SOME ASPECTS OF PARTIALLY ORDERED MULTISETS

${ }^{1}$ F. Balogun and ${ }^{2}$ Y. Tella
${ }^{1}$ (Corresponding Author)
Department of Mathematical Sciences and Information Technology
Federal University Dutsinma, Katsina, Nigeria
fbalogun@fudutsinma.edu.ng
${ }^{2}$ Department of Mathematical Sciences
Kaduna State University, Kaduna, Nigeria
yt2002ng@yahoo.com

Abstract

The paper outlines some structural properties of a partially ordered multiset (pomset). A set of necessary and sufficient conditions is provided for characterizing the width and height of a pomset exploiting set-based partitioning into minimum number of mset chains and antichains, respectively.

2010 Mathematics Subject Classification: 06A07, 03E04, 06F25, 91B16
Key words: Partially ordered multisets, multiset chains, multiset antichains

1. Introduction

An mset is an unordered collection of objects in which repetition of elements is significant. For an mset M the root set (or support) of M, denoted by M^{*}, is given by the set $\{x \in M \mid M(x)>0\}$. An mset is called finite if the root set is finite and also, multiplicities are finite. In this paper, we shall confine our attention to finite msets. The cardinality of an mset is the sum of the multiplicities of all its distinct elements. Objects in an mset M represent the elements of the root set of M. An mset can be represented in various forms. For instance, the mset $M=[1,1,1,1,2,4,4,5,5]$ can be denoted by $[1,2,4,5]_{4,1,2,2}$ or $\left[1^{4}, 2^{1}, 4^{2}, 5^{2}\right]$ or $\{4 / 1,1 / 2,2 / 4,2 / 5\}$. In this paper, we choose to denote an mset M by $\left[m_{1} x_{1}, m_{2} x_{2}, \ldots, m_{n} x_{n}\right]$, where m_{i} is the multiplicity of x_{i} in M, hence $m_{i} x_{i}$ will denote a point in M. We will denote the class of all finite mset defined on a set S by $M(S)$. Let $M, N \in$ $M(S)$, then M is a submset of N, denoted by $M \subseteq N$, if $M(x) \leq N(x)$ for all $x \in S$, and $M \subset N$ if and only if $M(x)<N(x)$ for at least one x. A submset of a given mset that contains all multiplicities of common elements is called a whole submset. A full submset contains all objects of the parent mset. The union of two msets M and N is the mset given by $(M \cup N)(x)=$ $\max \{m, n\}$ such that $m x \in M$ and $n x \in N$ for all $x \in S$. The intersection of M and N is the mset given by $(M \cap N)(x)=\min \{m, n\}$ such that $m x \in M$ and $n x \in N$ for all $x \in S$ (see [2], [17] and [17] for details on msets). Some works have appeared dealing with infinite multiplicities as
well as involving negative multiplicities [3, 22]. In this work, we consider only nonnegative integral multiplicities of objects in an mset.

It is well-known that partially ordered multisets constitute one of the most basic models of concurrency $[8,15,16]$. The problem of extending various mathematical notions and results related to partially ordered sets (posets) (see [20] and [21] for an exposition on posets) to pomsets has attracted serious attention during the last couple of decades [6, 9, 11, 10]. In this paper, we introduce an ordering $\leqslant \leq$ on an mset M and study some properties of the structure $\mathcal{M}=(M, \preccurlyeq \leq$), in particular, characterization of the width and height of a pomset. In section 2 , we define the ordering $\preccurlyeq \leq$ and investigate some properties of the multiset structure \mathcal{M}. We discuss mset chains and mset antichains in section 3 and prove some related results. In section 4, we present bounds of pomsets. An extension of Dilworth's decomposition theorem and its dual to pomsets are presented in section 5 .

2. Partially ordered multiset (Pomsets)

Let $M=\left[m_{1} x_{1}, m_{2} x_{2}, \ldots, m_{n} x_{n}\right]$ be an ordered mset. We write $m_{i} x_{i} \bowtie m_{j} x_{j}$ whenever the two points $m_{i} x_{i}$ and $m_{j} x_{j}$ in M are comparable under the defined order and $m_{i} x_{i} \| m_{j} x_{j}$ whenever $m_{i} x_{i}$ and $m_{j} x_{j}$ are incomparable.

Definition 2.1

For any pair of points $m_{i} x_{i}$ and $m_{j} x_{j}$ in $M \in M(S), m_{i} x_{i} \leqslant \leq m_{j} x_{j}$ if and only if $x_{i} \leqslant x_{j}$, and the points $m_{i} x_{i}$ and $m_{j} x_{j}$ coincide i.e., $m_{i} x_{i}==m_{j} x_{j}$ if and only if $x_{i}=x_{j}$. Also, $m_{i} x_{i} \neq \neq m_{j} x_{j}$ if and only if $x_{i} \neq x_{j}$. Moreover, $m_{i} x_{i} \bowtie m_{j} x_{j}$ if and only if $x_{i} \bowtie x_{j}$ otherwise $m_{i} x_{i} \| m_{j} x_{j}$.
Note that the condition $m_{i} x_{i}==m_{j} x_{j}$ if and only if $x_{i}=x_{j}$ implies that $m_{i}=m_{j}$. This follows from the principle of uniqueness of the multiplicity of an object in an mset.

