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Abstract

The aim of the paper is to compare the forecasting performance of a class of state-dependent

autoregressive (SDAR) models for univariate time series with two alternative families of non-

linear models, such as the SETAR and the GARCH models. The study is conducted on US

GDP growth rate using quarterly data. Two methods of forecast comparison are employed.

The first method consists in evaluation the average performance by using two measures such

as the root mean square error (RMSE) and the mean absolute error (MAE) over different

forecast horizons, while the second method make use of one of the most used statistical test

to compare the accuracy of two forecast methods such as the Diebold-Mariano test.
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1 Introduction

In this paper we propose a class of state-dependent autoregressive models (SDAR) to study

nonlinearities in economic time series as the quarterly US GDP growth rate. The aim is to

compare the predictive ability of SDAR models with respect to linear autoregressive (AR) time

series models and two leading classes of nonlinear models such as the self-exciting threshold

autoregressive (SETAR) model and the generalized autoregressive conditional heteroskedastic-

ity (GARCH) model, that have already been proposed for US GDP. The problem we address

is whether SDAR models offer a much improved forecast performance.

The class of SDAR models is a generalized version of a first-order autoregressive process

where the autoregressive coefficient depends on the first lagged state variable whose equation

is

yt = α+ ψ(yt−1;γ)yt−1 + ξt, (1.1)

where ψ(·; ·) is a specified function satisfying some assumptions and depending on a set of pa-

rameters γ. The error term ξt is independent of yt−1 with zero mean and volatility σ. SDAR

models are closely related to the functional-coefficient autoregressive (FAR) models introduced

by Chen and Tsay (1993) where p autoregressive coefficients are given by measurable functions

depending on k < p lagged values of yt. Within this framework, Cai, Fan and Yao (2000) adopt

local linear regression techniques to estimate functional coefficient regression models for times

series data while Chen and Liu (2001) study nonparametric estimation and hypothesis testing

procedures for the same model. In Cherubini and Gobbi (2013) SDAR models are derived as

a special case of a more general convolution-based autoregressive processes in which the error

term is not independent of the lagged value of the state variable (see also Cherubini, Gobbi

and Mulinacci, 2016). More recently, Gobbi and Mulinacci (2020) define the class of SDAR

models more rigorously establishing their main statistical properties, such as stationarity and

ergodicity, and determine the asymptotic behaviour of the quasi-maximum likelihood (QML)

estimator of the parameters. In the same paper, the authors compare the forecast perfor-

mance of two specifications of SDAR models with SETAR models for time series of weekly

realized volatilities extracted from three different European financial indexes, showing that

SDAR models ensure a gain in the accuracy for two cases on three, at least for short and

medium forecast horizons. Furthermore, Gobbi (2020) documents, through a Monte Carlo

experiment, that nonlinearity in time series generated from a SDAR model strictly depends

on the functional form of persistence function ψ and on the value of parameters.

A class of alternative nonlinear models we consider in this paper is the self-exciting thresh-

old autoregressive (SETAR) models, which were first proposed and studied by Tong (1978,
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1986 and 1995) and Tong and Lim (1980). In SETAR models the variable yt is a linear au-

toregression within a regime but may move among regimes depending on the value taken by

a lag of yt itself. A number of authors have estimated SETAR models of US GDP. Tiao and

Tsay (1994) consider a two regime SETAR model, Potter (1995) estimates a SETAR(2,5,5)

but with the third and fourth regimes restricted to zero in both regimes. Both papers use

time series from 1947 to 1990. A key feature of SETAR models for US GDP over this period

is a large and negative coefficient on the second lag in the lower regime, indicating that US

economy moves rapidly out of recession periods. Moreover, Tiao and Tsay (1994) find that

the forecast performance of the SETAR model relative to a linear AR model is improved when

the comparison is made when the economy is in recession (i.e., the lower regime is activated).

Clements and Smith (1997) implement a Monte Carlo simulation to show that there is an

significant effect of the regimes on the forecast accuracy. In particular, the authors find that

the gain in the lower regime need to be sufficiently large for the SETAR to perform well on

average.

