝑥𝑘 be points in 𝑀 such that, 

𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑗𝑥𝑗 and  𝑚𝑗𝑥𝑗 ≼≤ 𝑚𝑘𝑥𝑘. 

We need to show that 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑘𝑥𝑘. 

Now,  

𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑗𝑥𝑗 and  𝑚𝑗𝑥𝑗 ≼≤ 𝑚𝑘𝑥𝑘 imply 

𝑚𝑖𝑥𝑖 ≼1≤1 𝑚𝑗𝑥𝑗  and  𝑚𝑗𝑥𝑗 ≼1≤1 𝑚𝑘𝑥𝑘. 

Since ≼1≤1 is transitive, we have 𝑚𝑖𝑥𝑖 ≼1≤1 𝑚𝑘𝑥𝑘.                                                                          (5) 

Similarly, 

𝑚𝑖𝑥𝑖 ≼2≤2 𝑚𝑗𝑥𝑗 and 𝑚𝑗𝑥𝑗 ≼2≤2 𝑚𝑘𝑥𝑘 imply 𝑚𝑖𝑥𝑖 ≼2≤2 𝑚𝑘𝑥𝑘.                                             (6) 

From (5) and (6), we obtain 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑘𝑥𝑘 , hence ≼≤ is transitive. 

Therefore, ℳ ∩ 𝒩 = (𝑀, ≼≤) is a pomset.                                                 □ 

Theorem 2.3 

Let (𝑆, ≼) be a poset. An mset 𝑀 ∈ 𝑀(𝑆) is partially ordered if and only if its root set is a subposet 

of (𝑆, ≼). 

Proof 

Suppose 𝑀 ∈ 𝑀(𝑆) is partially ordered. Thus, for 𝑚𝑖𝑥𝑖 ∈ 𝑀, 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑖𝑥𝑖 holds. The definition 

of ≼≤ implies that  

𝑥𝑖 ≼ 𝑥𝑖 for all 𝑥𝑖 ∈ 𝑀∗, with 𝑖 ∈ [1, 𝑛].                                                                                           (1) 

Also, for all 𝑚𝑖𝑥𝑖, 𝑚𝑗𝑥𝑗 ∈ 𝑀, 

we have 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑗𝑥𝑗 ∧ 𝑚𝑗𝑥𝑗 ≼≤ 𝑚𝑖𝑥𝑖 ⟹ 𝑚𝑖𝑥𝑖 == 𝑚𝑗𝑥𝑗. 

Again by the ordering ≼≤, it must be the case that 

𝑥𝑖 ≼ 𝑥𝑗 ∧ 𝑥𝑗 ≼ 𝑥𝑖 ⟹ 𝑥𝑖 = 𝑥𝑗 for all 𝑥𝑖, 𝑥𝑗 ∈ 𝑀∗.                                                                                        (2) 

Now, let 𝑚𝑖𝑥𝑖, 𝑚𝑗𝑥𝑗 , 𝑚𝑘𝑥𝑘 be any three points in 𝑀. Since 𝑀 is partially ordered we have 

𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑗𝑥𝑗 ∧ 𝑚𝑗𝑥𝑗 ≼≤ 𝑚𝑘𝑥𝑘 ⟹ 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑘𝑥𝑘, and 
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𝑥𝑖 ≼ 𝑥𝑗 ∧ 𝑥𝑗 ≼ 𝑥𝑘 ⟹ 𝑥𝑖 ≼ 𝑥𝑘 for all 𝑥𝑖 ∈ 𝑀∗.                                                                                 (3) 

From (1) through (3), it follows that (𝑀∗, ≼≤) is a subposet of (𝑆, ≼). 

The converse part is straightforward. Suppose that (𝑀∗ ≼) is a subposet of (𝑆, ≼). Clearly, 𝑥𝑖 ≼
𝑥𝑖 for all 𝑥𝑖 ∈ 𝑀∗. Let 𝑚𝑖 be the multiplicity of 𝑥𝑖 in 𝑀 ∈ 𝑀(𝑆). From the definition of ≼≤, we 

have 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑖𝑥𝑖 (reflexivity of ≼≤). Also, 𝑥𝑖 ≼ 𝑥𝑗 ∧ 𝑥𝑗 ≼ 𝑥𝑖 ⟹ 𝑥𝑖 = 𝑥𝑗  for all 𝑥𝑖 , 𝑥𝑗 ∈ 𝑀∗, 

this in turn gives, 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑗𝑥𝑗 ∧ 𝑚𝑗𝑥𝑗 ≼≤ 𝑚𝑖𝑥𝑖 ⟹ 𝑚𝑖𝑥𝑖 == 𝑚𝑗𝑥𝑗 (antisymmetry of ≼≤). And 

for all 𝑥𝑖, 𝑥𝑗 , 𝑥𝑘 ∈ 𝑀∗, we will have 𝑥𝑖 ≼ 𝑥𝑗 ∧ 𝑥𝑗 ≼ 𝑥𝑘 ⟹ 𝑥𝑖 ≼ 𝑥𝑘. Again, it follows that 𝑚𝑖𝑥𝑖 ≼

