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Abstract

In this paper SIR(Susceptible-Infected-Recovered) epidemic model is formulated and analysed. Ex-
istence and stability of the Disease Free Equilibrium (DFE) of the model is discussed in detail. The
basic reproduction number R0 of the model is computed and it is established that the disease free
equilibrium of the model is globally asymptotically stable for R0 < 1. Homotopy Analysis Method
(HAM) is used to solve the model. Semi-analytical results obtained by HAM have been compared
with the numerical solution and are found to be in good agreement. Finally, various simulations are
done to discuss the solution.
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1 Introduction

Closed form solutions of non-linear differential equations are sometimes not easy to get. In recent time,
there exist various software such as MATLAB, MAPLE, MATHEMATICA,MAXIMA,OCTAVE, SCILAB
etc. The routines built into these software may be capable of gaining understanding of the dynamics of the
problem. But the biology of infectious diseases in cases where it is governed by the nonlinear differential
equations may not yield good results or may even fail completely due to various problems like singularities,
stiffness or multiple solutions the numerical approach etc. HAM was first discovered in 1992 by Liao Shijun
in his P.hd dissertation and further modified in 1997 to introduce a non-zero auxilliary parameter, referred
to as the convergence-control parameter to construct a homotopy on a differential system in general form.
In this paper,the existence and stability of the model is carried out and the Homotopy Analysis Method
is applied to solve the SIR epidemic model. The HAM results obtained are compared with the numerical
results and found in strong agreement with the numerical results. At first,a mathematical model is
formulated for SIR transmission dynamics and then apply the HAM to find the semi-analytical solution.
This work presents a semi analytical technique viz. the Homotopy Analysis Method (HAM) which has
been applied to study the solution of the epidemic model. This method employs the concept of the
homotopy from topology to generate a convergent series solution for nonlinear systems which is enabled
by utilizing a homotopy-McLaurin series to deal with the nonlinearity in the system. The strength of the
HAM to naturally exhibit convergence of the series solution is strange in most analytic and semi-analytic
approaches to nonlinear PDEs[13].In the recent time, Khan et.al[12] used the HAM approach to solve the
SIS and SIR models of Kermack and Mckendrick[7].Motsa et.al[10] extended the work of Khan et.al[8]
to solve the SIR epidemic model in the presence of constant vaccination strategy. Motsa[11]also applied
the HAM to solve the SIRS epidemic model and obtained an explicit analytic solution of the coupled
nonlinear differential equations describing the epidemic model obtained and comparison were made with
the numerical results which shows that the two results are in good agreement. M. Sajid et.al [12] studied
a new approach for solving SIR epidemic model using HAM. His new approach was based on dividing
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the entire domain into subintervals. The paper is organized as follows: in section 2,we present the model
formulation. In section 3,we discussed the qualitative analysis of the model and the derivation of the
reproduction number. In section 4,we present the Homotopy Analysis Approach to non-linear system. .
While, in section 5, we present the solution of the malaria transmission model by HAM and In section
6, we present the Numerical results and discussion.In section 7, we discussed the conclusion and possible
extensions and finally, the references are presented.

2 Model Formulation

A population comprising of three kinds of individuals whose numbers are denoted by S(Susceptible
human), I(Infected human) and R(Recovered Human)is been considered.The Susceptible human (S(t)) is
the number of susceptible human at time t i.e those who are vulnerable, who are yet to have the disease
but have the tendency of having it, Infected human(I(t)) is the population of the infected and infectious
, those who have the disease and can transmit it to others while the Recovered human (R(t)) is the
population of the removed, those who cannot get the disease or transmit it either because they have got
natural immunity, or they have recovered from the disease and immune from re-infection or they have
been placed in isolation or they have died.

The population of susceptible humans is generated through reduction by the rate of transmission β
such that the rate of change of population of susceptible human is given by:

dS
dt = −βSI, β > 0 (1)

The rate of change of the population of infected human is increased by the rate of transmission β and
reduced by the rate at which the infected population become isolated γ.Hence it is given by:

dI
dt = βSI − γI, β > 0, γ > 0 (2)

The population of recovered human is generated by the rate at which the infected population become
isolated. Hence it is given by:

dR
dt = γI (3)

Hence the above formulation and assumptions together leads to the following System of ordinary
differential equations:

dS
dt = −βSI
dI
dt = βSI − γI
dR
dt = γI.

(4)

subject to the initial conditions

S(0) = S0, I(0) = I0, R(0) = R0.