The second alternative class of nonlinear models we use is represented by the generalized au-

toregressive conditional heteroscedasticity (GARCH) models developed by Bollerslev (1986)

as an extension of ARCH models introduced by Engle (1982). GARCH models are nonlinear

in variance since their crucial feature is the heteroskadasticity which assumes that volatil-

ity is not constant over time. Since the US GDP growth rate involves long-run phenomena,

structural changes in volatility can occur with high probability. Kim and Nelson (1999),

McConnel and Perez-Quiros (2000), Blanchard and Simon (2001) among others document

a structural change in volatility of US GDP growth rate. Hamori (2000) presents evidence

that GARCH(1,1) structure is reasonable for US GDP. However, Bollerslev, Chou and Kroner

(1992) notice that while GARCH effect is highly significant with daily and weekly financial

data, it tends to be much milder in less frequently sample time series such as quarterly US

GDP growth rate. In this paper, we estimate an AR-GARCH model in which the GARCH

structure in the variance equation is combined with an autoregressive structure of the mean

equation.

Our aim is to measure the forecasting accuracy for the US GDP growth rate of four different

classes of nonlinear models mentioned above, SDAR, SETAR and AR-GARCH, using the lin-

ear AR as a benchmark. The evaluation of the forecast accuracy of different models adopted

is conducted according to two different criteria. We first evaluate the average performance

using the root mean square error (RMSE) and the mean absolute error (MAE) over different

forecast horizons, from 1 to 8 quarters ahead. The second criteria is provided by the Diebold-

Mariano test (DM), introduced and implemented by Diebold and Mariano (1995), to compare
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the forecast accuracy of two forecast methods. We use a modified version of the test proposed

by Harvey, Leybourne and Newbold (1997) particularly adapted for small samples. We will

show that whereas the first criteria highlights a higher performance of SDAR models with

respect to the alternatives analyzed, the same conclusion is not completely confirmed by the

second criteria.

The paper is organised as follows. Section 2 describes the data set used in the empirical

analysis. Section 3 briefly introduces the models adopted. Section 4 reports and discusses

the estimation results. In section 5 we present the forecast accuracy comparison among the

models. Section 6 concludes.

2 Preliminary data analysis

The empirical data analysis has been carried out on the quarterly US GDP growth rate.

The observation period goes from 1950.Q2 until 2017.Q3 (270 observations) and is depicted

in figure 1. The series appears mean-stationary while the variance features the volatility

clustering phenomenon with periods with high volatility followed by periods of low volatility.

Furthermore, volatility is higher in the first part of the time series (indicatively until the

1980s).

2.1 Descriptive statistics of the US GDP growth rate

Table 1 reports the summary of the descriptive statistics of the US GDP growth rate. The series

is characterized by excess kurtosis and positive asymmetry. The asymmetry characterized by

positive skewness means that in the sample period a greater probability exists of large increases

in GDP growth than larger decreases while the kurtosis exhibits leptokurticity with fat tails

highlighting that extreme changes can occur more frequently. The Jarque-Bera test (Jarque

and Bera, 1980 and 1987) strongly rejects the normality hypothesis. Furthermore, the Ljung-

Box test (Ljung and Box, 1978) indicates autocorrelation (up to 20 lags) in the time series.

The McLeod-Li test (McLeod and Li, 1987) suggests a time-varying variance structure leading

to the rejection of the null of no ARCH components up to 20 lags.

2.2 Linearity tets

Table 2 reports the p-values of four different linearity tests performed on the full sample and on

the last ten years of observations. For each test we consider different lag structures (lag=1,2,3).

We employ four different linearity tests intensively used in the literature: the TNN test, the
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Figure 1: Quarterly US GDP growth rate.

WNN test, the Tlrt test and the Tsay test. In the Teraesvirta Neural Network test (TNN

test), introduced in Teraesvirta, Lin and Granger, (1993), and in the White Neural Network

test (WNN test), discussed in Lee, White and Granger (1993), the null is the hypotheses of

linearity in mean. The Tlrt test carry out the likelihood ratio test for threshold nonlinearity

and was implemented by Chan (1990). The null hypothesis is that the fitted model to the

time series is an AR model with a specified lag structure and the alternative is that the fitted

model is a threshold autoregressive model with the same lag structure for each regime. Finally,

the Tsay test, which was introduced and implemented in Tsay (1986) is a test for quadratic

nonlinearity in a time series in which the null hypothesis is a normal AR process. The results

show that there is no strong evidence of nonlinearity in the full series, since in a number of

cases tests lead to the acceptance of linearity. However, for at least one lag all tests reject the

null. In particular, the TNN test highlights low p-values (less than 10%) regardless of the lag

structure assumed. On the other hand, the Tlrt test and the Tsay test reject the null of linearity

only for a lag structure equal to 3, reflecting a weakness of the hypothesis of quadratic and

threshold autoregressive nonlinearities. In order to realize whether the nonlinearity structure

strengthens or not in more recent period, we conduct the same linearity tests in a portion of

the sample corresponding to the last 10 years of observations. Unfortunately, table 2 shows
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US GDP
N. of obs. 270

Mean 0.00802
Median 0.00768

Maximum 0.05866
Minimum -0.02630
Std. dev. 0.00969
Skewness 0.33119
Kurtosis 3.43276

Jarque-Bera(p-value) 0.00000
Ljung-Box(p-value) 0.00005
McLeod-Li(p-value) 0.00485

Table 1: Descriptive statistics for US GDP growth rate.