≤ 𝑚𝑗𝑥𝑗 ∧ 𝑚𝑗𝑥𝑗 ≼≤ 𝑚𝑘𝑥𝑘 ⟹ 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑘𝑥𝑘 (transitivity of ≼≤).                                                  □                                                                                                                           

3. Mset chains and mset antichains 

Definition 3.1 

Let ℳ = (𝑀, ≼≤) be a pomset. A point 𝑚𝑖𝑥𝑖 in 𝑀 is maximal in ℳ if for any other point 𝑚𝑗𝑥𝑗 ∈

 𝑀 with 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑗𝑥𝑗 we have 𝑚𝑖𝑥𝑖 == 𝑚𝑗𝑥𝑗. Similarly, a point 𝑚𝑖𝑥𝑖 in 𝑀 is minimal if for any 

other point 𝑚𝑗𝑥𝑗 ∈ 𝑀 with 𝑚𝑗𝑥𝑗 ≼≤ 𝑚𝑖𝑥𝑖 we have 𝑚𝑖𝑥𝑖 == 𝑚𝑗𝑥𝑗. If such points are unique, we 

call them maximum and minimum respectively. 

Theorem 3.1 

Let ℳ = (𝑀, ≼≤) be a pomset. If ℳ is totally ordered then maximal and maximum points 

coincide. 

Proof  

Let 𝑚𝑖𝑥𝑖  𝑎𝑛𝑑 𝑚𝑗𝑥𝑗  be points in 𝑀 such that 𝑚𝑖𝑥𝑖 is a maximal point in ℳ and 𝑚𝑗𝑥𝑗 is a maximum 

point in ℳ. 

Since ℳ is totally ordered, we will have either 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑗𝑥𝑗  or 𝑚𝑗𝑥𝑗 ≼≤ 𝑚𝑖𝑥𝑖.          

Now, suppose that 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑗𝑥𝑗 , then, by definition of a maximal point 

𝑚𝑖𝑥𝑖 == 𝑚𝑗𝑥𝑗.  

Similarly, the other case follows.                                                                                                                □ 

A similar argument holds for minimal and minimum points if ℳ is totally ordered.                                      

Definition 3.2 

Let ℳ = (𝑀, ≼≤) be a pomset and 𝑁, a submset of 𝑀. A suborder ≼≤𝒦 is the restriction of  

≼≤ to pairs of points in the submset 𝑁 of 𝑀 such that 

𝑛𝑖𝑥𝑖 ≼≤𝒦 𝑛𝑗𝑥𝑗 ⟺ 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑗𝑥𝑗, where 𝑛𝑖𝑥𝑖 , 𝑛𝑗𝑥𝑗 ∈ 𝑁 and 𝑛𝑖 ≤ 𝑚𝑖. The pair (𝑁, ≼≤𝒦) is 

called a subpomset of ℳ. 

Definition 3.3 

A subpomset ∁ of a pomset ℳ = (𝑀, ≼≤) is called an mset chain if ∁ is linearly (or totally) 

ordered.  
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A subpomset 𝐴 of ℳ is called an mset antichain if no two points in 𝐴 are comparable. 

A pomset ℳ is connected (or is an mset chain) if 𝑚𝑖𝑥𝑖 ⋈ 𝑚𝑗𝑥𝑗  for all distinct pairs of points 

𝑚𝑖𝑥𝑖 , 𝑚𝑗𝑥𝑗 ∈ 𝑀. ℳ is an mset antichain if 𝑚𝑖𝑥𝑖||𝑚𝑗𝑥𝑗  for all distinct pairs of points 𝑚𝑖𝑥𝑖, 𝑚𝑗𝑥𝑗 

in 𝑀. 