We described the associated model variables 1

Variables Description

S Susceptible Human
I Infected Human
R Recovered Human

Table 1: Table showing the Variables in the model.

(i) Susceptible: Those who do not have the disease(illness) but can catch it. They are the vulnerable
group.
(ii) Infected : Those who currently have the disease(illness) and are contagious . They are infectious and
infective.
(iii) Those who have recovered from the illness(disease) and are immnuned. They could also stand for the
removed class which means those who have removed from the disease either through death/immunity.
We assume that the population we are considering here is large but fixed in size and confined geograph-
ically well defined location e.g population of people in a classroom or boarding school. The population
can be subdivided into three distinct compartments.

2



3 Qualitative Analysis

3.1 Positivity of the solution

Theorem 1.:Suppose the initial data S ≥ 0, I ≥ 0, R ≥ 0, then the solutions (S(t), I(t), R(t)) of the
SIR model (4) are non-negative for all t > 0. Therefore,

lim
t→∞

supN(t) ≤ Constant (5)

such that N = S + I +R.
Proof. We let D = sup{t > 0 : S(t) > 0, I(t) > 0, R(t) > 0}.
Since the variables S(0) > 0, I(0) > 0, R(0) > 0 then, D > 0. If D < ∞, then S, I,R is equal to zero at
D It follows from the first equation of the system (4), that

dS

dt
= −βSI

Therefore,
d
dt

{
S(t) exp

∫ t
0

[(
βI(τ))]}dτ

dt
≥ 0.

We solve the inequality to obtain

S(t) exp

∫ t

0

[(
βI(τ))]dτ − S(0) ≥ 0.

Therefore S(t) yields

S(t) ≥ S(0) exp

∫ t

0

[(
βI(τ))]dτ

Similarly

dI

dt
= βSI − γI

Also
dI

dt
+ γI − βSI =

dI

dt
+ (γ − βS)I = 0

Therefore
d
dt

{
I(t) exp

∫ t
0

[(
γ − βS(τ))]}dτ

dt
≥ 0.

We solve the inequality to obtain

I(t) exp

∫ t

0

[(
γ − βS(τ))]dτ − I(0) ≥ 0.

Therefore I(t) yields

I(t) ≥ I(0) exp

∫ t

0

[(
γ − βS(τ))]dτ

Also,
dR

dt
= γI

Therefore,
d
dt

{
R(t) exp

∫ t
0

[(
0)]}dτ

dt
≥ γI exp

∫ t

0

(0)dτ.

We solve the inequality to obtain

R(t) exp

∫ t

0

[(
βI(τ))]dτ −R(0) ≥ γI exp

∫ t

0

(0)dτ.
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Therefore R(t) yields

R(t) ≥ R(0) exp−
∫ t

0

[(
0)]dτ + exp−

∫ t

0

(0)dτ × γI exp

∫ t

0

(0)dτ > 0

3.2 Boundedness of the solution

Theorem 2.:Every solutions (S(t), I(t), R(t)) of the SIR model (4) is bounded. Therefore,from (5)

lim
t→∞

supN(t) ≤ constant

such that N = S + I +R.
Proof. To proof boundedness, we note that 0 < R(t) ≤ N(t) and 0 < S(t) ≤ N(t). We add the model
equation the SIR model (4) yield:

dN
dt = 0 (6)

Then the
lim
t→∞

supN(t) ≤ Constant (7)

Therefore all solutions of model equation (4) are bounded. The feasible region for the total population
is:
D = {S, I,R|S + I + R ≤ constant, 0 ≤ S ≤ S(t), 0 ≤ I ≤ I(t), 0 ≤ R ≤ R(t)} We define D as
the positively invariant region with respect to the model equation(4) therefore the model equation(4) is
mathematically and epidemiologically well posed in D. Let Ḋ represent the interior of D.

Theorem 3.:The region D ⊂ R3
+ is positively-invariant for the basic model (4) with non-negative

initial conditions in R3
+.

3.3 Equilibrium solution

The system of equation (4) has only one equilibrium solution i.e the disease free equilibrium solution.
M0 = ( γβ , 0, 0)

Theorem 4.:The disease free equilibrium (DFE) of the malaria model(4) is locally asymptotically
stable(LAS) if R0 < 1, and unstable if R0 > 1.

