Characterization of Robust Solution of Quadratically Constrained Quadratic Optimization Problems Subjected to Data Uncertainty

Moussa BARRO • Satafa SANOGO • Mohamed ZONGO • Sado TRAORÉ

Received: date / Accepted: date

Abstract

Robust Optimization (RO) arises in two stages of optimization, first level for maximizing over the uncertain data and second level for minimizing over the feasible set. It is the most suitable mathematical optimization procedure to solve real-life problem models. In the present work, we characterize robust solutions for both homogeneous and non-homogeneous quadratically constrained quadratic optimization problem where constraint function and cost function are uncertain. Moreover, we discuss about optimistic dual and strong robust duality of the considered uncertain quadratic optimization problem. Finally, we complete this work with an example to illustrate our solution method.

Keywords : Robust Optimization • Data Uncertainty • Quadratic Optimization • Strong Duality • Robust Solution • DPJ-Convex.

Mathematics Subject Classification (2010) 90C20 • 90C26 • 90C46 • 90C47

1 Introduction

The present paper is devoted to the characterization of the solutions of optimization problems which are affected by data uncertainty. This means that all the data of the problem are neither known nor available when its optimal solution has to

```
M. Barro
```

Université Nazi BONI (UNB)
E-mail: mousbarro@yahoo.fr
S. Sanogo

Ecole Polytechnique de Ouagadougou (EPO)
E-mail: satafa.sanogo@yahoo.fr
M. Zongo

Université Nazi BONI (UNB)
E-mail: yesmzongo@gmail.com
S. Traoré

Université Nazi BONI (UNB)
E-mail: traore.sado@yahoo.fr
be computed. Such an optimization model assumes the usual one but it is clearly different. In fact, it allows to handle model error, to take into account imperfections, additive noises or external uncertainties. For examples: (a) An entrepreneur must estimate the time required to finish a job. Uncertainties due to the labor market, the supply of materials, bad weather conditions, etc. constitute unknown parameters to consider; (b) In robot design, even if the movement model is carefully planned to provide a stable locomotion, a humanoid robot is very likely to fall due to the uncertainties induced by the irregularities in the ground; (c) When designing a nuclear power plant, engineers have to consider the uncertainties about earthquakes, the strength of beams, etc. Moreover, one can not always ignore uncertainties during modeling process (i.e. always considering a determinist model) because that could lead to security issues in real-world applications (e.g., designing nuclear power installations, autonomous car control system, aeronautical structures optimization). Then, it is certain that optimization model subject to data uncertainty is most adequate methodology for solving real-word problems : it is Robust Optimization (RO). In a nutshell, RO provides a solution which is immunized against the effect of parameters uncertainty : that solution is called robust solution $[1,2,5]$. Nevertheless, there is a similarity between RO and Stochastic Optimization (SO). The latter optimization model can be considered like a particular case of RO where the uncertainty set distribution is assumed to follow a probability law. Note that stochastic optimization is wholly a very important field of research and profound to be developed here. However for more details, we recommend the works of Peter Kall and Stein W. Wallace [32], John R. Birge and François Louveaux [9], Alexander Shapiro, Andrzej Ruszczyński et al. [46, 47], Kurt Marti [37], George B. Dantzig and Gerd Infanger [15, 27].

Concerning the concept of robustness and uncertainty in mathematical programming models, it was shyly started with the pioneer works of S. K. Gupta, J. Rosenhead [22, 44], G. B. Dantzig [15], F. J. Gould, and A. L. Soyster who first called it "Inexact Linear Programming" [21,49]. Afterwards, the topic of RO was quickly expanded through mainly the contributions of J. M. Mulvey et al. [38], P. Kouvelis, and Gang Yu [34], L. El Ghaoui et al. [17,18], A. Ben-Tal and A. Nemirovski [2,3, 4,5], D. Bertsimas and M. Sim [6,7,8,48], V. Jeyakumar et al. [30, 31, 35]. In these last years, RO has been a focus within many research communities starting with the field of control, convex optimization, mathematical programming, or even economics, and many fields of engineering science [$2,26,33]$. Basically, whenever an optimization problem is formulated, the question arises whether really all parameters and inputs are exactly known and what changes if they are not. In this sense, it is not surprising that many researchers were and are attracted by the challenges of robust optimization.

Finally in this work, our purpose is to analyze Quadratically Constrained Quadratic Optimization Problems (QCQOPs) subjected to uncertain data both in the constraint function and cost function. And we next investigate the characterization of their solutions. In fact, QCQOPs are very important in their own right but not enough studies with uncertainties. This choice is also motivated by the fact that QCPOPs are in some ways the general forms of almost all mathematical programming models. In addition, the literature about analysis of quadratic forms [13, $16,19,42$], quadratic programming and QCQOP solution methods (basically in determinist form) is well-supplied with well-known and sophisticated techniques. For instance, they occur as subproblems in methods for numerical/algorithmic
optimization problems such as Newton-Lagrange methods (Sequential Quadratic Programming (SQP), Interior-Point Method (IMP), BFGS (Broyden, Fletcher, Goldfarb, and Shanno) method) in one hand. In other hand, any smooth optimization problem can be approximated with a quadratic model (thought of doing second order Taylor series approximation). Even if the considered problem is not enough smooth, it could be approximated quadratically. For this technique, we refer to the topic of Derivative Free Optimization (DFO) methods, see for example the introductory book of Andrew R. Conn, Katya Scheinberg and Luis N. Vicente [14]. We also recall that under some basic assumptions (at least symmetry and semi-define positivity) on the data of a QCQOP, we can get convex or Second àOrder Conic Optimization Problem (SOCP), see Section 2. It is well-known that in the field of optimization an ideal and wanted framework is the convexity one [5, $10,11,20,23,24,25,28,29,31,36,39,40,43,45]$ since that can make easiest to solve exactly optimization problems (i.e. the characterization of their global solution). With the uncertainties, this advantage is in the most of time difficult to have in RO without well-thought-out assumptions.

The rest of the paper is organized as follows. Section 2 recall some preliminaries and describes the Quadratically Constrained Quadratic Optimization Problem Model which will be study throughout this paper. In Section 3, we give some fundamental results basically joint-range convexity conditions and S-Lemma. The Section 4 is dedicated to the characterization of robust optimal solutions for an uncertain quadratic optimization problem with respect to homogeneous case and non-homogeneous one. In Section 5, we compare optimistic dual and robust strong dual of the uncertain optimization problem. We deal with an example in the homogeneous case in the Section 6 for an illustration. Section 7 concludes our work.

2 Quadratically Constrained Quadratic Optimization Problem Model

In this section, we start by recalling some basic definitions and fixing some notations. In what follow, \mathbb{R} denotes the set of real numbers, \mathbb{R}^{n} denotes the linear space of n-dimension vector, and $\mathcal{S}_{n}(\mathbb{R})$ denotes the space of $n \times n$ symmetric matrices with real entries. For all, $A, B \in \mathcal{S}_{n}(\mathbb{R}), A \succeq 0$ (respectively $A \succ 0$) means that the matrix A is positive semi-definite (respectively A is positive definite). By analogy, $A \succeq B$ (respectively $A \succ B$) is equivalent to $A-B \succeq 0$ (respectively $A \succ B$). For any twice differentiable function $q: \mathbb{R}^{n} \Longrightarrow \mathbb{R}, \nabla q$ denotes the gradient (first derivative) of q and $\nabla^{2} q$ denotes the Hessian matrix (second derivative) of q. Given a set E, int E denotes the interior of E. If E_{1} and E_{2} are subsets of a set E, then the set $E_{1}+E_{2}=\left\{e=e_{1}+e_{2} \in E \mid\left(e_{1}, e_{2}\right) \in E_{1} \times E_{2}\right\}$. The segment [ν_{1}, ν_{2}] is defined by $\left[\nu_{1}, \nu_{2}\right]=\left\{\nu \mid \nu:=t \nu_{2}+(1-t) \nu_{1}, t \in[0,1]\right\}$. A set C is convex if the line segment between any two points in C lies in C i.e., if for any $c_{1}, c_{2} \in C$ and any $\lambda \in[0,1]$, we have $\lambda c_{1}+(1-\lambda) c_{2} \in C$. A function $f: \mathbb{R}^{n} \Longrightarrow \mathbb{R}$ is convex if and only if its epigraph is a convex set.

A general formulation of a quadratic optimization problem under uncertainty can be formulated as follows :

$$
\begin{align*}
\min _{x \in \mathbb{R}^{n}} & \frac{1}{2} x^{T} A_{u} x+a_{\omega}^{T} x \tag{QCQP}\\
\text { s.t. } & \frac{1}{2} x^{T} B_{v} x+b_{\varsigma}^{T} x+\beta \leq 0
\end{align*}
$$

where : $\beta \in \mathbb{R}, a_{\omega}, b_{\varsigma} \in \mathbb{R}^{n}, A_{u}, B_{v} \in \mathcal{S}_{n}(\mathbb{R})$, and $(u, v, \omega, \varsigma)$ belongs to the uncertainty set \mathcal{U}.