Definition 3.4 

An mset chain 𝐶 in a pomset ℳ is maximal if it is not strictly contained in any other mset chain 

of ℳ. An mset chain ∁𝑖 in a pomset ℳ is a maximum mset chain if |∁𝑖| > |∁𝑗| for all other mset 

chains 𝐶𝑗 in the pomset ℳ. A maximal mset antichain is defined analogously. An mset antichain 

in ℳ is a maximum mset antichain if it contains maximum number of points.    

Remark 3.1 

A pomset can contain more than one maximal mset chain. Also, in a pomset, maximal and 

maximum mset chains may coincide. The following example illustrates this. 

Example 3.1 

Let ℳ = (𝑀, ≼≤) and let 𝑋 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6} be the root set for the mset 𝑀 =
[2𝑥1, 3𝑥2, 4𝑥3, 6𝑥4, 8𝑥5, 16𝑥6] where 𝑋 is partially ordered as follows: 𝑥1 ≼ 𝑥3 ≼ 𝑥5 ≼ 𝑥6,  𝑥1 ≼
𝑥4, and  𝑥2 ≼ 𝑥4. 

The following are mset chains in ℳ: 

𝐶1 = [2𝑥1, 4𝑥3, 8𝑥5, 16𝑥6]   

𝐶2 = [2𝑥1, 6𝑥4]  

𝐶3 = [3𝑥2, 6𝑥4]  

𝐶4 = [4𝑥3, 8𝑥5]  

Clearly, 𝐶1, 𝐶2 and 𝐶3 are maximal mset chains. Where 𝐶1 is the maximum. 

Definition 3.5 

A pomset ℳ = (𝑀, ≼≤) is said to be well-ordered if for any submset 𝑁 of 𝑀, there exists a point 

𝑛𝑖𝑥𝑖 in 𝑁, such that 𝑛𝑖𝑥𝑖 is the minimum point with respect to the defined order. 

Lemma 3.2 

Every well-ordered pomset is an mset chain. 

Proof 

Let ℳ = (𝑀, ≼≤) be a pomset and 𝑚𝑖𝑥𝑖 , 𝑚𝑗𝑥𝑗 be any arbitrary pair of distinct points in 𝑀. Since 

ℳ is well-ordered, the submset  [𝑛𝑖𝑥𝑖, 𝑛𝑗𝑥𝑗] has a minimum point. 

Thus, either 𝑛𝑖𝑥𝑖 ≺< 𝑛𝑗𝑥𝑗  or 𝑛𝑗𝑥𝑗 ≺< 𝑛𝑖𝑥𝑖. 

Since this condition holds for every pair of distinct points in 𝑀, it follows that ℳ is totally ordered. 

□                                                                                                     
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4. Bounds of pomsets 

Definition 4.1 

Let 𝒦 = (𝑁, ≼≤𝒦) be a subpomset of a pomset ℳ = (𝑀, ≼≤). A point 𝑚𝑖𝑥𝑖 ∈ 𝑀 is an upper 

bound for 𝒦 if 𝑚𝑖𝑥𝑖 ≽≥ 𝑛𝑗𝑥𝑗   for all points 𝑛𝑗𝑥𝑗 in 𝑁. Dually, 𝑚𝑖𝑥𝑖 ∈ 𝑀 is a lower bound of 𝒦 

if  𝑚𝑖𝑥𝑖 ≼≤ 𝑛𝑗𝑥𝑗  for all points 𝑛𝑗𝑥𝑗  in 𝑁. 

Lemma 4.1 

If an mset chain 𝐶 is maximal in a pomset ℳ, then 𝐶 necessarily contains its upper bound. 

Proof 

Let ℳ = (𝑀, ≼≤) be a pomset and let 𝐶 = (𝑁, ≼≤𝐶) be a maximal mset chain in ℳ. Since 𝐶 is 

linearly ordered, for some 𝑖 we will have a point 𝑛𝑖𝑥𝑖 ∈ 𝑁 such that 𝑛𝑖𝑥𝑖 >≻ 𝑛𝑗𝑥𝑗 for all other 

points 𝑛𝑗𝑥𝑗 ∈ 𝑁. This implies that 𝑛𝑖𝑥𝑖 is a maximum point. Suppose a point 𝑚𝑘𝑥𝑘 ∉ 𝑁 is an upper 

bound for 𝐶. Now 𝐶 is maximal implies that for any point 𝑚𝑘𝑥𝑘 ∉ 𝑁, we would have either 

𝑚𝑘𝑥𝑘||𝑛𝑖𝑥𝑖 or 𝑚𝑘𝑥𝑘 ≼≤ 𝑛𝑖𝑥𝑖 since 𝑛𝑖𝑥𝑖 is the maximum point. 