3.4 Further Analysis of the system

Since S(t) + I(t) + R(t) = 1, we can compute R(t) from R(t) = 1 − S(t) − I(t) by writing the second
equation in (4) as

dI

dt
= βSI − γI = β(S − γ

β
)I

, Hence,
dI

dt
= β(S − γ

β
)I

Proposition 1:If S0 <
γ
β , then dI

dt < 0
Proof :Since

dI

dt
= β(S − γ

β
)I

If S0 <
γ
β then S0 = − γβ .

∴
dI
dt = β(− γβ −

γ
β )I

= β(−2γβ )I
= −2γI < 0
∴
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dI
dt < 0, So I(t) decreases and disease dies out

Proposition 2:If S0 >
γ
β , then dI

dt > 0
Proof : Since

dI

dt
= β(S − γ

β
)I

If S0 >
γ
β then S0 = 1 + γ

β .
∴

dI

dt
= β(1 +

γ

β
− γ

β
)I

= βI > 0

dI

dt
= βI > 0

∴

dI

dt
> 0

, So I(t) increases and this result into an epidemic.
Proposition 3: dIdS = −βS−γIβSI = −1 + m

S where m = γ
β

Proof : Suppose
dS

dt
= −βSI

,
dI

dt
= β(S − γ

β
)I

,
dS
dt
dI
dt

= −βSI−γIβSI = −βSIβSI + γI
βSI = −1 + γ

βS (Let m = γ
β )

dI

dS
= −1 +

m

S

Proposition 4:Suppose dI
dS = −1 + m

S then I(t) = I0 − S(t) + S0 +m log S(t)
S0

.

Proof : dIdS = −1 + m
S , where m = γ

β

∫
dI =

∫ t
0
(−1 + m

S )ds

I(t) =
∫
−dS +

∫ t
0
m
S dS

I(t) = −S(t) +m loge S(t) + C at t = 0
I0 = −S0 +m loge S0 + C
∴ C = I0 + S0 −m loge S0.
Hence we obtain
I(t) = −S(t) +m loge S(t) + I0 + S0 −m loge S0

I(t) = I0 − S(t) + S0 +m loge S(t)−m loge S0

I(t) = I0 − S(t) + S0 +m loge
S(t)
S0

3.5 The Basic Reproduction Number

From the Proposition 1 we observed that I(t) decreases when S < γ
β , S(0) < γ

β implies that β
γS(0) < 1

implies β
γ < 1.(i.e. S0 ' 1).Also from the Proposition 2, we observed that I(t) increases as S(t) > γ

β

implies that βS0

γ > 1 implies that β
γ > 1. We define

R0 =
β

γ
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.The basic reproduction number helps to determine when an infectious disease dies out or when it
spreads.If R0 > 1, then disease dies out without any intervention but the disease spreads out when
R0 > 1. When R0 = β

γ < 1 implies β < γ, this means that the transmission rate is greater than the
recovery rate an this results in epidemic.
R0 = β

γ = β × 1
γ is the product of the contact rate(transmission rate) per unit time and the average in-

fectious period 1
γ which means that R0 is the average number of minimum contacts a particular infective

make with both susceptible and infected persons during his entire infectious period.

3.6 Global Stability

Theorem 4: Suppose R0 < 1 , then the disease free equilibrium M0 is globally asymptotically stable on
D.
Proof : Given that R0 < 1, then there exist only the disease free equilibrium(DFE) M0 = (S∗, I∗, R∗) =
( γβ , 0, 0).Suppose the Lyapunov function A(S, I,R) : R3 → R+ is defined as

A(S, I,R) = mI

, m ≥ 0 By differentiating A(S, I,R) with respect to time yields

dA

dt
= m

dI

dt

m ≥ 0

By substituting into the model equation(4) yields

dA

dt
= m(βSI − γI)

= mI(βS − γ)

= mIγ(
β

γ
S − 1)

= mIγ(R0S − 1)

= m(R0 − 1)I ≤ 0

where
S ' 1

Hence R0 < 1. Note that dA
dt = 0 only when I = 0. The maximum invariant set in {(S, I,R) ∈ D|dAdt ≤ 0}

is singleton set {M0}. Therefore, the global stability of M0 when R0 ≤ 1 is obtained from Lasalle’s
invariance principles.

4 Homotopy Analysis Approach

We hereby present below the procedure for the HAM (Homotopy Analysis Method) for the benefit of
finding the numerical solution of our model. Consider a nonlinear equation of the form

A[v(t)] = 0 (8)
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where A is a linear operator, t denotes the time and v(t) is an unknown function. Let v0(t) denote an
initial approximation of v(t) and Z denote an auxilliary linear operator Liao[57]construct the zero-order
deformation equation.