The strict order associated with $\preccurlyeq \leq$ is the ordering \ll, where $m_{i} x_{i} \ll m_{j} x_{j}$ implies that $m_{i} x_{i} \leqslant$ $\leq m_{j} x_{j}$ and $m_{i} x_{i} \neq \neq m_{j} x_{j}$.

Definition 2.2

The ordering $\leqslant \leq$ on M is said to be reflexive if and only if $m_{i} x_{i} \leqslant \leq m_{i} x_{i}$ for all $m_{i} x_{i} \in M$, symmetric if and only if $m_{i} x_{i} \leqslant \leq m_{j} x_{j}$ implies $m_{j} x_{j} \leqslant \leq m_{i} x_{i}$, antisymmetric if and only if $m_{i} x_{i} \preccurlyeq \leq m_{j} x_{j} \wedge m_{j} x_{j} \preccurlyeq \leq m_{i} x_{i}$ implies that $m_{i} x_{i}==m_{j} x_{j}$, and transitive if and only if $m_{i} x_{i} \preccurlyeq$ $\leq m_{j} x_{j} \wedge m_{j} x_{j} \leqslant \leq m_{k} x_{k}$ implies $m_{i} x_{i} \leqslant \leq m_{k} x_{k}$.

Definition 2.3

A relation R is called a quasi-mset order (or a pre-mset order) if it is reflexive and transitive, and a strict mset order if it is irreflexive and transitive. The relation R is called a partial mset order (or simply mset order) if it is reflexive, antisymmetric and transitive. R is a linear (or total) mset order if it is a partial mset order and for all pairs of point $m_{i} x_{i}, m_{j} x_{j}$ in M, we have $m_{i} x_{i} R m_{j} x_{j} \vee$ $m_{j} x_{j} R m_{i} x_{i}$.

Definition 2.4

A pomset \mathcal{M} is a pair $(M, \preccurlyeq \leq)$, where $M \in M(S)$, and $\preccurlyeq \leq$ is a partial mset order defined on M.

Theorem 2.1

Let (S, \preccurlyeq) be a poset and $M \in M(S)$. Then $\mathcal{M}=(M, \preccurlyeq \leq)$ is a pomset.

Proof

For any $m_{i} x_{i}$ in M, since $x_{i} \preccurlyeq x_{i}$ we have $m_{i} x_{i} \preccurlyeq \leq m_{i} x_{i}$, implying that ($M, \preccurlyeq \leq$) is reflexive.
Let $m_{i} x_{i} \leqslant \leq m_{j} x_{j}$ and $m_{j} x_{j} \leqslant \leq m_{i} x_{i}$ in \mathcal{M}. Then, $x_{i} \preccurlyeq x_{j}$ and $x_{j} \leqslant x_{i}$, and hence $x_{i}=x_{j}$.
In particular, $m_{i} x_{i}==m_{j} x_{j}$, hence $\leqslant \leq$ is antisymmetric.
Let $m_{i} x_{i}, m_{j} x_{j}, m_{k} x_{k}$ be points in M such that $m_{i} x_{i} \leqslant \leq m_{j} x_{j}$ and $m_{j} x_{j} \leqslant \leq m_{k} x_{k}$.
We have $x_{i} \leqslant x_{j} \leqslant x_{k}$.
Thus transitivity holds.
Therefore, $(M, \preccurlyeq \leq)$ is a pomset.

Definition 2.5

For two mset orders $\preccurlyeq_{1} \leq_{1}$ and $\leqslant_{2} \leq_{2}$ on an mset M, the mset order $\preccurlyeq \leq$ is said to be an intersection of $\leqslant_{1} \leq_{1}$ and $\leqslant_{2} \leq_{2}$ if and only if $m_{i} x_{i} \leqslant \leq m_{j} x_{j} \Rightarrow m_{i} x_{i} \leqslant_{1} \leq_{1} m_{j} x_{j} \wedge m_{i} x_{i} \leqslant_{2} \leq_{2} m_{j} x_{j}$, for all $m_{i} x_{i}, m_{j} x_{j} \in M$.

Theorem 2.2

If $\mathcal{M}=\left(M, \preccurlyeq_{1} \leq_{1}\right)$ and $\mathcal{N}=\left(M, \preccurlyeq_{2} \leq_{2}\right)$ are pomsets corresponding to $\left(S, \preccurlyeq_{1}\right)$ and $\left(S, \preccurlyeq_{2}\right)$, then $\mathcal{M} \cap \mathcal{N}=(M, \preccurlyeq \leq)$ is also a pomset, where $\preccurlyeq \leq=\leqslant_{1} \leq_{1} \cap \preccurlyeq_{2} \leq_{2}$.