US GDP: full sample 1950.Q2-2017.Q3
lag=1 lag=2 lag=3

TNN test 0.0534 0.0762 0.0029
WNN test 0.0512 0.4591 0.4793
Tlrt test 0.3321 0.3112 0.0507
Tsay test 0.1005 0.2152 0.0003

US GDP: last 10 years 2008.Q1-2017.Q3
lag=1 lag=2 lag=3

TNN test 0.4152 0.1143 0.0001
WNN test 0.4161 0.3836 0.3826
Tlrt test 0.2191 0.3304 0.1046
Tsay test 0.2633 0.6185 0.3397

Table 2: Linearity tests. p-values for different lag structures and different portions of the observed
time series. The cases highlighted in bold lead to the rejection of the null.

a weakening of the nonlinearity to the point that only in one case (TNN test with lag =

3) the hypothesis is rejected. It is possible that this result can have consequences from the

point of view of the forecasting evaluation as argued in Granger and Terasvirta (1993) and in

Terasvirta and Anderson (1992). Indeed, in that papers the authors suggest that the superior

in-sample performance of nonlinear models will only be matched out-of-sample if the nonlinear

features also characterize the later period of observation. Furthermore, even Ljung-Box and

McLeod-Li tests provide p-values significantly high (0,8672 and 0.9917) indicating that this

last portion of the time series is free from autocorrelation and heteroskedasticity.

3 The models

With regard to introducing the models just proposed in the introduction, we briefly present

their representation referring for more details to the cited literature.

The benchmark model is the standard linear autoregressive model of order p (AR(p)) which
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has the following equation

 yt = α+
∑p
i=1 φiyt−i + ξt, t ≥ 2,

ξt ∼ IID N(0, σ),
. (3.2)

where ξt is independent of the lagged variables yt−1, ..., yt−p. The vector of parameters is

θ = (α, φ1, ..., φp, σ). The reader interested to linear autoregressive models can consult among

others Hamilton (1994) and Brockwell and Davis (1991).

To compare forecasting accuracy of US GDP growth rate we will specify and estimate five

alternative nonlinear models within three different classes of models: SETAR, GARCH and

SDAR. Below we briefly outline their representation.

• Self-exciting threshold autoregressive (SETAR) models were first proposed in Tong (1978,

1983), Tong and Lim (1980) and discussed in detail in Tong (1995). SETAR models

considered in this paper assume that a variable yt is a linear autoregression within a

regime, but may move between regimes depending on the value assumed by the first

lag yt−1. We estimate two SETAR models, the first with two regimes and the second

with three regimes. We denote SETAR(2, p1, p2) the model with two regimes whose

specification is  yt = α1 +
∑p1
i=1 φ1,iyt−i + ξ1,t, yt−1 ≤ v

yt = α2 +
∑p2
i=1 φ2,iyt−i + ξ2,t, yt−1 > v,

. (3.3)

where v is the threshold variable, p1 and p2 are the orders of the linear AR within each

regime, ξj,t ∼ IID N(0, σj), j = 1, 2. Furthermore ξ1,t and ξ2,t are independent for all

t. The vector of parameters is θ = (α1, α2, φ1,1, ..., φ1,d1 , φ2,1, ..., φ2,d2 , σ1, σ2). SETAR

model with three regimes, denoted by SETAR(3, p1, p2, p3) is defined as


yt = α1 +

∑p1
i=1 φ1,iyt−i + ξ1,t, yt−1 ≤ v1

yt = α2 +
∑p2
i=1 φ2,iyt−i + ξ2,t, v1 < yt−1 ≤ v2,

yt = α3 +
∑p3
i=1 φ3,iyt−i + ξ3,t, yt−1 > v2,

. (3.4)

where v1 and v2 are two threshold variables, d1, d2 and d3 are the orders of the linear

AR within each regime ξj,t ∼ IID N(0, σj), j = 1, 2, 3. The vector of parameters is

θ = (α1, α2, α3, φ1,1, ..., φ1,d1 , φ2,1, ..., φ2,d2 , φ3,1, ..., φ3,d3σ1, σ2, σ3).