(1− q)Z[ϕ(t; q)− v0(t)] = qh1H(t)A(t; p) (9)

where q ∈ [0, 1] is the embedding parameter, h 6= 0 is a non-zero auxilliary function. When q = 0 and
q = 1, the zero-order deformation equation becomes respectively

ϕ(t; 0) = v0(t) (10)

and
ϕ(t; 0) = v(t) (11)

Thus, as q increases from 0 to 1, the solution ϕ(t; q) varies continuously from the initial approxima-
tion v0(t) to the exact solution v(t).Such a kind of continuous variation is called deformation in topol-
ogy.Expanding ϕ(t; p) by Taylor series in power series of q, we have

ϕ(t; q) = v0(t) + Σ∞m=1vmq
m (12)

where

vm(t) =
1

m!

∂mϕ(t; q)

∂qm
(13)

is the deformation derivative. If the auxilliary linear operator A, the initial approximation v0(t), the
auxilliary parameter h1 and the auxilliary function H(t) are properly chosen so that

1. the solution ϕ(t; q) of the zero-order deformation equation(8) exists for all q ∈ [0, 1]

2. the deformation derivative (12) exists for all m = 1, 2, ..

3. the series (11) converge at q = 1

Then, we have the series solution

ϕ(t; 1) = v0(t) +

∞∑
m=1

vm(t) (14)

Define the vector
−→v m(t) = {v0(t), v1(t), ..., vm(t)} (15)

According to the definition (12) the governing equation can be derived from the zero-order deformation
equation(8).Differentiating(8) m-times with respect to the embedding parameter q, then by setting q = 0
and finally dividing by m!, we have the mth order deformation equation

Z[bm(t)− λmvm−1(t)] = hH(t)Pm(−→v m−1(t)) (16)

where

Pm(−→v m−1(t)) =
1

(m− 1)!

∂m−1A[ϕ(t; q)]

∂qm−1
(17)

λm =


0 if m ≤ 1,

1 if m > 1,
(18)

Note that according to the definition (16), the right hand side of (15) depends only on vm−1(t). Thus,
we easily gain the series v1(t), v2(t), ... by solving the linear higher-order deformation equation (15) using
the well known symbolic computation software such as MAPLE, MATLAB or MATHEMATICA.
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5 Solution of the SIR Model by HAM

To solve the model equation (6) by HAM, we consider the first equation in the model equation (6) and
choose the linear operator

A[S(t; q)] =
dS(t; q)

dt
(19)

with the property that
A[α1] = 0 (20)

where α1 is a constant of integration. The inverse operator A−1 is given by

A−1(·) =

∫ t

0

(·) dt (21)

Let the nonlinear operator be defined as

A[S(t; q)] =
dS(t; q)

dt
− βS(t; q)I(t; q) (22)

By constructing the zero-order deformation equation

(1− q)A[S(t; q)− S0(t; q)] = qh1H(t)A[S(t; q)] (23)

we have the following:

1. If q = 0, then S(t; 0) = S0(t)

2. If q = 1, then S(t; 1) = S(t).

Therefore, we have the mth order deformation equation

A[Sh,m(t)− λS(m−1)(t)] = h1H(t)P (S(m−1)(t),m ≥ 1 (24)

where

Pm(S(m−1)(t)) =
dS(m−1)(t)

dt
− βS(t)I(t) (25)

The solution of the mth order deformation equation (24) for m ≥ 1 and using h1 = −1 and H(t) = 1 is
given by

Sm(t) = λmS(m−1)(t)−
∫ t

∞
[
dS(m−1)(t)

dt
+ β

m−1∑
k=0

Sk(t)Im−1−k(t)]dt,m ≥ 1 (26)

Following earlier steps, we obtain

Im(t) = λmI(m−1)(t)−
∫ t

∞
[
dI(m−1)(t)

dt
− β

m−1∑
k=0

Sk(t)Im−1−k(t) + γIm−1(t)]dt,m ≥ 1 (27)

Rm(t) = λmRm−1(t)−
∫ t

∞
[
dRm−1(t)

dt
− γIm−1(t)]dt,m ≥ 1 (28)

6 Numerical Results and Discussions

We execute the numerical analysis of the model using the parameters obtained from different literatures.
The table below shows the details of the parameters and their values.