In addition, we use an affine interpolation to define uncertainty data. Then, we set : $A_{u}=A_{0}+u A_{1} ; B_{v}=B_{0}+v B_{1} ; a_{\omega}=a_{0}+\omega a_{1} ; b_{\varsigma}=b_{0}+\varsigma b_{1}$, with : $A_{0}, A_{1}, B_{0}, B_{1} \in \mathcal{S}_{n}(\mathbb{R})$ and $a_{0}, a_{1}, b_{0}, b_{1} \in \mathbb{R}^{n} . \mathcal{U}$ is an euclidian product of sets and given by $\mathcal{U}=\left[u_{1}, u_{2}\right] \times\left[v_{1}, v_{2}\right] \times\left[\omega_{1}, \omega_{2}\right] \times\left[\varsigma_{1}, \varsigma_{2}\right]$. We also put: $\mathcal{U}_{1}=\left[u_{1}, u_{2}\right]$, $\mathcal{U}_{2}=\left[v_{1}, v_{2}\right], \mathcal{U}_{3}=\left[\omega_{1}, \omega_{2}\right]$, and $\mathcal{U}_{4}=\left[\varsigma_{1}, \varsigma_{2}\right]$.

3 Convex Analysis of Quadratic forms and S-procedures

The convex analysis and the study of quadratic forms are the essential ingredients to concoct a good recipe in the field of optimization. Indeed, in a convex world or in the presence of quadratic forms, the characterization of the solutions for an optimization problem can be carried out without major difficulty. This is why, R. T. Rockafellar stated that the great watershed in optimization is not between linearity and nonlinearity, but convexity and non-convexity (Rockafellar 1993, [11]). In this work, we use mainly joint-range convexity results for quadratic forms which were initially proposed by L. L. Dines [16] and improved later by other authors such that B.T. Polyak [42]. In addition, these convexity properties of quadratic are helpful to prove some results like Lemma 1, Theorem 2 and Corolary 1 : we talk about S-procedure for generality. The S-Lemma is a useful tool especially in Control Theory and RO.

Theorem 1 (L. L. Dines (1941) [16])
Given $A, B \in \mathcal{S}_{n}(\mathbb{R})$. Then the set $\left\{\left(x^{T} A x, x^{T} B x\right) \mid x \in \mathbb{R}^{n}\right\}$ is convex.
The generalization of convexity result for more than two homogeneous quadratic forms was established by B.T. Polyak [42] and given as follows :

Proposition 1 ([42])

Let $A_{1}, \ldots, A_{m} \in \mathcal{S}_{n}(\mathbb{R})$. If the matrices A_{1}, \ldots, A_{m} commute, then the set

$$
\left\{\left(x^{T} A_{1} x, \ldots, x^{T} A_{m} x\right) \mid x \in \mathbb{R}^{n}\right\}
$$

is closed convex cone.
The following lemma is the homogeneous version of the famous S-lemma.
Lemma 1 (S-lemma [29, 41])
Let $A_{1}, A_{2} \in \mathcal{S}_{n}(\mathbb{R})$. Assume that there exists $x_{0} \in \mathbb{R}^{n}$ such that $x_{0}^{T} A_{1} x_{0}<0$. Then, the following statements are equivalent:
(i) $\forall x \in \mathbb{R}^{n}, x^{T} A_{2} x \leq 0 \Longrightarrow x^{T} A_{1} x \geq 0$.
(ii) $\exists \lambda \geq 0 \mid A_{1}+\lambda A_{2} \succeq 0$.

Theorem 2 Let $A_{0}, A_{1}, B_{0}, B_{1} \in \mathcal{S}_{n}(\mathbb{R}) ; u_{1}, u_{2}, v_{1}, v_{2} \in \mathbb{R}$ such that $u_{1} \leq u_{2}$ and $v_{1} \leq v_{2}$.
Let $U_{1}=\left[u_{1}, u_{2}\right], U_{2}=\left[v_{1}, v_{2}\right]$ and assume that:

$$
\begin{equation*}
\Omega=\left\{\left(x^{T} A_{u_{1}} x, x^{T} A_{u_{2}} x, x^{T} B_{v_{1}} x, x^{T} B_{v_{2}} x\right) \mid x \in \mathbb{R}^{n}\right\} \text { is convex. } \tag{1}
\end{equation*}
$$

Then for some $\alpha, \beta \in \mathbb{R}$, exactly one of the following two statements holds:
(i) $\exists x \in \mathbb{R}^{n} \left\lvert\, \frac{1}{2} x^{T} A_{u} x<\alpha\right., \frac{1}{2} x^{T} B_{v} x+\beta<0, \forall(u, v) \in U_{1} \times U_{2}$.
(ii) $\exists\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{R}_{+}^{2} \backslash\{(0,0)\}, \exists(\bar{u}, \bar{v}) \in U_{1} \times U_{2}$, such that:

$$
\lambda_{1}\left(\frac{1}{2} x^{T} A_{\bar{u}} x-\alpha\right)+\lambda_{2}\left(\frac{1}{2} x^{T} B_{\bar{v}} x+\beta\right) \geq 0, \forall x \in \mathbb{R}^{n}
$$

Proof $[(i i) \Longrightarrow \neg(i)]$. Assume that $(i i)$ holds. If (i) is satisfied, then

$$
\exists x \in \mathbb{R}^{n} \left\lvert\, \frac{1}{2} x^{T} A_{u} x<\alpha\right. \text { and } \frac{1}{2} x^{T} B_{v} x+\beta<0, \forall(u, v) \in U_{1} \times U_{2}
$$

This implies that for all $\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{R}_{+}^{2} \backslash\{(0,0)\}$, we have :

$$
\exists x \in \mathbb{R}^{n} \left\lvert\, \lambda_{1}\left(\frac{1}{2} x^{T} A_{u} x-\alpha\right)+\lambda_{2}\left(\frac{1}{2} x^{T} B_{v} x+\beta\right)<0\right., \forall(u, v) \in U_{1} \times U_{2}
$$

Which contradicts (ii).
Let us show that $[\neg(i) \Longrightarrow(i i)]$.
Firstly, let us show that the set

$$
\begin{equation*}
\Gamma=\left\{\left(\max _{u \in U_{1}} x^{T} A_{u} x, \max _{u \in U_{2}} x^{T} B_{v} x\right) \mid x \in \mathbb{R}^{n}\right\}+\operatorname{int} \mathbb{R}_{+}^{2} \tag{2}
\end{equation*}
$$

is convex.

Let $\left(q_{1}, r_{1}\right),\left(q_{2}, r_{2}\right) \in \Gamma$ and $\delta \in[0,1]$. So, there exist $x_{1}, x_{2} \in \mathbb{R}^{n}$ such that:

$$
\left\{\begin{array}{l}
\max _{u \in U_{1}} x_{1}^{T} A_{u} x_{1}<q_{1} \tag{3}\\
\max _{v \in U_{2}} x_{1}^{T} B_{v} x_{1}<r_{1} \\
\max _{u \in U_{1}} x_{2}^{T} A_{u} x_{2}<q_{2} \\
\max _{v \in U_{2}} x_{2}^{T} B_{v} x_{2}<r_{2}
\end{array}\right.
$$

For all $x \in \mathbb{R}^{n}, u \longmapsto x^{T} A_{u} x$ is a affine mapping with respect to (w.r.t.) u. Consequently, it attains its maximum value on the compact set U_{1} more precisely, we have :

$$
\max _{u \in U_{1}} x^{T} A_{u} x=\max \left\{x^{T} A_{u_{1}} x, x^{T} A_{u_{2}} x\right\} .
$$

Reasoning in the same manner that previously, one has :

$$
\max _{v \in U_{2}} x^{T} B_{v} x=\max \left\{x^{T} B_{v_{1}} x, x^{T} B_{v_{2}} x\right\} .
$$

By reporting these maximum value equalities in inequality system (3), one finds :

$$
\left\{\begin{array}{l}
x^{T} A_{u_{1}} x<q_{1}, \tag{4}\\
x^{T} A_{u_{2}} x<q_{1}, \\
x^{T} B_{v_{1}} x<r_{1}, \\
x^{T} B_{v_{2}} x<r_{1}, \\
y^{T} A_{u_{1}} q_{2}, \\
y^{T} A_{u_{2}} y q_{2}, \\
y^{T} B_{v_{1}} y r_{2}, \\
y^{T} B_{v_{2}} y<r_{2} .
\end{array}\right.
$$