• GARCH models were proposed in Bollerslev (1986) as a generalization of ARCH model

introduced in Engle (1982). In this paper we consider an AR(p) component in place of

a constant mean for the equation of the variable yt in light of the preliminary analysis

carried out in the previous section on the time series of US GDP growth rate. Therefore,
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our specification of the model is the following


yt = α+

∑p
i=1 φiyt−i + ξt, t ≥ 1,

ξt|Ft−1 ∼ IID N(0, ht),

h2
t = ω0 + ω1y

2
t−1 + ω2h

2
t−1,

. (3.5)

where Ft−1 is the information set which includes the lagged values of the variable

yt−1, yt−2, ... and the conditional variance has a GARCH(1,1) specification. The vec-

tor of parameters is θ = (α, φ1, ..., φp, ω0, ω1, ω2).

• State-dependent autoregressive (SDAR) models have recently been discussed in Gobbi

and Mulinacci (2020) where two specifications of them have been proposed. The models

are characterized by an autoregressive coefficient which is a function of the first lagged

variable yt−1 and their equation is of the form (1.1). The persistence function ψ(yt−1;γ)

depends on a set of parameters γ and must satisfy a number of assumptions in order to

guarantee that the resulting process (yt)t≥1 is stationary and ergodic, as shown in Gobbi

and Mulinacci (2020). The choice of the function ψ completely determines the SDAR

model. In this paper we consider two specifications of the model, denoted by SDAR1

and SDAR2. Both satisfy the required assumptions as shown in Gobbi and Mulinacci

(2020). The first SDAR1 model is defined as

 yt = α+ e−(γ0+γ1y2rt−1)yt−1 + ξt, t ≥ 1,

ξt ∼ IID N(0, σ),
. (3.6)

where γ0, γ1 > 0. The error term ξt is independent of yt−1 for all t. The vector of

parameters is θ = (α, γ0, γ1, r, σ). Remark that this specification is a generalization

of EXPAR models introduced by Haggan and Ozaki (1981). Some insights about the

persistence function e−(γ0+γ1y2rt−1) are needed. We can notice that it is decreasing with

yt−1 and always within (0, 1). Moreover, once fixed γ0 and γ1, its maximum is e−γ0

assumed for yt−1 = 0. From the point of view of economic interpretation, this means

that the persistence induced by the autoregressive coefficient tends to be higher when

the (quarterly) GDP growth rate is low, whereas it decreases when the rates are bigger

both positive (strong expansion) or negative (recession). Since the SDAR model accounts

only the first lag of the variable, we have chosen a function that cannot assume negative

values for negative levels of yt−1, which would not be adequate in the event of recessions

because they would represent an excessive reactivity of the GDP growth rate which is

not verified in the data.
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The second SADR2 model is
yt = α+ 1

γ0+γ1y
2r
t−1

yt−1 + ξt, t ≥ 1,

ξt ∼ IID N(0, σ),

. (3.7)

where γ0 > 1 and γ1 > 0, whereas the statistical properties of ξt and the vector of param-

eters are the same of the SDAR1 model. For this specification the same considerations

about the persistence function apply. We can only observe that the maximum is 1
γ0

.

4 Estimation

The empirical results relative to the parameter estimates of the models presented above are re-

ported in tables 7-11 in the appendix. We use in-sample observations (y1, ..., yn) from 1950.Q2

to 2017.Q3. Within each class of models (AR, SETAR, AR-GARCH and SDAR) we select the

best one following the AIC criterion. The AR lag order p is selected by fixing a maximum lag

length. As reported in table 7 the AR(2) is the optimal linear model. The same procedure

is used for SETAR models once the number of regimes is fixed. For two regimes, d = 2, the

lag orders p1 and p2 may assume values from 1 to 5 and the selected model is that for which

the pair (p1, p2) minimizes the AIC. A SETAR(2,1,1) is the selected model with two regimes

(table 8). For three regimes, d = 3, we have three autoregressive equations for each regime and

the lag orders p1, p2 and p3 vary from 1 to 5. The selected model is that for which the vector