Proof

For any point $m_{i} x_{i}$ in M, clearly $m_{i} x_{i} \leqslant_{1} \leq_{1} m_{i} x_{i}$ and $m_{i} x_{i} \preccurlyeq_{2} \leq_{2} m_{i} x_{i}$ since $\leqslant_{1} \leq_{1}$ and $\preccurlyeq_{2} \leq_{2}$ are partial mset orders.

Thus, $m_{i} x_{i} \preccurlyeq \leq m_{i} x_{i}$ (reflexive property).
Let $m_{i} x_{i}$ and $m_{j} x_{j}$ be points in M such that
$m_{i} x_{i} \leqslant \leq m_{j} x_{j}$ and $m_{j} x_{j} \leqslant \leq m_{i} x_{i}$.
From (1) we have,
$m_{i} x_{i} \leqslant_{1} \leq_{1} m_{j} x_{j}$ and $m_{j} x_{j} \preccurlyeq_{1} \leq_{1} m_{i} x_{i}$.
Since $\leqslant_{1} \leq_{1}$ is antisymmetric, we have

$$
\begin{equation*}
m_{i} x_{i}==m_{j} x_{j} . \tag{3}
\end{equation*}
$$

Similarly,
$m_{i} x_{i} \leqslant_{2} \leq_{2} m_{j} x_{j}$ and $m_{j} x_{j} \preccurlyeq_{2} \leq_{2} m_{i} x_{i}$ imply $m_{i} x_{i}==m_{j} x_{j}$.
From (2) - (4) we can conclude that,
$m_{i} x_{i} \leqslant \leq m_{j} x_{j}$ and $m_{j} x_{j} \leqslant \leq m_{i} x_{i}$ imply $m_{i} x_{i}==m_{j} x_{j}$.
Therefore, $\preccurlyeq \leq$ is antisymmetric.
For transitivity,
let $m_{i} x_{i}, m_{j} x_{j}$ and $m_{k} x_{k}$ be points in M such that,
$m_{i} x_{i} \leqslant \leq m_{j} x_{j}$ and $m_{j} x_{j} \leqslant \leq m_{k} x_{k}$.
We need to show that $m_{i} x_{i} \preccurlyeq \leq m_{k} x_{k}$.
Now,
$m_{i} x_{i} \leqslant \leq m_{j} x_{j}$ and $m_{j} x_{j} \leqslant \leq m_{k} x_{k}$ imply
$m_{i} x_{i} \leqslant_{1} \leq_{1} m_{j} x_{j}$ and $m_{j} x_{j} \leqslant_{1} \leq_{1} m_{k} x_{k}$.
Since $\preccurlyeq_{1} \leq_{1}$ is transitive, we have $m_{i} x_{i} \preccurlyeq_{1} \leq_{1} m_{k} x_{k}$.
Similarly,
$m_{i} x_{i} \preccurlyeq_{2} \leq_{2} m_{j} x_{j}$ and $m_{j} x_{j} \preccurlyeq_{2} \leq_{2} m_{k} x_{k}$ imply $m_{i} x_{i} \leqslant_{2} \leq_{2} m_{k} x_{k}$.
From (5) and (6), we obtain $m_{i} x_{i} \leqslant \leq m_{k} x_{k}$, hence $\leqslant \leq$ is transitive.
Therefore, $\mathcal{M} \cap \mathcal{N}=(M, \preccurlyeq \leq)$ is a pomset.
Theorem 2.3
Let (S, \preccurlyeq) be a poset. An mset $M \in M(S)$ is partially ordered if and only if its root set is a subposet of (S, \preccurlyeq).