It follows from the system (4) above that:

$$
\left\{\begin{array}{l}
\left(q_{1}, q_{1}, r_{1}, r_{1}\right) \in\left\{\left(x^{T} A_{u_{1}} x, x^{T} A_{u_{2}} x, x^{T} B_{v_{1}} x, x^{T} B_{v_{2}} x\right)\right\}+\operatorname{int} \mathbb{R}_{+}^{4} \\
\left(q_{2}, q_{2}, r_{2}, r_{2}\right) \in\left\{\left(y^{T} A_{u_{1}} y, y^{T} A_{u_{2}} y, y^{T} B_{v_{1}} y, y^{T} B_{v_{2}} y\right)\right\}+\operatorname{int} \mathbb{R}_{+}^{4}
\end{array}\right.
$$

which is equivalent to

$$
\left\{\begin{array}{l}
\left(q_{1}, q_{1}, r_{1}, r_{1}\right) \in \Omega+\operatorname{int} \mathbb{R}_{+}^{4} \\
\left(q_{2}, q_{2}, r_{2}, r_{2}\right) \in \Omega+\operatorname{int} \mathbb{R}_{+}^{4}
\end{array}\right.
$$

Since Ω is convex, the set $\Omega+\operatorname{int} \mathbb{R}_{+}^{4}$ is also convex. Then

$$
\left(\delta q_{1}+(1-\delta) q_{2}, \delta q_{1}+(1-\delta) q_{2}, \delta r_{1}+(1-\delta) r_{2}, \delta r_{1}+(1-\delta) r_{2}\right) \in \Omega+\operatorname{int} \mathbb{R}_{+}^{4}
$$

Thus, there exists $z \in \mathbb{R}^{n}$ such that:

$$
\left\{\begin{array}{l}
z^{T} A_{u_{1}} z<\delta q_{1}+(1-\delta) q_{2} \\
z^{T} A_{u_{2}} z<\delta q_{1}+(1-\delta) q_{2} \\
z^{T} B_{v_{1}} z<\delta r_{1}+(1-\delta) r_{2} \\
z^{T} B_{v_{2}} z<\delta r_{1}+(1-\delta) r_{2}
\end{array}\right.
$$

Hence,

$$
\left\{\begin{array}{l}
\max _{u \in U_{1}} z^{T} A_{u} z<\delta q_{1}+(1-\delta) q_{2} \\
\max _{v \in U_{2}} z^{T} B_{v} z<\delta r_{1}+(1-\delta) r_{2}
\end{array}\right.
$$

So, $\delta\left(q_{1}, r_{1}\right)+(1-\delta)\left(q_{2}, r_{2}\right) \in \Gamma$ and consequently Γ is convex.
Secondly since (i) fails, we can separate Γ and the set $\{(2 \alpha,-2 \beta)\}$. Then, by hyperplane separation theorem (also known as the geometric form of Hahn-Banach Theorem, see H. Brezis (1983) [12]), there exists $\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{R}^{2} \backslash\{(0,0)\}$ such that
$\lambda_{1}\left(\max _{u \in U_{1}} \frac{1}{2} x^{T} A_{u} x+\eta\right)+\lambda_{2}\left(\max _{v \in U_{2}} \frac{1}{2} x^{T} B_{v} x+\varepsilon\right)>\alpha \lambda_{1}-\beta \lambda_{2}, \forall x \in \mathbb{R}^{n}, \forall \eta, \varepsilon \in \operatorname{int} \mathbb{R}_{+}$.

- Suppose that $\lambda_{1}<0$.

When (η, ε) tends to $(+\infty, 0)$ in Inequality (5), we get at the limit : $-\infty \geq \alpha \lambda_{1}-\beta \lambda_{2}$. Which is a contradiction. Thus, $\lambda_{1} \geq 0$.

- In the same way, we show that $\lambda_{2} \geq 0$.
- And afterwards, one has $\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{R}_{+}^{2} \backslash\{(0,0)\}$.

We have just shown that there exists $\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{R}_{+}^{2} \backslash\{(0,0)\}$ such that :
$\lambda_{1} \max \left\{\frac{1}{2} x^{T} A_{u_{1}} x, \frac{1}{2} x^{T} A_{u_{2}} x\right\}+\lambda_{2} \max \left\{\frac{1}{2} x^{T} B_{v_{1}} x, \frac{1}{2} x^{T} B_{v_{2}} x\right\} \geq \alpha \lambda_{1}-\beta \lambda_{2}, \forall x \in \mathbb{R}^{n}$.
This implies that the following inequalities system (6) below has no solution,

$$
\left\{\begin{array}{l}
\frac{1}{2} x^{T}\left(\lambda_{1} A_{u_{1}}+\lambda_{2} B_{v_{1}}\right) x<\alpha \lambda_{1}-\beta \lambda_{2} \tag{6}\\
\frac{1}{2} x^{T}\left(\lambda_{1} A_{u_{1}}+\lambda_{2} B_{v_{2}}\right) x<\alpha \lambda_{1}-\beta \lambda_{2} \\
\frac{1}{2} x^{T}\left(\lambda_{1} A_{u_{2}}+\lambda_{2} B_{v_{1}}\right) x<\alpha \lambda_{1}-\beta \lambda_{2} \\
\frac{1}{2} x^{T}\left(\lambda_{1} A_{u_{2}}+\lambda_{2} B_{v}\right) x<\alpha \lambda_{1}-\beta \lambda_{2}
\end{array}\right.
$$

Let
$\Lambda=\left\{\left(x^{T}\left(\lambda_{1} A_{u_{1}}+\lambda_{2} B_{v_{1}}\right) x, x^{T}\left(\lambda_{1} A_{u_{1}}+\lambda_{2} B_{v_{2}}\right) x, x^{T}\left(\lambda_{1} A_{u_{2}}+\lambda_{2} B_{v_{1}}\right) x, x^{T}\left(\lambda_{1} A_{u_{2}}+\lambda_{2} B_{v_{2}}\right) x\right) \mid x \in \mathbb{R}^{n}\right\}$.
Let us consider the following mapping :
$\Phi: \mathbb{R}^{4} \longrightarrow \mathbb{R}^{4},\left(t_{1}, t_{2}, t_{3}, t_{4}\right) \longmapsto\left(\lambda_{1} t_{1}+\lambda_{2} t_{3}, \lambda_{1} t_{1}+\lambda_{2} t_{4}, \lambda_{1} t_{2}+\lambda_{2} t_{3}, \lambda_{1} t_{2}+\lambda_{2} t_{4}\right)$.
Φ is a linear transformation and Ω is a convex set (assumption), it follows that $\Lambda=\Phi(\Omega)$ is a convex set, see Equation (1) in Theorem 2.
By remarking that

$$
\left(2\left(\alpha \lambda_{1}-\beta \lambda_{2}\right), 2\left(\alpha \lambda_{1}-\beta \lambda_{2}\right), 2\left(\alpha \lambda_{1}-\beta \lambda_{2}\right), 2\left(\alpha \lambda_{1}-\beta \lambda_{2}\right)\right) \notin \Lambda+\operatorname{int} \mathbb{R}_{+}^{4},
$$

the hyperplane separation theorem shows that there are $\left(\gamma_{i}\right)_{1 \leq i \leq 4} \in \mathbb{R}_{+}^{4} \backslash\left\{0_{\mathbb{R}^{4}}\right\}$ such that for all $x \in \mathbb{R}^{n}$, one has :

$$
\begin{array}{r}
\gamma_{1}\left[\frac{1}{2} x^{T}\left(\lambda_{1} A_{u_{1}}+\lambda_{2} B_{v_{1}}\right) x-\left(\alpha \lambda_{1}-\beta \lambda_{2}\right)\right] \\
+\gamma_{2}\left[\frac{1}{2} x^{T}\left(\lambda_{1} A_{u_{1}}+\lambda_{2} B_{v_{2}}\right) x-\left(\alpha \lambda_{1}-\beta \lambda_{2}\right)\right] \\
+\gamma_{3}\left[\frac{1}{2} x^{T}\left(\lambda_{1} A_{u_{2}}+\lambda_{2} B_{v_{1}}\right) x-\left(\alpha \lambda_{1}-\beta \lambda_{2}\right)\right] \\
+\gamma_{4}\left[\frac{1}{2} x^{T}\left(\lambda_{1} A_{u_{2}}+\lambda_{2} B_{v_{2}}\right) x-\left(\alpha \lambda_{1}-\beta \lambda_{2}\right)\right] \geq 0 . \tag{7}
\end{array}
$$