(p1, p2, p3) minimizes the AIC. A SETAR(3,3,3,1) is the selected model with three regimes (ta-

ble 9). We note that both autoregressive coefficients in the SETAR(2,1,1) model are positive

but the persistence in more high in the upper regime than in the lower. On the other hand, in

the SETAR(3,3,3,1) model the third autoregressive coefficient in the lower regime is negative

denoting that economy reacts to recession rather quickly. As for AR-GARCH models, in line

with the number of lags estimated in the linear model, we select an AR(2)-GARCH(1,1) model

after checking that a higher order in the AR component or in the conditional variance structure

produced a lower AIC. The parameter estimates of this model are reported in table 10. Finally

table 11 shows the results of estimating SDAR models for both specifications adopted, SDAR1

and SDAR2, depending of the chosen persistence function ψ. The estimation technique is the

quasi-maximum likelihood (QML). In Gobbi and Mulinacci (2020) asymptotic properties of

the QML estimator θ̂ = (α̂, γ̂0, γ̂1, r̂, σ̂) of the vector of parameters θ are established. As

the table clearly indicated, all parameters are highly significant. The nonlinear term, γ1, is

widely higher than 1 for both specifications, indicating that the nonlinearity in time series

is detected by both models. Some considerations about the estimated persistence functions
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AR(2) SETAR(2,1,1) SETAR(3,3,3,1) AR(2)-GARCH(1,1) SDAR1 SDAR2

Res. autocorr. 0.8948 0.8238 0.9386 0.3815 0.4493 0.2039
Sq. Res. autocorr. 0.4138 0.6331 0.9792 0.9890 0.1294 0.0657

Table 3: Model diagnostics. Res. autocorr. and Sq. Res. autocorr. reports p-values of Ljung-Box
and McLeod-Li tests of serial autocorrelation of fitted residuals and squared fitted residuals.

ψ̂2(yt−1; γ̂0, γ̂1, r̂) = e−(γ̂0+γ̂1y2r̂t−1) and ψ̂2(yt−1γ̂0, γ̂1, r̂) = 1

γ̂0+γ̂1y
2r̂
t−1

are needed. Figures 2

and 3 depict the dynamics of the US growth rate overlapped to the dynamics of estimated

persistence functions ψ̂1 (figure 2) and ψ̂2 (figure 3). We note that ψ̂1 assumes on average

lower values than ψ̂2 which takes on a much narrower range of values. This means that the

persistence estimated by the SDAR1 model is lower than estimated by the SDAR2 model.

Indeed, the average value of ψ1 on the whole sample is 0.3311 whereas for the SDAR2 model

is 0.4214. Furthermore, both functions are slightly increasing, in the sense that, on average,

the persistence appears higher in the last period of the observed time series. This is confirmed

for the SDAR1 model if we consider the average values of ψ̂1 and ψ̂2 over time. In the first half

of the sample (until the mid 80’s) the average is 0.3252 while in the second half the average

is 0.3368. On the other hand, for the SDRA2 model the dynamics is more volatile in the first

half of the sample than in the second half where the value of the time-varying autoregressive

coefficient rarely drops below 0.42. This behaviour appears negatively correlated with the dy-

namics of the conditional volatility estimated by the AR(2)-GARCH(1,1) model as reported

in figure 4. It is clear that the volatility of the US GDP growth rate is significant higher in

the first period of the sample with respect to the second period.

To evaluate if the proposed models are well specified we consider the residuals diagnostics in

table 3, which reports p-values associated to Ljung-Box and McLeod-Li tests, both up to 20

lags. The results reflect a good specification for all models under considerations since the hy-

pothesis of absence serial autocorrelation of residuals and of squared residuals can be accepted.

A separate consideration deserves SDAR models proposed in this paper. As expected, they

seem more suitable for modeling the autocorrelation characterizing the time series of US GDP

growth rate rather than the heteroskedasticity. Indeed, whereas the Ljung-Box test provides

a strong evidence in favor of the absent of serial autocorrelation in the residuals, the p-value

of the McLeod-Li test is rather low both for SDAR1 and SDAR2. In particular, in the case of

the SDAR2 model an explanation can be found in the fact the estimated persistence function

ψ̂2 takes values in a much narrower range than ψ̂1 highlighting a less adjustment to the time

series dynamics. However, this seems to depend mainly on the nature of the data itself, since

in the case of realized volatility the ML test result was more strong (Gobbi and Mulinacci,

2020).
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Figure 2: SDAR1 model. US GDP growth rate (line, left vertical axis) and estimated persistence

function e−(γ̂0+γ̂1y
2r̂
t−1) (points, right vertical axis).
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Figure 3: SDAR2 model. US GDP growth rate (line, left vertical axis) and estimated persistence
function 1

γ̂0+γ̂1y2r̂t−1

(points, right vertical axis).
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Figure 4: Estimated conditional volatility from the AR(2)-GARCH(1,1) model.