Proof

Suppose $M \in M(S)$ is partially ordered. Thus, for $m_{i} x_{i} \in M, m_{i} x_{i} \preccurlyeq \leq m_{i} x_{i}$ holds. The definition of $\leqslant \leq$ implies that
$x_{i} \leqslant x_{i}$ for all $x_{i} \in M^{*}$, with $i \in[1, n]$.
Also, for all $m_{i} x_{i}, m_{j} x_{j} \in M$,
we have $m_{i} x_{i} \preccurlyeq \leq m_{j} x_{j} \wedge m_{j} x_{j} \preccurlyeq \leq m_{i} x_{i} \Rightarrow m_{i} x_{i}==m_{j} x_{j}$.
Again by the ordering $\preccurlyeq \leq$, it must be the case that
$x_{i} \leqslant x_{j} \wedge x_{j} \leqslant x_{i} \Rightarrow x_{i}=x_{j}$ for all $x_{i}, x_{j} \in M^{*}$.
Now, let $m_{i} x_{i}, m_{j} x_{j}, m_{k} x_{k}$ be any three points in M. Since M is partially ordered we have
$m_{i} x_{i} \leqslant \leq m_{j} x_{j} \wedge m_{j} x_{j} \leqslant \leq m_{k} x_{k} \Rightarrow m_{i} x_{i} \leqslant \leq m_{k} x_{k}$, and
$x_{i} \leqslant x_{j} \wedge x_{j} \leqslant x_{k} \Rightarrow x_{i} \leqslant x_{k}$ for all $x_{i} \in M^{*}$.
From (1) through (3), it follows that $\left(M^{*}, \preccurlyeq \leq\right)$ is a subposet of (S, \preccurlyeq).
The converse part is straightforward. Suppose that $\left(M^{*} \preccurlyeq\right)$ is a subposet of (S, \preccurlyeq). Clearly, $x_{i} \preccurlyeq$ x_{i} for all $x_{i} \in M^{*}$. Let m_{i} be the multiplicity of x_{i} in $M \in M(S)$. From the definition of $\preccurlyeq \leq$, we have $m_{i} x_{i} \leqslant \leq m_{i} x_{i}$ (reflexivity of $\preccurlyeq \leq$). Also, $x_{i} \leqslant x_{j} \wedge x_{j} \leqslant x_{i} \Rightarrow x_{i}=x_{j}$ for all $x_{i}, x_{j} \in M^{*}$, this in turn gives, $m_{i} x_{i} \leqslant \leq m_{j} x_{j} \wedge m_{j} x_{j} \leqslant \leq m_{i} x_{i} \Rightarrow m_{i} x_{i}==m_{j} x_{j}$ (antisymmetry of $\leqslant \leq$). And for all $x_{i}, x_{j}, x_{k} \in M^{*}$, we will have $x_{i} \leqslant x_{j} \wedge x_{j} \leqslant x_{k} \Rightarrow x_{i} \leqslant x_{k}$. Again, it follows that $m_{i} x_{i} \leqslant$ $\leq m_{j} x_{j} \wedge m_{j} x_{j} \leqslant \leq m_{k} x_{k} \Rightarrow m_{i} x_{i} \leqslant \leq m_{k} x_{k}$ (transitivity of $\leqslant \leq$).

3. Mset chains and mset antichains

Definition 3.1

Let $\mathcal{M}=(M, \preccurlyeq \leq)$ be a pomset. A point $m_{i} x_{i}$ in M is maximal in \mathcal{M} if for any other point $m_{j} x_{j} \in$ M with $m_{i} x_{i} \leqslant \leq m_{j} x_{j}$ we have $m_{i} x_{i}==m_{j} x_{j}$. Similarly, a point $m_{i} x_{i}$ in M is minimal if for any other point $m_{j} x_{j} \in M$ with $m_{j} x_{j} \leqslant \leq m_{i} x_{i}$ we have $m_{i} x_{i}==m_{j} x_{j}$. If such points are unique, we call them maximum and minimum respectively.

Theorem 3.1

Let $\mathcal{M}=(M, \preccurlyeq \leq)$ be a pomset. If \mathcal{M} is totally ordered then maximal and maximum points coincide.

Proof

Let $m_{i} x_{i}$ and $m_{j} x_{j}$ be points in M such that $m_{i} x_{i}$ is a maximal point in \mathcal{M} and $m_{j} x_{j}$ is a maximum point in \mathcal{M}.

Since \mathcal{M} is totally ordered, we will have either $m_{i} x_{i} \leqslant \leq m_{j} x_{j}$ or $m_{j} x_{j} \leqslant \leq m_{i} x_{i}$.
Now, suppose that $m_{i} x_{i} \leqslant \leq m_{j} x_{j}$, then, by definition of a maximal point
$m_{i} x_{i}==m_{j} x_{j}$.
Similarly, the other case follows.
A similar argument holds for minimal and minimum points if \mathcal{M} is totally ordered.

Definition 3.2

Let $\mathcal{M}=(M, \preccurlyeq \leq)$ be a pomset and N, a submset of M. A suborder $\leqslant \leq_{\mathcal{K}}$ is the restriction of $\leqslant \leq$ to pairs of points in the submset N of M such that
$n_{i} x_{i} \preccurlyeq \leq_{\mathcal{K}} n_{j} x_{j} \Leftrightarrow m_{i} x_{i} \preccurlyeq \leq m_{j} x_{j}$, where $n_{i} x_{i}, n_{j} x_{j} \in N$ and $n_{i} \leq m_{i}$. The pair $\left(N, \preccurlyeq \leq_{\mathcal{K}}\right)$ is called a subpomset of \mathcal{M}.

Definition 3.3

A subpomset C of a pomset $\mathcal{M}=(M, \preccurlyeq \leq)$ is called an mset chain if C is linearly (or totally) ordered.

A subpomset A of \mathcal{M} is called an mset antichain if no two points in A are comparable.
A pomset \mathcal{M} is connected (or is an mset chain) if $m_{i} x_{i} \bowtie m_{j} x_{j}$ for all distinct pairs of points $m_{i} x_{i}, m_{j} x_{j} \in M . \mathcal{M}$ is an mset antichain if $m_{i} x_{i} \| m_{j} x_{j}$ for all distinct pairs of points $m_{i} x_{i}, m_{j} x_{j}$ in M.