Put $\gamma=\gamma_{1}+\gamma_{2}+\gamma_{3}+\gamma_{4}$. Then, we have the following equivalences :

$$
\begin{aligned}
(7) & \Leftrightarrow \lambda_{1}\left[\frac{1}{2} x^{T}\left(\gamma_{1} A_{u_{1}}+\gamma_{2} A_{u_{1}}+\gamma_{3} A_{u_{2}}+\gamma_{4} A_{u_{2}}\right) x-\alpha \gamma\right] \\
& +\lambda_{2}\left[\frac{1}{2} x^{T}\left(\gamma_{1} B_{v_{1}}+\gamma_{2} B_{v_{2}}+\gamma_{3} B_{v_{1}}+\gamma_{4} B_{v_{2}}\right) x+\beta \gamma\right] \geq 0, \\
& \Leftrightarrow \lambda_{1}\left[\frac{1}{2} x^{T}\left(\left(\gamma_{1}+\gamma_{2}\right) A_{u_{1}}+\left(\gamma_{3}+\gamma_{4}\right) A_{u_{2}}\right) x-\alpha \gamma\right] \\
& +\lambda_{2}\left[\frac{1}{2} x^{T}\left(\left(\gamma_{1}+\gamma_{3}\right) B_{v_{1}}+\left(\gamma_{2}+\gamma_{4}\right) B_{v_{2}}\right) x+\beta \gamma\right] \geq 0, \\
& \Leftrightarrow \lambda_{1}\left[\frac{1}{2} x^{T}\left(\left(\gamma_{1}+\gamma_{2}\right)\left(A_{1}+u_{1} A_{2}\right)+\left(\gamma-\gamma_{1}-\gamma_{2}\right)\left(A_{1}+u_{2} A_{2}\right)\right) x-\alpha \gamma\right] \\
& +\lambda_{2}\left[\frac{1}{2} x^{T}\left(\left(\gamma_{1}+\gamma_{3}\right)\left(B_{1}+v_{1} B_{2}\right)+\left(\gamma-\gamma_{1}-\gamma_{3}\right)\left(B_{1}+v_{2} B_{2}\right)\right) x+\beta \gamma\right] \geq 0, \\
& \Leftrightarrow \lambda_{1}\left[\frac{1}{2} x^{T}\left(\left(\gamma_{1}+\gamma_{2}\right) u_{1} A_{2}+\gamma\left(A_{1}+u_{2} A_{2}\right)-\left(\gamma_{1}+\gamma_{2}\right) u_{2} A_{2}\right) x-\alpha \gamma\right] \\
& +\lambda_{2}\left[\frac{1}{2} x^{T}\left(\left(\gamma_{1}+\gamma_{3}\right) v_{1} B_{2}+\gamma\left(B_{1}+v_{2} B_{2}\right)-\left(\gamma_{1}+\gamma_{3}\right) v_{2} B_{2}\right) x+\beta \gamma\right] \geq 0, \\
& \Leftrightarrow \lambda_{1}\left[\frac{1}{2} x^{T}\left(A_{1}+u_{2} A_{2}+\frac{\left(\gamma_{1}+\gamma_{2}\right)\left(u_{1}-u_{2}\right) A_{2}}{\gamma}\right) x-\alpha\right] \\
& +\lambda_{2}\left[\frac{1}{2} x^{T}\left(B_{1}+v_{2} B_{2}+\frac{\left(\gamma_{1}+\gamma_{3}\right)\left(v_{1}-v_{2}\right) B_{2}}{\gamma}\right) x+\beta\right] \geq 0, \\
& \Leftrightarrow \lambda_{1}\left[\frac{1}{2} x^{T}\left(A_{1}+\frac{\gamma u_{2}+\left(\gamma_{1}+\gamma_{2}\right)\left(u_{1}-u_{2}\right)}{\gamma} A_{2}\right) x-\alpha\right] \\
& +\lambda_{2}\left[\frac{1}{2} x^{T}\left(B_{1}+\frac{\gamma v_{2}+\left(\gamma_{1}+\gamma_{3}\right)\left(v_{1}-v_{2}\right)}{\gamma} B_{2}\right) x+\beta\right] \geq 0, \\
\gamma & B_{2}\left[\frac{1}{2} x^{T}\left(A_{1}+\frac{\left(\gamma_{1}+\gamma_{2}\right) u_{1}+\left(\gamma_{3}+\gamma_{4}\right) u_{2}}{\gamma} A_{2}\right) x-\alpha\right] \\
& +\lambda_{2}\left[\frac{1}{2} x^{T}\left(B_{1}+\frac{\left(\gamma_{1}+\gamma_{3}\right) v_{1}+\left(\gamma_{2}+\gamma_{4}\right) v_{2}}{\gamma} B_{2}\right) x+\beta\right] \geq 0 .
\end{aligned}
$$

Consequently, we obtain the existence of $(\bar{u}, \bar{v}) \in U \times V$ and $\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{R}_{+}^{2} \backslash\{(0,0)\}$ such that :

$$
\begin{equation*}
\lambda_{1}\left(\frac{1}{2} x^{T} A_{\bar{u}} x-\alpha\right)+\lambda_{2}\left(\frac{1}{2} x^{T} B_{\bar{v}} x+\beta\right) \geq 0, \forall x \in \mathbb{R}^{n} \tag{8}
\end{equation*}
$$

where : $\bar{u}=\frac{\left(\gamma_{1}+\gamma_{2}\right)}{\gamma} u_{1}+\frac{\left(\gamma_{3}+\gamma_{4}\right)}{\gamma} u_{2}$ and $\bar{v}=\frac{\left(\gamma_{1}+\gamma_{3}\right)}{\gamma} v_{1}+\frac{\left(\gamma_{2}+\gamma_{4}\right)}{\gamma} v_{2}$.
Remark 1 Some particular cases of Theorem 2 are given as, if :

- U_{1} or U_{2} is a singleton, then Theorem 2 is reduced to Theorem 3.1 of [31].
- Both U_{1} and U_{2} are singletons, then Theorem 2 consists merely of Dines Theorem (see Theorem 1 or [16]).

Note that the following result is an uncertain version of the classical S-lemma given in Lemma 1.

Corollary 1 (Robust S-lemma)

Let $A_{0}, A_{1}, B_{0}, B_{1} \in \mathcal{S}_{n}(\mathbb{R}) ; u_{1}, u_{2}, v_{1}, v_{2} \in \mathbb{R}$ such that $u_{1} \leq u_{2}$ and $v_{1} \leq v_{2}$. Assume that:

1. $\Omega=\left\{\left(x^{T} A_{u_{1}} x, x^{T} A_{u_{2}} x, x^{T} B_{v_{1}} x, x^{T} B_{v_{2}} x\right) \mid x \in \mathbb{R}^{n}\right\}$ is convex.
2. there exists $x_{0} \in \mathbb{R}^{n}$ such that $x_{0}^{T} B_{v} x_{0}<0$ for all $v \in U_{2}$.

Then, the following statements are equivalent :
(i) $x^{T} B_{v} x \leq 0, \forall v \in U_{2} \Longrightarrow x^{T} A_{u} x \geq 0, \forall u \in U_{1}$.
(ii) $\exists \lambda \geq 0, \exists(\bar{u}, \bar{v}) \in U_{1} \times U_{2} \mid A_{\bar{u}}+\lambda B_{\bar{v}} \succeq 0$.

Proof $[(i i) \Longrightarrow(i)]$. This implication is always satisfied.
$[(i) \Longrightarrow(i i)]$. Suppose that (i) holds. Hence, the inequalities system

$$
\left\{\begin{array}{l}
x^{T} A_{u} x<0, \forall u \in U_{1}, \\
x^{T} B_{v} x<0, \forall v \in U_{2},
\end{array}\right.
$$

has no solution. From Theorem 2, there exist $\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{R}_{+}^{2} \backslash\{(0,0)\},(\bar{u}, \bar{v}) \in U_{1} \times U_{2}$ such that :

$$
\lambda_{1} x^{T} A_{\bar{u}} x+\lambda_{2} x^{T} B_{\bar{v}} x \geq 0, \forall x \in \mathbb{R}^{n} .
$$

If $\lambda_{1}=0$ then $\lambda_{2}>0$ and $x^{T} B_{\bar{v}} x \geq 0$ for all $x \in \mathbb{R}^{n}$. Which is a contradiction since $x_{0}^{T} B_{v} x_{0}<0$. Hence $\lambda_{1}>0$. It follows that $A_{\bar{u}}+\lambda B_{\bar{v}} \succeq 0$, with : $\lambda=\frac{\lambda_{2}}{\lambda_{1}}$.