5 Forecasting

We assess the forecast performance of each estimated model relative to linear AR(2) by means

of Monte Carlo simulation. For SETAR models, Clements and Smith (1997) compare a number

of alternative methods of obtaining multi-period forecasts and conclude that Monte Carlo

method perform reasonably well. Forecasts from AR-GARCH model are obtained recursively

from the variance equation. SDAR models generate forecasts by Monte Carlo simulation as

proposed in Gobbi and Mulinacci (2020).

We use 8 values out-of-sample of US GDP growth rate from 2017.Q4 to 2019.Q3, denoted

by (yn+h)h=1,..,H , where n is the last in-sample observation and H = 1, ..., 8 is the forecast

horizon. Let (ỹn+h)h=1,..,H be the forecast values of the state variable generated from the

models under consideration. Therefore, the forecast errors are given by en+h = yn+h − ỹn+h,

with h = 1, ..., H. To compare the average accuracy of the forecasts we use two measures: the

root mean square error (RMSE) and the mean absolute error (MAE). The RMSE is defined

as
√

1
H

∑H
h=1 e

2
n+h whereas the MAE is given by 1

H

∑H
h=1 |en+h|. Tables 4 and 5 and figures

5 and 6 summarize the results in terms of relative efficiencies for a forecast horizon from 1 to

8 quarters ahead. The relative efficiency (RE) is obtained as the ratio of the RMSE (or MAE)

of the model under consideration and the RMSE (MAE) of the model used as benchmark, i.e.,

the linear AR(2). A value of RE greater or equal than unity indicates that the benchmark

model provides more accurate forecast than the alternative nonlinear model. Form table 4 and

figure 5 we deduce that, if the RE is measured in terms of the RMSE, only SDAR models offer
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a better performance than the linear AR(2) at least for the first 4 quarters. After this horizon

the accuracy seems to be equivalent even if the linear AR(2) is slightly higher. On the other

hand, the remaining alternative models tend to be worse but the SETAR(3,3,3,1) model is the

only one to improve significantly over time until it become superior than the linear AR(2) for

the last two forecast horizons. As regards SETAR models, Tiao and Tsay (1994) find that the

forecasts obtained with this class of models are markedly superior than those obtained with

the linear AR models if we only consider forecasts which are made when the economy is in

the lower regime reflecting the ability of the SETAR models to capture the movements out of

recession. In our observed time series the percentage of data belonging to the lower regime is

of 36%, and this partly explains why on average the forecasts obtained by the SETAR model

are lower.

The same considerations are strengthened if we consider the RE in terms of the MAD, as in

table 5 and figure 6. In this case, both SDAR models provide a prediction with an accuracy

higher than the benchmark for each forecast horizon and in the first four quarters (basically

over the course of a year) the gain in the accuracy is considerable. Based on this measure we can

conclude that there is an evidence that SDAR models has superior predictive ability compared

to alternative models analyzed in this paper. These findings are not surprising if we consider

the preliminary results on the sample. As shown in table 2, the evidence of nonlinearity is not

strong, and in particular, this is confirmed and strengthened in the last ten years. The Tlrt

test seems to exclude the presence of a threshold autoregressive structure in the last portion of

the sample regardless of the lag considered. This can explain the relatively worse performance

of SETAR models than the alternatives. SDAR models appear less conditioned by the kind

and strength of the nonlinearity in the data.

To further investigate the problem of forecasting accuracy of the models under study, we use

the Diebold-Mariano (DM) test proposed by Diebold and Mariano (1995) and modified by

Harvey, Leybourne and Newbold (1997) that corrects for the tendency of the test statistics to

be over-sized. The null hypothesis of equal forecast accuracy between two methods is tested

using a loss function g(ein+h), where ein+h is the h-step ahead forecast error generated from

model i, with h = 1, ..., H. The loss differential for competitor forecasts i and k is defined

as dn+h = g(ein+h) − g(ekn+h), so that equal forecast accuracy entails E[dn+h] = 0. Diebold

and Mariano (1995) derive the asymptotic distribution of the sample mean loss differential

d̄. We perform the DM test considering the forecasts generated by the linear AR(2) model

as the reference method (method 1) and the forecasts obtained from one of the alternative

nonlinear model under study as the method 2. Then, the null is the hypothesis that method 1

and method 2 provide equal accuracy. The alternative can be specified in three different ways:
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Number of quarters ahead
H 1 2 3 4 5 6 7 8

SETAR(2,1,1) 2.7701 2.1335 2.4871 2.4472 1.2505 1.2512 1.2012 1.1271
SETAR(3,3,3,1) 2.0609 1.4182 2.1243 2.2162 1.0267 1.0716 0.9568 0.8736

AR(2)-GARCH(1,1) 1.0055 1.1190 1.0387 1.0954 1.0916 1.0971 1.1167 1.1297
SDAR1 0.4418 0.9250 0.8955 0.9125 1.0091 1.0071 1.0156 1.0041
SDAR2 0.6304 0.9509 0.9161 0.9671 1.0277 0.9973 1.0138 1.0313

Table 4: Relative efficiency of the forecasting accuracy measure RMSE with AR(2) model as
benchmark. A value of the ratio lesser than 1 indicates that the nonlinear model ensures more
accuracy than the AR(2) model.