Definition 3.4

An mset chain C in a pomset \mathcal{M} is maximal if it is not strictly contained in any other mset chain of \mathcal{M}. An mset chain C_{i} in a pomset \mathcal{M} is a maximum mset chain if $\left|C_{i}\right|>\left|C_{j}\right|$ for all other mset chains C_{j} in the pomset \mathcal{M}. A maximal mset antichain is defined analogously. An mset antichain in \mathcal{M} is a maximum mset antichain if it contains maximum number of points.

Remark 3.1

A pomset can contain more than one maximal mset chain. Also, in a pomset, maximal and maximum mset chains may coincide. The following example illustrates this.

Example 3.1

Let $\mathcal{M}=(M, \preccurlyeq \leq)$ and let $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right\}$ be the root set for the mset $M=$ [$2 x_{1}, 3 x_{2}, 4 x_{3}, 6 x_{4}, 8 x_{5}, 16 x_{6}$] where X is partially ordered as follows: $x_{1} \leqslant x_{3} \leqslant x_{5} \leqslant x_{6}, x_{1} \leqslant$ x_{4}, and $x_{2} \leqslant x_{4}$.

The following are mset chains in \mathcal{M} :
$C_{1}=\left[2 x_{1}, 4 x_{3}, 8 x_{5}, 16 x_{6}\right]$
$C_{2}=\left[2 x_{1}, 6 x_{4}\right]$
$C_{3}=\left[3 x_{2}, 6 x_{4}\right]$
$C_{4}=\left[4 x_{3}, 8 x_{5}\right]$
Clearly, C_{1}, C_{2} and C_{3} are maximal mset chains. Where C_{1} is the maximum.

Definition 3.5

A pomset $\mathcal{M}=(M, \preccurlyeq \leq)$ is said to be well-ordered if for any submset N of M, there exists a point $n_{i} x_{i}$ in N, such that $n_{i} x_{i}$ is the minimum point with respect to the defined order.

Lemma 3.2

Every well-ordered pomset is an mset chain.

Proof

Let $\mathcal{M}=(M, \preccurlyeq \leq)$ be a pomset and $m_{i} x_{i}, m_{j} x_{j}$ be any arbitrary pair of distinct points in M. Since \mathcal{M} is well-ordered, the submset $\left[n_{i} x_{i}, n_{j} x_{j}\right]$ has a minimum point.

Thus, either $n_{i} x_{i} \ll n_{j} x_{j}$ or $n_{j} x_{j} \ll n_{i} x_{i}$.
Since this condition holds for every pair of distinct points in M, it follows that \mathcal{M} is totally ordered.

4. Bounds of pomsets

Definition 4.1

Let $\mathcal{K}=\left(N, \preccurlyeq \leq_{\mathcal{K}}\right)$ be a subpomset of a pomset $\mathcal{M}=(M, \preccurlyeq \leq)$. A point $m_{i} x_{i} \in M$ is an upper bound for \mathcal{K} if $m_{i} x_{i} \succcurlyeq \geq n_{j} x_{j}$ for all points $n_{j} x_{j}$ in N. Dually, $m_{i} x_{i} \in M$ is a lower bound of \mathcal{K} if $m_{i} x_{i} \leqslant \leq n_{j} x_{j}$ for all points $n_{j} x_{j}$ in N.

Lemma 4.1

If an mset chain C is maximal in a pomset \mathcal{M}, then C necessarily contains its upper bound.

Proof

Let $\mathcal{M}=(M, \preccurlyeq \leq)$ be a pomset and let $C=\left(N, \preccurlyeq \leq_{C}\right)$ be a maximal mset chain in \mathcal{M}. Since C is linearly ordered, for some i we will have a point $n_{i} x_{i} \in N$ such that $n_{i} x_{i} \gg n_{j} x_{j}$ for all other points $n_{j} x_{j} \in N$. This implies that $n_{i} x_{i}$ is a maximum point. Suppose a point $m_{k} x_{k} \notin N$ is an upper bound for C. Now C is maximal implies that for any point $m_{k} x_{k} \notin N$, we would have either
$m_{k} x_{k} \| n_{i} x_{i}$ or $m_{k} x_{k} \preccurlyeq \leq n_{i} x_{i}$ since $n_{i} x_{i}$ is the maximum point.
If $m_{k} x_{k} \| n_{i} x_{i}$, then $m_{k} x_{k}$ cannot be an upper bound for C.
Now, suppose that $m_{k} x_{k} \preccurlyeq \leq n_{i} x_{i}$, by the definition of upper bound we have a contradiction, hence the result.

Theorem 4.2

Let \mathcal{M} be a pomset and let \mathcal{C} be a collection of all maximal mset chains in \mathcal{M}. If K is an mset containing all upper bounds of the elements of \mathcal{C}. Then any two distinct points in K are incomparable.