4 Characterization of Robust Solution of QCQOP under Data Uncertainty

4.1 Homogeneous Case

In this subsection, we give a characterization of robust optimal solution for homogeneous quadratic programming problem under data uncertainty.
For this purpose, we consider the following problem

$$
\begin{align*}
\min _{x \in \mathbb{R}^{n}} & \frac{1}{2} x^{T} A_{u} x \tag{H-QCQP}\\
\text { s.t. } & \frac{1}{2} x^{T} B_{v} x+\beta \leq 0 .
\end{align*}
$$

The robust counterpart (worst case) of (H-QCQP) is given by

$$
\begin{align*}
& \min _{x \in \mathbb{R}^{n}} \max _{u \in U_{1}} \frac{1}{2} x^{T} A_{u} x, \tag{RH-QCQP}\\
& \text { s.t. } \max _{v \in U_{2}} \frac{1}{2} x^{T} B_{v} x+\beta \leq 0 \text {. }
\end{align*}
$$

Theorem 3 (Characterization of robust solution)

Let $A_{0}, A_{1}, B_{0}, B_{1} \in \mathcal{S}_{n}(\mathbb{R}) ; u_{1}, u_{2}, v_{1}, v_{2} \in \mathbb{R}$ such that $u_{1} \leq u_{2}$ and $v_{1} \leq v_{2}$. Assume that :
(H1) There exists $x_{0} \in \mathbb{R}^{n}$ such that : $\frac{1}{2} x_{0}^{T} B_{v} x_{0}+\beta<0$ for all $v \in U_{2}$;
(H2) The set $\Omega=\left\{\left(x^{T} A_{u_{1}} x, x^{T} A_{u_{2}} x, x^{T} B_{v_{1}} x, x^{T} B_{v_{2}} x\right) \mid x \in \mathbb{R}^{n}\right\}$ is convex.

Then, the following statements are equivalent :
(i) \bar{x} is a robust optimal solution of ($\mathrm{H}-\mathrm{QCQP}$);
(ii) There exist $\lambda \geq 0$ and $(\bar{u}, \bar{v}) \in U_{1} \times U_{2}$ such that:

$$
\begin{cases}\left(A_{\bar{u}}+\lambda B_{\bar{v}}\right) \bar{x}=0, & \text { (First-order Condition }) \tag{9}\\ \lambda\left(\frac{1}{2} \bar{x}^{T} B_{\bar{v}} \bar{x}+\beta\right)=0, & \text { (Complementary Slackness) } \\ A_{\bar{u}}+\lambda B_{\bar{v}} \succeq 0, & \text { (Second-order Condition) } .\end{cases}
$$

Proof $[(i) \Longrightarrow(i i)]$ Assume that \bar{x} is a robust optimal solution of (H-QCQP). Then, for all $x \in \mathbb{R}^{n}$:

$$
\begin{equation*}
\frac{1}{2} x^{T} B_{v} x+\beta \leq 0, \forall v \in U_{2} \Longrightarrow \max _{u \in U_{1}} \frac{1}{2} x^{T} A_{u} x \geq \alpha:=\frac{1}{2} \max _{u \in U_{1}} \bar{x}^{T} A_{u} \bar{x} \tag{10}
\end{equation*}
$$

This implies that

$$
\left\{\begin{array}{l}
\max _{u \in U_{1}} \frac{1}{2} x^{T} A_{u} x<\alpha, \\
\frac{1}{2} x^{T} B_{v} x+\beta<0, \forall v \in U_{2},
\end{array}\right.
$$

has no solution. This means that the following inequalities system

$$
\left\{\begin{array}{l}
\frac{1}{2} x^{T} A_{u} x<\alpha, \forall u \in U_{1} \\
\frac{1}{2} x^{T} B_{v} x+\beta<0, \forall v \in U_{2}
\end{array}\right.
$$

has no solution. Thanks to hypothesis (H2) by applying Theorem 2, there exist $\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{R}_{+}^{2} \backslash\{(0,0)\}$ and $(\bar{u}, \bar{v}) \in U_{1} \times U_{2}$ such that:

$$
\lambda_{1}\left(\frac{1}{2} x^{T} A_{\bar{u}} x-\alpha\right)+\lambda_{2}\left(\frac{1}{2} x^{T} B_{\bar{v}} x+\beta\right) \geq 0, \forall x \in \mathbb{R}^{n}
$$

If $\lambda_{1}=0$, then: $\lambda_{2}\left(\frac{1}{2} x^{T} B_{\bar{v}} x+\beta\right) \geq 0$ for all $x \in \mathbb{R}^{n}$.
For $x=x_{0}$, with $(H 1)$, we see that $\lambda_{2} \leq 0$ and $\lambda_{2}=0$. which contradicts the fact that $\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{R}_{+}^{2} \backslash\{(0,0)\}$. Hence, $\lambda_{1}>0$. This means that

$$
\begin{equation*}
\left(\frac{1}{2} x^{T} A_{\bar{u}} x-\alpha\right)+\lambda\left(\frac{1}{2} x^{T} B_{\bar{v}} x+\beta\right) \geq 0, \forall x \in \mathbb{R}^{n} \tag{11}
\end{equation*}
$$

where $\lambda=\frac{\lambda_{2}}{\lambda_{1}}$. Inequality (11) implies that

$$
\left(\frac{1}{2} \max _{u \in U_{1}} x^{T} A_{u} x-\alpha\right)+\lambda\left(\frac{1}{2} x^{T} B_{\bar{v}} x+\beta\right) \geq 0, \forall x \in \mathbb{R}^{n} .
$$

It is clear that for $x=\bar{x}$, one has :

$$
\lambda\left(\frac{1}{2} \bar{x}^{T} B \bar{v} \bar{x}+\beta\right)=0 \text { (by using the defintion of } \alpha \text { in Inequality (10)). }
$$

Then, the complementary slackness conditions holds. Let us consider the function φ defined by :

$$
\varphi: \mathbb{R}^{n} \longrightarrow \mathbb{R}, x \longmapsto \varphi(x):=\left(\frac{1}{2} x^{T} A_{\bar{u}} x-\alpha\right)+\lambda\left(\frac{1}{2} x^{T} B_{\bar{v}} x+\beta\right)
$$

The Inequality (11) implies that $\varphi(x) \geq 0$ and $\varphi(\bar{x})=0 . \bar{x}$ minimize φ on \mathbb{R}^{n} and φ is twice differentiable. Then, \bar{x} solve the Euler equation $\nabla \varphi(x)=0$ and inequalities system $\nabla^{2} \varphi(x) \succeq 0$. Thus, the first and second order necessary conditions of optimality in the point \bar{x} lead to :

$$
\begin{cases}\left(A_{\bar{u}}+\lambda B_{\bar{v}}\right) \bar{x}=0, & \text { (First-Order Condition) } \\ A_{\bar{u}}+\lambda B_{\bar{v}} \succeq 0 . & \text { (Second-Order Condition) }\end{cases}
$$

$[(i i) \Longrightarrow(i)]$. Now, suppose that there exist $\lambda \geq 0$ and $(\bar{u}, \bar{v}) \in U_{1} \times U_{2}$ such that

$$
\begin{cases}\left(A_{\bar{u}}+\lambda B_{\bar{v}}\right) \bar{x}=0, & \text { (First-order Condition) } \\ \lambda\left(\frac{1}{2} \bar{x}^{T} B_{\bar{v}} \bar{x}+\beta\right)=0, & \text { (Complementary Slackness) } \\ A_{\bar{u}}+\lambda B_{\bar{v}} \succeq 0 . & \text { (Second-order Condition) }\end{cases}
$$

Let x be a robust feasible solution of (H-QCQP). By using complementary slackness condition, one has :

$$
\frac{1}{2} x^{T} B_{\bar{v}} x+\beta \leq \lambda\left(\frac{1}{2} \bar{x}^{T} B_{\bar{v}} \bar{x}+\beta\right) .
$$

Let us consider $\mathbb{R}^{n} \longrightarrow \mathbb{R}, x \longmapsto \varphi(x):=\frac{1}{2} x^{T} A_{\bar{u}} x+\lambda\left(\frac{1}{2} x^{T} B_{\bar{v}} x+\beta\right)$.
The first-order condition and second-order condition (necessary condition of optimality) mean that $\nabla \varphi(\bar{x})=0$ and φ is convex function over \mathbb{R}^{n}. Thus,

$$
\begin{aligned}
\varphi(x) \geq \varphi(\bar{x}) & \Longrightarrow \frac{1}{2} x^{T} A_{\bar{u}} x \geq \frac{1}{2} \bar{x}^{T} A_{\bar{u}} \bar{x}+\lambda\left(\frac{1}{2} \bar{x}^{T} B_{\bar{v}} \bar{x}+\beta\right)-\lambda\left(\frac{1}{2} x^{T} B_{\bar{v}} x+\beta\right) \\
& \Longrightarrow \frac{1}{2} x^{T} A_{\bar{u}} x \geq \frac{1}{2} \bar{x}^{T} A_{\bar{u}} \bar{x}-\lambda\left(\frac{1}{2} x^{T} B_{\bar{v}} x+\beta\right) \\
& \Longrightarrow \frac{1}{2} x^{T} A_{\bar{u}} x \geq \frac{1}{2} \bar{x}^{T} A_{\bar{u}} \bar{x} .
\end{aligned}
$$

Hence, \bar{x} is robust optimal solution of (H-QCQP).
Remark 2 Note that the robust optimal solution characterization of the uncertain homogeneous quadratic optimization problem given in Theorem 3 was established in [31] by assuming that U_{1} is a singleton and where the corresponding additive scalar β is assumed to be negative (regarding to our problem formulation).