If 𝑚𝑘𝑥𝑘||𝑛𝑖𝑥𝑖, then 𝑚𝑘𝑥𝑘 cannot be an upper bound for 𝐶. 

Now, suppose that 𝑚𝑘𝑥𝑘 ≼≤ 𝑛𝑖𝑥𝑖, by the definition of upper bound we have a contradiction, hence 

the result.                                                                                                                                             □                                                                                                                                                       

Theorem 4.2 

Let ℳ be a pomset and let 𝒞 be a collection of all maximal mset chains in ℳ. If 𝐾 is an mset 

containing all upper bounds of the elements of 𝒞. Then any two distinct points in 𝐾 are 

incomparable.  

Proof 

Let 𝐶1, … , 𝐶𝑛 be the maximal mset chains in ℳ. Suppose that 𝑚1𝑥1,𝑚2𝑥2, … 𝑚𝑛𝑥𝑛 are upper 

bounds for the mset chains 𝐶1, 𝐶2, … , 𝐶𝑛, then 𝐾 = [𝑚1𝑥1, … , 𝑚𝑛𝑥𝑛]. 

Let 𝑚𝑖𝑥𝑖  𝑎𝑛𝑑 𝑚𝑗𝑥𝑗  be distinct points in 𝐾, then there exists maximal mset chains 𝐶𝑖 and 𝐶𝑗 in  𝒞 

such that 𝑚𝑖𝑥𝑖 is an upper bound for 𝐶𝑖 and 𝑚𝑗𝑥𝑗 is an upper bound for 𝐶𝑗 say. 

Now, 𝐶𝑖 ∪ [𝑚𝑗𝑥𝑗] is not an mset chain since 𝐶𝑖 is maximal in ℳ. Similarly, 𝐶𝑗 ∪ [𝑚𝑖𝑥𝑖] is not an 

mset chain. 

Assume that 𝑚𝑖𝑥𝑖||𝑚𝑗𝑥𝑗 , then either 𝑚𝑖𝑥𝑖 ≺< 𝑚𝑗𝑥𝑗  or 𝑚𝑗𝑥𝑗 ≺< 𝑚𝑖𝑥𝑖 holds.  

Suppose 𝑚𝑖𝑥𝑖 ≺< 𝑚𝑗𝑥𝑗. Now, 𝑚𝑖𝑥𝑖 is an upper bound for 𝐶𝑖 implies that 𝑚𝑖𝑥𝑖 ≽≥ 𝑚𝑘𝑥𝑘 for all 

other points 𝑚𝑘𝑥𝑘 ∈ 𝐶𝑖. By transitivity, it follows that, 𝑚𝑗𝑥𝑗 ≻> 𝑚𝑘𝑥𝑘 for all 𝑚𝑘𝑥𝑘 ∈ 𝐶𝑖, which 

is a contradiction since 𝐶𝑖 is maximal in ℳ. 

A similar argument holds for the case 𝑚𝑗𝑥𝑗 ≺< 𝑚𝑖𝑥𝑖 in 𝐶𝑗. 

Hence it must be the case that 𝑚𝑖𝑥𝑖||𝑚𝑗𝑥𝑗 . 
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Now 𝑚𝑖𝑥𝑖, 𝑚𝑗𝑥𝑗 are arbitrary points in 𝐾, therefore, no two points in 𝐾 are comparable.          □                                                                                                

                                                             

5. Height and width of a pomset 

Definition 5.1 

The height of a pomset ℳ denoted by ℏ is the sum of the multiplicities of all the objects in a 

maximum mset chain in ℳ. The width of a pomset ℳ denoted by 𝜛 is the number of points in a 

maximum mset antichain in ℳ. 

 Remark 5.1    

The number of mset chains in a chain partitioning of ℳ can be described in relation to the width 

of ℳ. Likewise, the number of mset antichains in an antichain partitioning of a pomset ℳ can be 

described with respect to the height of ℳ. Dilworth’s theorem [7], and its dual [14] describe these 

relationships in the classical setting. 

To achieve the desired results for pomsets, it is necessary to exploit set-based partitioning for an 

antichain partition of the pomset ℳ. Our next result is a necessary and sufficient condition for 

extending Dilworth’s theorem and its dual to pomsets. 