Proof

Let C_{1}, \ldots, C_{n} be the maximal mset chains in \mathcal{M}. Suppose that $m_{1} x_{1}, m_{2} x_{2}, \ldots m_{n} x_{n}$ are upper bounds for the mset chains $C_{1}, C_{2}, \ldots, C_{n}$, then $K=\left[m_{1} x_{1}, \ldots, m_{n} x_{n}\right]$.

Let $m_{i} x_{i}$ and $m_{j} x_{j}$ be distinct points in K, then there exists maximal mset chains C_{i} and C_{j} in \mathcal{C} such that $m_{i} x_{i}$ is an upper bound for C_{i} and $m_{j} x_{j}$ is an upper bound for C_{j} say.

Now, $C_{i} \cup\left[m_{j} x_{j}\right]$ is not an mset chain since C_{i} is maximal in \mathcal{M}. Similarly, $C_{j} \cup\left[m_{i} x_{i}\right]$ is not an mset chain.

Assume that $m_{i} x_{i} \| m_{j} x_{j}$, then either $m_{i} x_{i} \ll m_{j} x_{j}$ or $m_{j} x_{j} \ll m_{i} x_{i}$ holds.
Suppose $m_{i} x_{i} \ll m_{j} x_{j}$. Now, $m_{i} x_{i}$ is an upper bound for C_{i} implies that $m_{i} x_{i} \succcurlyeq \geq m_{k} x_{k}$ for all other points $m_{k} x_{k} \in C_{i}$. By transitivity, it follows that, $m_{j} x_{j} \gg m_{k} x_{k}$ for all $m_{k} x_{k} \in C_{i}$, which is a contradiction since C_{i} is maximal in \mathcal{M}.

A similar argument holds for the case $m_{j} x_{j} \ll m_{i} x_{i}$ in C_{j}.
Hence it must be the case that $m_{i} x_{i} \| m_{j} x_{j}$.

Now $m_{i} x_{i}, m_{j} x_{j}$ are arbitrary points in K, therefore, no two points in K are comparable.

5. Height and width of a pomset

Definition 5.1

The height of a pomset \mathcal{M} denoted by \hbar is the sum of the multiplicities of all the objects in a maximum mset chain in \mathcal{M}. The width of a pomset \mathcal{M} denoted by ϖ is the number of points in a maximum mset antichain in \mathcal{M}.

Remark 5.1

The number of mset chains in a chain partitioning of \mathcal{M} can be described in relation to the width of \mathcal{M}. Likewise, the number of mset antichains in an antichain partitioning of a pomset \mathcal{M} can be described with respect to the height of \mathcal{M}. Dilworth's theorem [7], and its dual [14] describe these relationships in the classical setting.

To achieve the desired results for pomsets, it is necessary to exploit set-based partitioning for an antichain partition of the pomset \mathcal{M}. Our next result is a necessary and sufficient condition for extending Dilworth's theorem and its dual to pomsets.

Theorem 5.1

Let $\mathcal{M}=(M, \leqslant \leq)$ be a pomset and let C_{i}, A_{j} be mset chains and mset antichains in \mathcal{M} respectively with $i, j \in\{1,2, \ldots, n\}$. Then $\left|C_{i} \cap A_{j}\right| \leq 1$ for any i, j, if and only if the partitions of the mset antichains are such that each occurrence of the generating object of a point $m_{i} x_{i}$ belongs to a different partition i.e. $x_{i}, x_{j} \in A_{j} \Rightarrow x_{i} \neq x_{j}$.

Proof

Assume that $\left|C_{i} \cap A_{j}\right| \leq 1$. Now, $C_{i} \cap A_{j}$ is either empty or has only one point for any i, j. Let the points $l_{1} x_{1}, \ldots, l_{n} x_{n}$ be in A_{j}, with $l_{i} \leq m_{i}$. The case where $\left|C_{i} \cap A_{j}\right|<1$ is trivial. Suppose $C_{i} \cap$ $A_{j} \neq \emptyset$ and let $l_{i} x_{i}$ in A_{j} be a point in $C_{i} \cap A_{j}$. Now $\left|C_{i} \cap A_{j}\right| \leq 1$ implies that $l_{i} \gg 1$. Hence it must be the case that $l_{i}=1$. We can apply this process inductively on all points $l_{1} x_{1}, \ldots, l_{n} x_{n} \in$ A_{j} since each point $l_{i} x_{i} \in A_{j}$ must belong to a different mset chain C_{i}. Hence all points in A_{j} will be of the form $l_{i} x_{i}$ with $l_{i}=1$. Therefore, $x_{i}, x_{j} \in A_{j} \Longrightarrow x_{i} \neq x_{j}$.