4.2 Non-homogeneous Case

In this subsection, at first we will derive necessary and sufficient conditions of robust optimal solution for quadratic programming under bounded interval uncertainty. Secondly, we will give a characterization of optimal solutions of the optimistic dual.
Let us consider the following uncertain quadratic problem

$$
\begin{align*}
\min _{x \in \mathbb{R}^{n}} & \frac{1}{2} x^{T} A_{u} x+a_{\omega}^{T} x \tag{NH-QCQP}\\
\text { s.t. } & \frac{1}{2} x^{T} B_{v} x+b_{\varsigma}^{T} x+\beta \leq 0,
\end{align*}
$$

where $A_{u}, B_{v} \in \mathcal{S}_{n}(\mathbb{R}), a_{\omega}, b_{\varsigma} \in \mathbb{R}^{n}, \beta \in \mathbb{R},(u, v, \omega, \varsigma)$ belongs to the uncertainty set $\mathcal{U}=\prod_{i=1}^{4} U_{i}=\left[u_{1}, u_{2}\right] \times\left[v_{1}, v_{2}\right] \times\left[\omega_{1}, \omega_{2}\right] \times\left[\varsigma_{1}, \varsigma_{2}\right]$.
The robust counterpart (worst case) of (NH-QCQP) is given by

$$
\begin{aligned}
\min _{x \in \mathbb{R}^{n}} & \frac{1}{2} \max _{u \in U_{1}} x^{T} A_{u} x+\max _{\omega \in U_{3}} a_{\omega}^{T} x, \\
\text { s.t. } & \frac{1}{2} \max _{v \in U_{2}} x^{T} B_{v} x+\max _{\varsigma \in U_{4}} b_{\varsigma}^{T} x+\beta \leq 0 .
\end{aligned}
$$

(RNH-QCQP)

Given a \bar{x} in \mathbb{R}^{n}, we set $\alpha=-\max _{(u, \omega) \in U_{1} \times U_{3}}\left\{\frac{1}{2} \bar{x}^{T} A_{u} \bar{x}+a_{\omega}^{T} \bar{x}\right\}$ and
$\Xi_{\bar{x}}=\left\{\binom{x}{t}^{T} H_{1}\binom{x}{t},\binom{x}{t}^{T} H_{2}\binom{x}{t},\binom{x}{t}^{T} H_{3}\binom{x}{t}, \left.\binom{x}{t}^{T} H_{4}\binom{x}{t} \right\rvert\,(x, t) \in \mathbb{R}^{n} \times \mathbb{R}\right\}$,
where :

$$
H_{1}=\left(\begin{array}{cc}
A_{u_{1}} & a_{\omega_{1}} \\
a_{\omega_{1}}^{T} & 2 \alpha
\end{array}\right), H_{2}=\left(\begin{array}{cc}
A_{u_{2}} & a_{\omega_{2}} \\
a_{\omega_{2}}^{T} & 2 \alpha
\end{array}\right), H_{3}=\left(\begin{array}{cc}
B_{v_{1}} & b_{\varsigma_{1}} \\
b_{\varsigma_{1}}^{T} & 2 \beta
\end{array}\right) \text { and } H_{4}=\left(\begin{array}{cc}
B_{v_{2}} & b_{\varsigma_{2}} \\
b_{\varsigma_{2}}^{T} & 2 \beta
\end{array}\right)
$$

We give the following definition with regards to convexity of QCQOPs at a given point in \mathbb{R}^{n}. This definition is inspired by the works of Dines (1941), Polyak (1998) and Jeyakumar (2012) about analysis of convexity properties of quadratic forms, and named after them.

Definition 1 (Convexity in the sense of Dines-Polyak-Jeyakumar) The problem (NH-QCQP) is said to be DPJ-convex (or regular) w.r.t. \bar{x} if the set $\Xi_{\bar{x}}$ is convex.

Theorem 4 (Characterization of robust solution)

Let \bar{x} be a robust feasible solution of (NH-QCQP) such that :
(H1) (NH-QCQP) is DPJ-convex at \bar{x};
(H2) There exists $x_{0} \in \mathbb{R}^{n}$ such that: $\frac{1}{2} x_{0}^{T} B_{v} x_{0}+b_{\varsigma}^{T} x_{0}+\beta<0$ for all $(v, \varsigma) \in U_{2} \times U_{4}$.
Then, the following statements are equivalent:
(i) \bar{x} is a robust optimal solution of (NH-QCQP);
(ii) There exist $\lambda \geq 0$ and $(\bar{u}, \bar{v}, \bar{\omega}, \bar{\varsigma}) \in \mathcal{U}$ such that:

$$
\begin{cases}\left(A_{\bar{u}}+\lambda B_{\bar{v}}\right) \bar{x}+a_{\bar{\omega}}+\lambda b_{\bar{\zeta}}=0, & (\text { First-order Condition }) \tag{12}\\ \lambda\left(\frac{1}{2} \bar{x}^{T} B_{\bar{v}} \bar{x}+b_{\bar{\zeta}} \bar{x}+\beta\right)=0, & (\text { Complementary Slackness }) \\ A_{\bar{u}}+\lambda B_{\bar{v}} \succeq 0 . & \text { (Second-order Condition) }\end{cases}
$$

Proof $[(i) \Longrightarrow(i i)]$. Let \bar{x} be a robust optimal solution of (NH-QCQP) and $\alpha=-\max _{(u, \omega) \in U_{1} \times U_{3}}\left\{\frac{1}{2} \bar{x}^{T} A_{u} \bar{x}+a_{\omega}^{T} \bar{x}\right\}$.
Then for all $x \in \mathbb{R}^{n}$, one has :

$$
\max _{(v, \varsigma) \in U_{1} \times U_{3}}\left\{\frac{1}{2} x^{T} B_{v} x+b_{\varsigma}^{T} x\right\}+\beta \leq 0 \Longrightarrow \max _{(u, \omega) \in U_{1} \times U_{3}}\left\{\frac{1}{2} x^{T} A_{u} x+a_{\omega}^{T} x\right\} \geq-\alpha
$$

Consequently, the system

$$
\left\{\begin{array}{l}
\max _{(u, \omega) \in U_{1} \times U_{3}}\left\{\frac{1}{2} x^{T} A_{u} x+a_{\omega}^{T} x\right\}<-\alpha \\
\max _{(v, \varsigma) \in U_{2} \times U_{4}}\left\{\frac{1}{2} x^{T} B_{v} x+b_{\varsigma}^{T} x\right\}+\beta<0
\end{array}\right.
$$

has no solution. Thus, the system

$$
\left\{\begin{array}{l}
\frac{1}{2} x^{T} A_{u} x+a_{\omega}^{T} x+\alpha<0, \forall(u, \omega) \in U_{1} \times U_{3} \tag{1}\\
\frac{1}{2} x^{T} B_{v} x+b_{\varsigma}^{T} x+\beta<0, \forall(v, \varsigma) \in U_{2} \times U_{4}
\end{array}\right.
$$

has no solution.
Moreover, we can show that for all $t \in \mathbb{R}$, the following system

$$
\left\{\begin{array}{l}
\frac{1}{2} x^{T} A_{u} x+t a_{\omega}^{T} x+t^{2} \alpha<0, \forall(u, \omega) \in U_{1} \times U_{3} \tag{2}\\
\frac{1}{2} x^{T} B_{v} x+t b_{\varsigma}^{T} x+t^{2} \beta<0, \forall(v, \varsigma) \in U_{2} \times U_{4}
\end{array}\right.
$$

has no solution in $\mathbb{R}^{n} \times \mathbb{R}$. Indeed if $\left(x^{*}, t^{*}\right) \in \mathbb{R}^{n} \times \mathbb{R}$ is a solution of $\left(\mathrm{S}_{2}\right)$, then

$$
\left\{\begin{array}{l}
\frac{1}{2} x^{* T} A_{u} x^{*}+t^{*} a_{\omega}^{T} x^{*}+t^{* 2} \alpha<0, \forall(u, \omega) \in U_{1} \times U_{3} \\
\frac{1}{2} x^{*} B_{v} x^{*}+t^{*} b_{\varsigma}^{T} x^{*}+t^{* 2} \beta<0, \forall(v, \varsigma) \in U_{2} \times U_{4}
\end{array}\right.
$$