Theorem 5.1 

Let ℳ = (𝑀, ≼≤) be a pomset and let ∁𝑖, 𝐴𝑗  be mset chains and mset antichains in ℳ respectively 

with 𝑖, 𝑗 ∈ {1,2, … , 𝑛}. Then |∁𝑖 ∩ 𝐴𝑗| ≤ 1 for any 𝑖, 𝑗, if and only if the partitions of the mset 

antichains are such that each occurrence of the generating object of a point 𝑚𝑖𝑥𝑖 belongs to a 

different partition i.e. 𝑥𝑖 , 𝑥𝑗 ∈ 𝐴𝑗 ⟹ 𝑥𝑖 ≠ 𝑥𝑗. 

Proof 

Assume that |𝐶𝑖 ∩ 𝐴𝑗| ≤ 1. Now, 𝐶𝑖 ∩ 𝐴𝑗 is either empty or has only one point for any 𝑖, 𝑗. Let the 

points 𝑙1𝑥1, … , 𝑙𝑛𝑥𝑛 be in 𝐴𝑗, with 𝑙𝑖 ≤ 𝑚𝑖. The case where |𝐶𝑖 ∩ 𝐴𝑗| < 1 is trivial. Suppose 𝐶𝑖 ∩

𝐴𝑗 ≠ ∅ and let 𝑙𝑖𝑥𝑖 in 𝐴𝑗 be a point in 𝐶𝑖 ∩ 𝐴𝑗. Now |𝐶𝑖 ∩ 𝐴𝑗| ≤ 1 implies that 𝑙𝑖 ≯ 1. Hence it 

must be the case that 𝑙𝑖 = 1. We can apply this process inductively on all points 𝑙1𝑥1, … , 𝑙𝑛𝑥𝑛 ∈
𝐴𝑗 since each point 𝑙𝑖𝑥𝑖 ∈ 𝐴𝑗  must belong to a different mset chain 𝐶𝑖. Hence all points in 𝐴𝑗 will 

be of the form 𝑙𝑖𝑥𝑖 with 𝑙𝑖 = 1 . Therefore, 𝑥𝑖 , 𝑥𝑗 ∈ 𝐴𝑗 ⟹ 𝑥𝑖 ≠ 𝑥𝑗. 

Next, assume the converse. Clearly, for each point 𝑙𝑖𝑥𝑖 ∈ 𝐴𝑗 , 𝑙𝑖 ≯ 1, otherwise we will have a 

contradiction. If 𝐶𝑖 ∩ 𝐴𝑗 = ∅, the result follows. Now assume that  𝐶𝑖 ∩ 𝐴𝑗  is not empty and 

suppose that |𝐶𝑖 ∩ 𝐴𝑗| > 1. Then there will be points say 𝑥1, … , 𝑥𝑛  of 𝐴𝑗, with 𝑛 ≤ |𝐴𝑗| in 𝐶𝑖 ∩ 𝐴𝑗. 

This implies that 𝑥1, … , 𝑥𝑛 are comparable since they are also points in 𝐶𝑖 which is a contradiction. 

Hence 𝐶𝑖 ∩ 𝐴𝑗 is empty or  |𝐶𝑖 ∩ 𝐴𝑗| = 1. Therefore, |𝐶𝑖 ∩ 𝐴𝑗| ≤ 1.                                                   □                                                                                                                                                                                                                                                                                                                                                                                           

 

Theorem 5.2  

Let ℳ = (𝑀, ≼≤) be a pomset defined over a partially ordered base set. Then ℳ can be 

partitioned into exactly 𝜛 mset chains where 𝜛 is the width of the pomset ℳ. 
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Proof 

The case where ℳ contains only one point 𝑚𝑖𝑥𝑖 is trivial. Suppose the assertion is true for all 

pomsets 𝒩𝑖, 𝑖 = 1,2, … , 𝑘 with |𝒩𝑖| < |ℳ| for each 𝑖 and let ℳ = 𝒩𝑘 ∪ [𝑚𝑖𝑥𝑖], this implies that 
|ℳ| = |𝒩𝑘| + |𝑚𝑖𝑥𝑖|. If 𝐴 is an mset antichain in ℳ containing only one point 𝑚𝑖𝑥𝑖, then the 

assertion is true. Now assume that 𝐴 contains more than one point and let 𝒞 be a maximal mset 

chain in ℳ, then 𝜛 − |𝐴| ≤ 𝑤𝑖𝑑𝑡ℎ(ℳ\ 𝒞) ≤ 𝜛. Let Ϝ be the subpomset ℳ\ 𝒞, if Ϝ has width 

𝜛 − |𝐴|, by the induction hypothesis Ϝ can be partitioned into 𝜛 − |𝐴| mset chains, together with 

𝒞 gives a partition into at most 𝜛 mset chains. 