Next, assume the converse. Clearly, for each point $l_{i} x_{i} \in A_{j}, l_{i} \ngtr 1$, otherwise we will have a contradiction. If $C_{i} \cap A_{j}=\emptyset$, the result follows. Now assume that $C_{i} \cap A_{j}$ is not empty and suppose that $\left|C_{i} \cap A_{j}\right|>1$. Then there will be points say x_{1}, \ldots, x_{n} of A_{j}, with $n \leq\left|A_{j}\right|$ in $C_{i} \cap A_{j}$. This implies that x_{1}, \ldots, x_{n} are comparable since they are also points in C_{i} which is a contradiction. Hence $C_{i} \cap A_{j}$ is empty or $\left|C_{i} \cap A_{j}\right|=1$. Therefore, $\left|C_{i} \cap A_{j}\right| \leq 1$.

Theorem 5.2

Let $\mathcal{M}=(M, \preccurlyeq \leq)$ be a pomset defined over a partially ordered base set. Then \mathcal{M} can be partitioned into exactly ϖ mset chains where ϖ is the width of the pomset \mathcal{M}.

Proof

The case where \mathcal{M} contains only one point $m_{i} x_{i}$ is trivial. Suppose the assertion is true for all pomsets $\mathcal{N}_{i}, i=1,2, \ldots, k$ with $\left|\mathcal{N}_{i}\right|<|\mathcal{M}|$ for each i and let $\mathcal{M}=\mathcal{N}_{k} \cup\left[m_{i} x_{i}\right]$, this implies that $|\mathcal{M}|=\left|\mathcal{N}_{k}\right|+\left|m_{i} x_{i}\right|$. If A is an mset antichain in \mathcal{M} containing only one point $m_{i} x_{i}$, then the assertion is true. Now assume that A contains more than one point and let \mathcal{C} be a maximal mset chain in \mathcal{M}, then $\varpi-|A| \leq$ width $(\mathcal{M} \backslash \mathcal{C}) \leq \varpi$. Let F be the subpomset $\mathcal{M} \backslash \mathcal{C}$, if F has width $\varpi-|A|$, by the induction hypothesis F can be partitioned into $\varpi-|A|$ mset chains, together with \mathcal{C} gives a partition into at most ϖ mset chains.

Furthermore, if the pomset \mathcal{M} is partitioned into n mset chains then, $n=\varpi$. Observe that since ϖ is the cardinality of a maximum mset antichain, every point in that mset antichain must belong to a different mset chain. Taking $n<\varpi$ will imply that there exist $m_{i} x_{i}, m_{j} x_{j} \in C_{i}$ for some i, j with $m_{i} x_{i} \| m_{j} x_{j}$, which is a contradiction.

Dually, we present an extension of Mirsky's theorem to pomsets as follows:

Theorem 5.3

Let $\mathcal{M}=(M, \preccurlyeq \leq)$ be a pomset. Then \mathcal{M} can be partitioned into exactly \hbar mset antichains where \hbar is the height of the pomset \mathcal{M}.

Proof

We prove the theorem by induction. If \mathcal{M} is an mset antichain, we have a trivial case. Next, assume that the theorem holds for pomsets of height t where $t<\hbar$. Define \mathcal{H} to be the mset of all maximal points of \mathcal{M}. Clearly \mathcal{H} is an mset antichain in \mathcal{M} and every maximal mset chain in \mathcal{M} contains exactly one point $m_{i} x_{i}$ from \mathcal{H} which is also the maximum point in that mset chain. Let \mathcal{B} be the pomset $\mathcal{M} \backslash \mathcal{H}$, height of \mathcal{B}, denoted height (\mathcal{B}), will be $\hbar-($ height of $\mathcal{H})$. By the induction hypothesis, height $(\mathcal{B})<\hbar$ implies that \mathcal{B} is partitioned into \hbar - (height of $\mathcal{H})$ mset antichains. Therefore the pomset \mathcal{B} together with \mathcal{H} is partitioned into at most \hbar mset antichains.

Theorem 5.1 guarantees that for subpomsets $A_{1}, A_{2}, \ldots, A_{n}$ with $\mathcal{M}=\bigcup_{i=1}^{n} A_{i}$ (where each A_{i} is a mset antichain in \mathcal{M}) the integer n must be equal to \hbar. Using a fewer number of partitions will imply that more than one point in a maximal mset chain belong to some A_{i} which is a contradiction.

The following example illustrates theorems 5.2 and 5.3.