Parameter Symbol Value Source

rate at which the infected become immuned/isolated γ 0.02 [3]
rate of transmission β 0.01 [3]

Table 2: Table showing numerical values of parameters used in the simulations.
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Variables Symbol Value Source

Initial population of susceptible S0 20 [3]
Initial population of Infected I0 15 [3]

Initial population of Recovered R0 10 [3]

Table 3: Table showing initial values of variables used in the simulations.

The 3rd to 9th approximations for S, I,R, are obtained and presented below:

3rd approximations:
S3(t) = 20− 3t− 0.015t2 + 0.02625t3

I3(t) = 15 + 2.4t+ 0.018t2 − 0.02655t3

R3(t) = 10 + 0.3t+ 0.024t2 + 0.0003t3

4th approximations:
S4(t) = 20− 3t− 0.015t2 + 0.02355t3 + 0.00098437t4

I4(t) = 15 + 2.4t+ 0.018t2 − 0.02367t3 − 0.000851625t4

R4(t) = 10 + 0.3t+ 0.024t2 + 0.00012t3 − 0.00013275t4

5th approximations:
S5(t) = 20− 3t− 0.015t2 + 0.02355t3 + 0.000502875t4 − 0.00029246625t5

I5(t) = 15 + 2.4t+ 0.018t2 − 0.02367t3 − 0.000384525t4 + 0.00029587275t5

R5(t) = 10 + 0.3t+ 0.024t2 + 0.00012t3 − 0.00011835t4 − 0.0000034065t5

6th approximations:
S6(t) = 20− 3t− 0.015t2 + 0.02355t3 + 0.000525375t4 − 0.00025422525t5 − 0.00001519858125t6

I6(t) = 15 + 2.4t+ 0.018t2 − 0.02367t3 − 0.000407025t4 + 0.00025576335t5 + 0.00001421233875t6

R6(t) = 10 + 0.3t+ 0.024t2 + 0.00012t3 − 0.00011835t4 − 0.0000015381t5 + 0.0000009862425t6

7th approximations:
S7(t) = 20−3t−0.015t2+0.02355t3+0.000525375t4−0.00025422525t5−0.00000689593875t6+0.000000319332367t7

I7(t) = 15+2.4t+0.018t2−0.02367t3−0.000407025t4+0.00025562835t5+0.0000604339425t6−0.000003233930352t7

R7(t) = 10+0.3t+0.024t2+0.00012t3−0.00011835t4−0.0000016281t5+0.0000008525445t6+0.00000004060668214t7

8th approximations:
S8(t) = 20−3t−0.015t2+0.02355t3+0.000525375t4−0.00025400025t5−0.00000761706375t6+0.00000272910846t7+
0.000000021927188141t8

I8(t) = 15+2.4t+0.018t2−0.02367t3−0.000407025t4+0.00025562835t5+0.0000676496925t6−0.000002746375301t7−
0.000000211870555t8

R8(t) = 10+0.3t+0.024t2+0.00012t3−0.00011835t4−0.0000016281t5+0.0000008520945t6+0.00000001726664071t7−
0.00000000808482588t8

9th approximations:
S9(t) = 20−3t−0.015t2+0.02355t3+0.000525375t4−0.00025400025t5−0.00000760581375t6+0.000002708512281t7+
0.0000000883349536t8 − 0.00000003417658994t9

I9(t) = 15+2.4t+0.018t2−0.02367t3−0.000407025t4+0.00025562835t5+0.0000675371925t6−0.000002727840765t7−
0.0000000814690153t8 + 0.00000000346458945t9

R9(t) = 10+0.3t+0.024t2+0.00012t3−0.00011835t4−0.0000016281t5+0.0000008516445t6+0.0000000401135786t7−
0.000000014950764131t8 − 0.00000000046930456781t9

7 Conclusion

In this work, we have studied the qualitative and quantitative analysis of a three-compartmental deter-
ministic mathematical model rigorously.The Homotopy Analysis approach has been employed to approx-
imately solve the system of nonlinear equations of SIR dynamics in particular.It was observed from our
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Figure 1: In the figure (1) above, we have the plot of 3rd approximation for S,I, R, against time.

Figure 2: In the figure (2) above, we have the plot of 6th approximation for S,I, R against time
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Figure 3: In the figure (3) above, we have the plot of 9th approximation for S,I, R against time

Figure 4: In the figure (4) above,is the plot obtain by using ode45 approximation for S,I, R, against
time.
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results that the potential and efficiency of Homotopy Analysis method in solving nonlinear problems is
very powerful and reliable.With this method one is safe from the hardship and heavy computational work
involved in finite-difference method and parallel techniques.
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