Furthermore, if the pomset ℳ is partitioned into 𝑛 mset chains then, 𝑛 = 𝜛. Observe that since 𝜛 

is the cardinality of a maximum mset antichain, every point in that mset antichain must belong to 

a different mset chain. Taking 𝑛 < 𝜛 will imply that there exist 𝑚𝑖𝑥𝑖, 𝑚𝑗𝑥𝑗 ∈ ∁𝑖 for some 𝑖, 𝑗 with 

𝑚𝑖𝑥𝑖||𝑚𝑗𝑥𝑗 , which is a contradiction.                                                                                                 □                             

Dually, we present an extension of Mirsky’s theorem to pomsets as follows: 

Theorem 5.3 

Let ℳ = (𝑀, ≼≤) be a pomset. Then ℳ can be partitioned into exactly ℏ mset antichains where 

ℏ is the height of the pomset ℳ. 

Proof 

We prove the theorem by induction. If ℳ is an mset antichain, we have a trivial case. Next, assume 

that the theorem holds for pomsets of height 𝑡 where 𝑡 < ℏ. Define ℋ to be the mset of all maximal 

points of  ℳ. Clearly ℋ is an mset antichain in ℳ and every maximal mset chain in ℳ contains 

exactly one point 𝑚𝑖𝑥𝑖   from ℋ which is also the maximum point in that mset chain. Let ℬ be the 

pomset ℳ\ℋ, height of ℬ, denoted height (ℬ), will be ℏ − (ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 ℋ) . By the induction 

hypothesis, height (ℬ) < ℏ implies that ℬ is partitioned into ℏ − (ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 ℋ) mset antichains. 

Therefore the pomset ℬ together with ℋ is partitioned into at most ℏ mset antichains. 

Theorem 5.1 guarantees that for subpomsets 𝐴1, 𝐴2, … , 𝐴𝑛 with ℳ = ⋃ 𝐴𝑛
𝑖=1 𝑖

 (where each 𝐴𝑖 is a 

mset antichain in ℳ) the integer 𝑛 must be equal to ℏ. Using a fewer number of partitions will 

imply that more than one point in a maximal mset chain belong to some 𝐴𝑖 which is a contradiction.     

□                                                                                                                                                       

The following example illustrates theorems 5.2 and 5.3. 

Example 5.1 

Let ℳ = (𝑀, ≼≤) be a pomset and 𝑀 = [2𝑥1, 6𝑥2, 2𝑥3, 5𝑥4, 3𝑥5, 𝑥6]. Suppose that 

the ordering ≼≤ on 𝑀 is defined as follows:  

2𝑥1 ≼≤ 6𝑥2, 2𝑥3 ≼≤ 5𝑥4, 2𝑥1 ≼≤ 3𝑥5.  

The pomset ℳ has 𝜛 = 4 𝑎𝑛𝑑 ℏ = 8. 

Observe that, in an mset chain partitioning of ℳ, there are exactly 4 mset chains as follows: 

 ∁1= [2𝑥1, 6𝑥2], ∁2= [2𝑥3, 5𝑥4], ∁3= [3𝑥5], ∁4= [𝑥6]. 
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In view of theorem 5.1, an mset antichain partitioning of ℳ gives exactly 8 antichains as 

follows: 

𝐴1 = {𝑥2, 𝑥4, 𝑥5, 𝑥6}, 𝐴2 = {𝑥2, 𝑥4, 𝑥5},  𝐴3 = {𝑥2, 𝑥4, 𝑥5},  𝐴4 = {𝑥2, 𝑥4},  𝐴5 = {𝑥2, 𝑥4}, 𝐴6 =
{𝑥2}, 𝐴7 = {𝑥1, 𝑥3}, 𝐴8 = {𝑥1, 𝑥3}                                                                                                 

6. Concluding remarks 

It is known that several characterizations exist for the set of maximal antichains of a poset. An 

interesting problem will be to characterize the maximal mset antichains of a pomset. In view of 

wide practical applications of msets, a number of mset orderings have been studied in the literature 

(see [1, 6, 10, 13], among others). The orderings defined in these literatures are exploited in 

comparing msets in 𝑀(𝑆). With further investigations, the ordering ≼≤ can be extended to 

compare msets. 
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