Example 5.1

Let $\mathcal{M}=(M, \Im \leq)$ be a pomset and $M=\left[2 x_{1}, 6 x_{2}, 2 x_{3}, 5 x_{4}, 3 x_{5}, x_{6}\right]$. Suppose that
the ordering $\leqslant \leq$ on M is defined as follows:
$2 x_{1} \leqslant \leq 6 x_{2}, 2 x_{3} \leqslant \leq 5 x_{4}, 2 x_{1} \leqslant \leq 3 x_{5}$.
The pomset \mathcal{M} has $\varpi=4$ and $\hbar=8$.
Observe that, in an mset chain partitioning of \mathcal{M}, there are exactly 4 mset chains as follows:

$$
\mathrm{C}_{1}=\left[2 x_{1}, 6 x_{2}\right], \mathrm{C}_{2}=\left[2 x_{3}, 5 x_{4}\right], \mathrm{C}_{3}=\left[3 x_{5}\right], \mathrm{C}_{4}=\left[x_{6}\right] .
$$

In view of theorem 5.1, an mset antichain partitioning of \mathcal{M} gives exactly 8 antichains as follows:

$$
\begin{aligned}
& A_{1}=\left\{x_{2}, x_{4}, x_{5}, x_{6}\right\}, A_{2}=\left\{x_{2}, x_{4}, x_{5}\right\}, A_{3}=\left\{x_{2}, x_{4}, x_{5}\right\}, A_{4}=\left\{x_{2}, x_{4}\right\}, A_{5}=\left\{x_{2}, x_{4}\right\}, A_{6}= \\
& \left\{x_{2}\right\}, A_{7}=\left\{x_{1}, x_{3}\right\}, A_{8}=\left\{x_{1}, x_{3}\right\}
\end{aligned}
$$

6. Concluding remarks

It is known that several characterizations exist for the set of maximal antichains of a poset. An interesting problem will be to characterize the maximal mset antichains of a pomset. In view of wide practical applications of msets, a number of mset orderings have been studied in the literature (see $[1,6,10,13]$, among others). The orderings defined in these literatures are exploited in comparing msets in $M(S)$. With further investigations, the ordering $\leqslant \leq$ can be extended to compare msets.

References

[1] Bachmair, L., Dershowitz, N., and Hsiang, J. (1986). Orderings for equational proofs, in: Proc. IEEE Symp. on Logic in Computer Science, Cambridge, MA, 346-357.
[2] Blizard, W. (1989). Multiset theory. Notre Dame Journal of Formal Logic, 30: 36-66.
[3] Blizard, W. (1990). Negative membership. Notre Dame Journal of Formal Logic, 31: 346368.
[4] Brandt, J. (1982). Cycles of partitions. Proc. American Mathematical Society, 85: 483-486.
[5] Conder, M., Marshall, S., and Slinko, A. (2007). Orders on multisets and discrete cones. Order, 24:277-296.
[6] Dershowitz, N., and Manna, Z. (1979). Proving termination with multiset orderings. Communications of the Journal of Association for Computing Machinery, 22: 465-476.
[7] Dilworth, R.P. (1950). A decomposition theorem for partially ordered sets. Annals of Mathematics, 51(1): 161-166, doi: 10.2307/1969503.
[8] Fanchon, J., and Morin, R. (2002). Regular sets of pomsets with autoconcurrency Proceedings of the $13^{\text {th }}$ International Conference on Concurrency Theory, 402-417.
[9] Girish, K. P, and Sunil, J. J. (2009). General relationship between partially ordered multisets and their chains and antichains. Mathematical communications, 14(2): 193-205.
[10] Jouannaud, J-P., and Lescanne, P. (1982). On multiset orderings. Information Processing Letter, 15: 57-63.
[11] Kilibarda, G., and Jovovic, V. (2004). Antichains of multisets. Journal of integer sequences, 7(1), Article 04.1.5
[12] Kilibarda, G. (2015). Enumeration of certain classes of antichains. Publications De L’Institut Mathematique, 97(111): 69-87.
[13] Martin, U. (1989). A geometrical approach to multiset orderings. Theoretical Computer Science, 67: 37-54.
[14] Mirsky, L. (1971). A dual of Dilworth's decomposition theorem. American Mathematical Monthly, 78(8): 876-877.
[15] Pratt, V. R. (1986). Modelling concurrency with partial orders. International Journal of Parallel Programming, 15: 33-71.
[16] Rensink, A. (1996). Algebra and theory of order-deterministic pomsets. Notre Dame Journal of Formal Logic, 37(2): 283-320.
[17] Singh, D., Ibrahim, A.M., Yohanna, T., and Singh, J.N. (2007). An overview of the applications of multisets. Novi Sad Journal of Mathematics, 37(2): 73-92.
[18] Singh, D., and Isah, A. I. (2016). Mathematics of multisets: a unified approach. Afri. Mat., 27(1): 1139-1146.
[19] Tella, Y., Singh, D., and Singh, J. N. (2014). A comparative study of multiset orderings. International Journal of Mathematics and Statistics Invention, 2(5): 59-71.
[20] Trotter, W. T. (1992). Combinatorics and partially ordered sets: Dimension Theory, The Johns Hopkins University Press.
[21] Trotter, W.T. (1995). Partially ordered sets, in : R.L. Graham, M. Grotschel, L. Lovasz (Eds.), Handbook of combinatorics, Elsevier, 433-480.
[22] Wildberger, N.J. (2003). A new look at multiset. School of Mathematics, UNSW Sydney 2052, Australia.