So for $t^{*} \neq 0$, one has :

$$
\left\{\begin{array}{l}
\frac{1}{2}\left(\frac{x^{*}}{t^{*}}\right)^{T} A_{u}\left(\frac{x^{*}}{t^{*}}\right)+a_{\omega}^{T}\left(\frac{x^{*}}{t^{*}}\right)+\alpha<0, \forall(u, \omega) \in U_{1} \times U_{3} \\
\frac{1}{2}\left(\frac{x^{*}}{t^{*}}\right)^{T} B_{v}\left(\frac{x^{*}}{t^{*}}\right)+b_{\varsigma}^{T}\left(\frac{x^{*}}{t^{*}}\right)+\beta<0, \forall(v, \varsigma) \in U_{2} \times U_{4}
\end{array}\right.
$$

Which contradicts the fact that $\left(\mathrm{S}_{1}\right)$ has no solution. If $t^{*}=0$, it follows that x^{*} is a solution of the system

$$
\left\{\begin{array}{l}
\frac{1}{2} x^{T} A_{u} x<0, \forall u \in U_{1} \\
\frac{1}{2} x^{T} B_{v} x<0, \forall v \in U_{2}
\end{array}\right.
$$

In this case $x^{*} \neq 0$ and for a fairly large number $n \in \mathbb{N}, x_{n}=n x^{*}$ is a solution of the system $\left(\mathrm{S}_{1}\right)$. Which is a contradiction. We conclude that the system $\left(\mathrm{S}_{2}\right)$ has no solution.

Let us show that there exist $(\bar{u}, \bar{v}, \bar{\omega}, \bar{\varsigma}) \in \mathcal{U}$ and $\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{R}_{+}^{2} \backslash\{(0,0)\}$ such that

$$
\begin{equation*}
\lambda_{1}\left(\frac{1}{2} x^{T} A \bar{u} x+a^{\frac{T}{\omega}}+\alpha\right)+\lambda_{2}\left(\frac{1}{2} x^{T} B_{\bar{v}} x+b_{\bar{\zeta}}^{T}+\beta\right) \geq 0, \forall x \in \mathbb{R}^{n} . \tag{13}
\end{equation*}
$$

One proceeds by distinguishing four cases as follows.
First case : $u_{1}<u_{2}$ and $v_{1}<v_{2}$.
Let
$M_{1}=\left(\begin{array}{cc}A_{1} & a_{1}+\frac{\omega_{1} u_{2}-\omega_{2} u_{1}}{u_{2}-u_{1}} a_{2}, \\ a_{1}^{T}+\frac{\omega_{1} u_{2}-\omega_{2} u_{1}}{u_{2}-u_{1}} a_{2}^{T} & 2 \alpha\end{array}\right), M_{2}=\left(\begin{array}{cc}A_{2} & \frac{\omega_{2}-\omega_{1}}{u_{2}-u_{1}} a_{2} \\ \frac{\omega_{2}-\omega_{1}}{u_{2}-u_{1}} a_{2}^{T} & 0\end{array}\right)$,
$M_{3}=\left(\begin{array}{cc}B_{1} & b_{1}+\frac{\varsigma_{1} v_{2}-\varsigma_{2} v_{1}}{v_{2}-v_{1}} b_{2} \\ b_{1}^{T}+\frac{\varsigma_{1} v_{2}-\varsigma_{2} v_{1}}{v_{2}-v_{1}} b_{2}^{T} & 2 \beta\end{array}\right)$ and $M_{4}=\left(\begin{array}{cc}B_{2} & \frac{\varsigma_{2}-\varsigma_{1}}{v_{2}-v_{1}} b_{2} \\ \frac{\varsigma_{2}-\varsigma_{1}}{v_{2}-v_{1}} b_{2}^{T} & 0\end{array}\right)$.
Then, we have the following linear matrix equalities :

$$
M_{1}+u_{1} M_{2}=H_{1} ; M_{1}+u_{2} M_{2}=H_{2} ; M_{3}+v_{1} M_{4}=H_{3} ; \text { and } M_{3}+v_{2} M_{4}=H_{4} .
$$

By applying the fact that $\left(\mathrm{S}_{2}\right)$ has no solution, we deduce that the system below

$$
\left\{\begin{array}{l}
\frac{1}{2}\binom{x}{t}^{T}\left(M_{1}+u M_{2}\right)\binom{x}{t}<0, \forall u \in U_{1}, \\
\frac{1}{2}\binom{x}{t}^{T}\left(M_{3}+v M_{4}\right)\binom{x}{t}<0, \forall \varsigma \in U_{4},
\end{array}\right.
$$

also has no solution.
Thanks to the convexity of the set $\Xi_{\bar{x}}$ and from Theorem 2, there exist $\left(\lambda_{1}, \lambda_{2}\right) \in$ $\mathbb{R}_{+}^{2} \backslash\{(0,0)\}$ and $(\bar{u}, \bar{v}) \in U_{1} \times U_{2}$ such that

$$
\lambda_{1}\left[\frac{1}{2}\binom{x}{t}^{T}\left(M_{1}+\bar{u} M_{2}\right)\binom{x}{t}\right]+\lambda_{2}\left[\frac{1}{2}\binom{x}{t}^{T}\left(M_{3}+\bar{v} M_{4}\right)\binom{x}{t}\right] \geq 0
$$

for all $(x, t) \in \mathbb{R}^{n} \times \mathbb{R}$.
By setting $t=1$, one has :

$$
\begin{gathered}
\lambda_{1}\left[\frac{1}{2} x^{T} A_{\bar{u}} x+\left(a_{1}+\left(\frac{\omega_{1} u_{2}-\omega_{2} u_{1}}{u_{2}-u_{1}}+\bar{u} \frac{\omega_{2}-\omega_{1}}{u_{2}-u_{1}}\right) a_{2}\right) x+\alpha\right]+ \\
\lambda_{2}\left[\frac{1}{2} x^{T} B_{\bar{v}} x+\left(b_{1}+\left(\frac{\varsigma_{1} v_{2}-\varsigma_{2} v_{1}}{v_{2}-v_{1}}+\bar{v} \frac{\varsigma_{2}-\varsigma_{1}}{v_{2}-v_{1}}\right) b_{2}\right) x+\beta\right] \geq 0, \forall x \in \mathbb{R}^{n} .
\end{gathered}
$$

Therefore, there exist $(\bar{u}, \bar{v}, \bar{\omega}, \bar{\varsigma}) \in \mathcal{U}$ and $\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{R}_{+}^{2} \backslash\{(0,0)\}$ such that relation (13) holds with :

$$
\bar{\omega}=\frac{\omega_{1} u_{2}-\omega_{2} u_{1}}{u_{2}-u_{1}}+\bar{u} \frac{\omega_{2}-\omega_{1}}{u_{2}-u_{1}} \text { and } \bar{\varsigma}=\frac{\varsigma_{1} v_{2}-\varsigma_{2} v_{1}}{v_{2}-v_{1}}+\bar{v} \frac{\varsigma_{2}-\varsigma_{1}}{v_{2}-v_{1}} .
$$

Second case : $u_{1}<u_{2}$ and $v_{1}=v_{2}=\bar{v}$.
Putting

$$
\begin{gathered}
M_{1}=\left(\begin{array}{cc}
A_{1} & a_{1}+\frac{\omega_{1} u_{2}-\omega_{2} u_{1}}{u_{2}-u_{1}} a_{2} \\
a_{1}^{T}+\frac{\omega_{1} u_{2}-\omega_{2} u_{1}}{u_{2}-u_{1}} a_{2}^{T} & 2 \alpha
\end{array}\right) ; M_{2}=\left(\begin{array}{cc}
A_{2} & \frac{\omega_{2}-\omega_{1}}{u_{2}-u_{1}} a_{2} \\
\frac{\omega_{2}-\omega_{1}}{u_{2}-u_{1}} a_{2}^{T} & 0
\end{array}\right) ; \\
M_{3}=\left(\begin{array}{c}
B_{\bar{v}} b_{1} \\
b_{1}^{T} \\
2 \beta
\end{array}\right) \text { and } M_{4}=\left(\begin{array}{cc}
0_{\mathcal{S}_{n}(\mathbb{R})} b_{2} \\
b_{2}^{T} & 0
\end{array}\right) .
\end{gathered}
$$