Number of quarters ahead
H 1 2 3 4 5 6 7 8

SETAR(2,1,1) 2.7701 2.0271 2.4842 2.1588 1.4820 1.4833 1.3718 1.2552
SETAR(3,3,3,1) 2.0609 1.1984 1.8001 2.0992 1.2228 1.4214 1.1549 0.9791

AR(2)-GARCH(1,1) 1.0055 1.1044 0.9929 1.0945 1.0925 1.1457 1.1561 1.1614
SDAR1 0.4418 0.8623 0.8587 0.8365 0.9523 0.9630 0.9789 0.9924
SDAR2 0.6301 0.8938 0.8636 0.9346 0.9946 0.9719 0.9987 1.01661

Table 5: Relative efficiency of the forecasting accuracy measure MAE with AR(2) model as bench-
mark. A value of the ratio lesser than 1 indicates that the nonlinear model ensures more accuracy
than the AR(2) model.

”two-sided”, method 1 and method 2 have different levels of accuracy, ”greater”, method 2

is more accurate than method 1, ”less”, method 2 is less accurate than method 1. With this

construction in mind, we can evaluate the p-values of the test reported in table 6 for the first

4 forecast horizons. Differently than the case of relative efficiencies, the DM test does not

provide a clear indication in favor of SDAR models. More in general, there is no evidence in

favor of any nonlinear model under study. Indeed, all p-values are sufficiently high to induce

to accept the null regardless of the alternative. This suggests that for the DM test both SDAR

models are equivalent to the linear AR(2) as methods of forecasting. The same consideration

holds for both SETAR models, whereas for the AR(2)-GARCH(1,1) model in two cases we

reject the null when the alternative is of type ”less”, denoting that method 1 provided by the

benchmark is preferred to method 2 provided by the AR(2)-GARCH(1,1). In conclusion, we

can assert that there is no tendency for SDAR models to be more accurate than the linear

AR(2) model, even if it is the case to remark that the small number of observations available

may influence the results of the test. On the other hand, Diebold (2015) argues that DM test

is not intended for comparing models but is intended for comparing forecasts.
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Number of quarters ahead H = 1 H = 2 H = 3 H = 4
alternative

SETAR(2,1,1) ”two.sided” 0.5342 0.6184 0.6954 0.7530
”greater” 0.7329 0.6908 0.6523 0.6248

”less” 0.2671 0.3092 0.3477 0.3752
SETAR(3,3,3,1) ”two.sided” 0.6808 0.6661 0.6859 0.8202

”greater” 0.3404 0.3333 0.3429 0.4101
”less” 0.6596 0.6667 0.6572 0.5899

AR(2)-GARCH(1,1) ”two.sided” 0.0527 0.0726 0.1337 0.2911
”greater” 0.9737 0.9635 0.9331 0.8541

”less” 0.0262 0.0364 0.0668 0.1458
SDAR1 ”two.sided” 0.8862 0.7810 0.8691 0.9056

”greater” 0.5816 0.6075 0.5647 0.5472
”less” 0.4181 0.3905 0.4316 0.4528

SDAR2 ”two.sided” 0.2788 0.2161 0.3206 0.5275
”greater” 0.8606 0.8919 0.8397 0.7363

”less” 0.1394 0.1081 0.1641 0.2637

Table 6: p-values of the modified version of the Diebold-Mariano test proposed by Harvey, Ley-
bourne and Newbold (1997). The null hypothesis is that the two methods of forecasting (method
1 and method 2) have the same forecast accuracy. Method 1 is the AR(2) model whereas method
2 is the contender nonlinear model. The p-values listed in column refers to three different alter-
natives: ”two.sided”, the alternative hypothesis is that AR(2) and method 2 have different levels
of accuracy, ”greater”, the alternative hypothesis is that method 2 is more accurate than AR(2),
”less”, the alternative hypothesis is that method 2 is less accurate than AR(2).
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Figure 5: Relative RMSEs for each nonlinear model expressed in terms of that for AR(2). Legend:
”*” for SETAR(2,1,1), ”o” for SETAR(3,3,3,1), ”2” for AR(2)-GARCH(1,1), ”.” for SDAR1 and
”x” for SDAR2.
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Figure 6: Relative MAEs for each nonlinear model expressed in terms of that for AR(2). Legend:
”*” for SETAR(2,1,1), ”o” for SETAR(3,3,3,1), ”2” for AR(2)-GARCH(1,1), ”.” for SDAR1 and
”x” for SDAR2.

6 Concluding remarks and future investigations

With regard to measuring the forecast accuracy for the quarterly US GDP growth rate, we con-

sider a state-dependent autoregressive (SDAR) model in which the autoregressive coefficient is

a specified (nonlinear) function of the first lagged variable yt−1. The study is motivated by the

conjecture that the model can yield a gain in forecasting accuracy at least for short or medium

horizons as proved in Gobbi and Mulinacci (2020) for time series of weekly realized volatilities.

The comparison is made with two different family of nonlinear models such as SETAR models

(with 2 or 3 regimes) and AR-GARCH models. The forecast results are compared each other

using a linear AR(2) model as benchmark. The evaluation of the results depends partly on

the measure of forecasting accuracy adopted. Indeed, the relative RMSEs and MAEs provide

a consistent evidence in favour of SDAR models compared with the competitors considered.

The same evidence is not strongly confirmed by the Diebold-Mariano test, which shows results

without a clear direction. In conclusion, the results encourage further investigations in order

to explore the potentialities of this family of models. Three possible directions immediately

come to mind. The first concerns different specifications of the persistence function in order

to make more flexible the dynamics of the functional coefficient allowing to explore negative

values. The second regards the lag order of SDAR models: classes of SDAR(p) models can

be considered in which p persistence functions depend on the first p lags of the variable. The

third direction is that to address the problem of alternative (asymmetric?) distributions of
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the error term.
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8 Appendix: estimation results

In this appendix we report the parameter estimates and relative standard errors for each model

we have considered.

AR(2)
Parameters Estimate SE

α -0.0001744 0.000545596
φ1 0.2424 0.05967707∗∗∗

φ2 0.1438 0.05912069∗∗∗

Residuals variance 0.00008006
AIC -1765.6

Table 7: AR(2) model.

SETAR(2,1,1)
Parameters Estimate SE

α1 0.00385287 0.00099631∗∗∗

φ1,1 0.16463935 0.08071829∗∗∗

α2 0.00643961 0.00102267∗∗∗

φ2,1 0.33423222 0.08150986∗∗∗

Residuals variance 0.00007705
AIC -2547

Table 8: SETAR(2,1,1) model.

SETAR(3,3,3,1)
Parameters Estimate SE

α1 0.00543833 0.00192818∗∗∗

φ1,1 0.22227239 0.13149916∗∗

φ1,2 0.04383025 0.20883351
φ1,3 -0.24087024 0.13134799∗∗

α2 -0.00015534 0.00428223
φ2,1 0.06276289 0.11205026
φ2,2 0.25931445 1.03329799
φ2,3 0.37828874 0.12097545∗∗∗

α3 0.00644022 0.00101855∗∗∗

φ3,1 0.33414492 0.08318353∗∗∗

Residuals variance 0.00007303
AIC -2548

Table 9: SETAR(3,3,3,1) model.
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AR(2)-GARCH(1,1)
Parameters Estimate SE

α 0.003830 0.000736∗∗∗

φ1 0.27930 0.06937∗∗∗

φ2 0.26041 0.06320∗∗∗

ω0 0.00000 0.00000∗

ω1 0.35453 0.09174∗∗∗

ω2 0.64672 0.08248∗∗∗

Residuals variance 0.00008112
AIC -6.745015

Table 10: AR(2)-GARCH(1,1) model.

SDAR1 SDAR2
Parameters Estimate SE Estimate SE

α 0.00501 0.00063∗∗∗ 0.00457 0.00055∗∗∗

γ0 0.66578 0.02678∗∗∗ 2.36048 0.01604∗∗∗

γ1 1.73221 0.01381∗∗∗ 2.69493 0.07033∗∗∗

r 0.19363 0.00791∗∗∗ 0.58967 0.00117∗∗∗

σ 0.01017 0.00154∗∗∗ 0.00965 0.00165∗∗∗

Residuals variance 0.00008461 0.00008603
AIC -1747.372 -1746.778

Table 11: SDAR models.
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