Then,

$$
M_{1}+u_{1} M_{2}=H_{1} ; M_{1}+u_{2} M_{2}=H_{2} ; M_{3}+\varsigma_{1} M_{4}=H_{3} ; \quad \text { and } M_{3}+\varsigma_{2} M_{4}=H_{4} .
$$

From system $\left(S_{2}\right)$, we obtain that the system

$$
\left\{\begin{array}{l}
\frac{1}{2}\binom{x}{t}^{T}\left(M_{1}+u M_{2}\right)\binom{x}{t}<0, \forall u \in U_{1}, \\
\frac{1}{2}\binom{x}{t}^{T}\left(M_{3}+\varsigma M_{4}\right)\binom{x}{t}<0, \forall \varsigma \in U_{4},
\end{array}\right.
$$

has no solution.
Since the set $\Xi_{\bar{x}}$ is convex, we can apply Theorem 2 , thus we can find $\left(\lambda_{1}, \lambda_{2}\right)$ in $\mathbb{R}_{+}^{2} \backslash\{(0,0)\}$ and $(\bar{u}, \bar{\varsigma})$ in $U_{1} \times U_{4}$ such that:
$\lambda_{1}\left[\frac{1}{2}\binom{x}{t}^{T}\left(M_{1}+\bar{u} M_{2}\right)\binom{x}{t}\right]+\lambda_{2}\left[\frac{1}{2}\binom{x}{t}^{T}\left(M_{3}+\bar{\varsigma} M_{4}\right)\binom{x}{t}\right] \geq 0, \forall(x, t) \in \mathbb{R}^{n} \times \mathbb{R}$.
Letting $t=1$, one has :
$\lambda_{1}\left[\frac{1}{2} x^{T} A_{\bar{u}} x+\left(a_{1}+\left(\frac{\omega_{1} u_{2}-\omega_{2} u_{1}}{u_{2}-u_{1}}+\bar{u} \frac{\omega_{2}-\omega_{1}}{u_{2}-u_{1}}\right) a_{2}\right) x+\alpha\right]+\lambda_{2}\left(\frac{1}{2} x^{T} B_{\bar{v}} x+b_{\bar{\varsigma}} x+\beta\right) \geq 0, \forall x \in \mathbb{R}^{n}$.
Hence, there exist $(\bar{u}, \bar{v}, \bar{\omega}, \bar{\varsigma}) \in \mathcal{U}$ and $\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{R}_{+}^{2} \backslash\{(0,0)\}$ such that (13) holds with

$$
\bar{\omega}=\frac{\omega_{1} u_{2}-\omega_{2} u_{1}}{u_{2}-u_{1}}+\bar{u} \frac{\omega_{2}-\omega_{1}}{u_{2}-u_{1}} .
$$

Third case : $u_{1}=u_{2}=\bar{u}$ and $v_{1}<v_{2}$.
Setting

$$
\begin{gathered}
M_{1}=\left(\begin{array}{cc}
A_{\bar{u}} & a_{1} \\
a_{1}^{T} & 2 \alpha
\end{array}\right) ; \quad M_{2}=\left(\begin{array}{cc}
0_{\mathcal{S}_{n}(\mathbb{R})} & a_{2} \\
a_{2}^{T} & 0
\end{array}\right) ; \\
M_{3}=\left(\begin{array}{cc}
B_{1} & b_{1}+\frac{\varsigma_{1} v_{2}-\varsigma_{1} v_{2}}{v_{2}-v_{1}} b_{2} \\
b_{1}^{T}+\frac{\varsigma_{1} v_{2}-\varsigma_{1} v_{2}}{v_{2}-v_{1}} b_{2}^{T} & 2 \beta
\end{array}\right) \text { and } M_{4}=\left(\begin{array}{cc}
B_{2} & \frac{\varsigma_{2}-\varsigma_{1}}{v_{2}-v_{1}} b_{2} \\
\frac{\varsigma_{2}-\varsigma_{1}}{v_{2}-v_{1}} b_{2}^{T} & 0
\end{array}\right),
\end{gathered}
$$

We proceed like in the second case by changing the role of u and v with

$$
\bar{\varsigma}=\frac{\varsigma_{1} v_{2}-\varsigma_{2} v_{1}}{v_{2}-v_{1}}+\bar{v} \frac{\varsigma_{2}-\varsigma_{1}}{v_{2}-v_{1}}
$$

Fourth case : $u_{1}=u_{2}=\bar{u}$ and $v_{1}=v_{2}=\bar{v}$.
Putting :
$M_{1}=\left(\begin{array}{cc}A_{\bar{u}} & a_{1} \\ a_{1}^{T} & 2 \alpha\end{array}\right) ; M_{2}=\left(\begin{array}{cc}0_{\mathcal{S}_{n}(\mathbb{R})} & a_{2} \\ a_{2}^{T} & 0\end{array}\right) ; M_{3}=\left(\begin{array}{cc}B_{\bar{v}} & b_{1} \\ b_{1}^{T} & 2 \beta\end{array}\right)$ and $M_{4}=\left(\begin{array}{cc}0_{\mathcal{S}_{n}(\mathbb{R})} & b_{2} \\ b_{2}^{T} & 0\end{array}\right)$.
In this case, we remark that

$$
M_{1}+\omega_{1} M_{2}=H_{1} ; M_{1}+\omega_{2} M_{2}=H_{2} ; M_{3}+\varsigma_{1} M_{4}=H_{3} \text { and } M_{3}+\varsigma_{2} M_{4}=H_{4} .
$$

The system

$$
\left\{\begin{array}{l}
\frac{1}{2}\binom{x}{t}^{T}\left(M_{1}+\omega M_{2}\right)\binom{x}{t}<0, \forall \omega \in U_{3}, \\
\frac{1}{2}\binom{x}{t}^{T}\left(M_{3}+\varsigma M_{4}\right)\binom{x}{t}<0, \forall \varsigma \in U_{4},
\end{array}\right.
$$

has no solution because it is equivalent to another one like $\left(\mathrm{S}_{2}\right)$. Again from the convexity of $\Xi_{\bar{x}}$ and Theorem 2, there exist $\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{R}_{+}^{2} \backslash\{(0,0)\}$ and $(\bar{\omega}, \bar{\varsigma}) \in$ $U_{3} \times U_{4}$ such that
$\lambda_{1}\left[\frac{1}{2}\binom{x}{t}^{T}\left(M_{1}+\bar{\omega} M_{2}\right)\binom{x}{t}\right]+\lambda_{2}\left[\frac{1}{2}\binom{x}{t}^{T}\left(M_{3}+\bar{\varsigma} M_{4}\right)\binom{x}{t}\right] \geq 0, \forall(x, t) \in \mathbb{R}^{n} \times \mathbb{R}$.
Letting $t=1$, one has :

$$
\lambda_{1}\left(\frac{1}{2} x^{T} A_{\bar{u}} x+a_{\bar{\omega}}^{T} x+\alpha\right)+\lambda_{2}\left(\frac{1}{2} x^{T} B_{\bar{v}} x+b_{\bar{\varsigma}}^{T} x+\beta\right) \geq 0, \forall x \in \mathbb{R}^{n} .
$$

Finally, in all cases, there exist $(\bar{u}, \bar{v}, \bar{\omega}, \bar{\varsigma}) \in \mathcal{U}$ and $\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{R}_{+}^{2} \backslash\{(0,0)\}$ such that (13) holds.
From Slater condition, one obtains that : $\lambda_{1}>0$ and

$$
\begin{equation*}
\left(\frac{1}{2} x^{T} A_{\bar{u}} x+a \frac{T}{\bar{\omega}} x+\alpha\right)+\lambda\left(\frac{1}{2} x^{T} B_{\bar{v}} x+b_{\bar{\zeta}}^{T} x+\beta\right) \geq 0, \forall x \in \mathbb{R}^{n}, \tag{14}
\end{equation*}
$$

with : $\lambda=\frac{\lambda_{2}}{\lambda_{1}}$. From this Inequality (14), we get :

$$
\max _{(u, \omega) \in U_{1} \times U_{3}}\left(\frac{1}{2} x^{T} A_{u} x+a_{\omega}^{T} x\right)+\alpha+\lambda\left(\frac{1}{2} x^{T} B_{\bar{v}} x+b_{\varsigma}^{T} x+\beta\right) \geq 0, \forall x \in \mathbb{R}^{n}
$$

For $x=\bar{x}$, since \bar{x} is a feasible solution of (NH-QCQP), we obtain :

$$
\begin{equation*}
\lambda\left(\frac{1}{2} \bar{x}^{T} B_{\bar{v}} \bar{x}+b_{\bar{\zeta}}^{T} \bar{x}+\beta\right)=0 \tag{15}
\end{equation*}
$$

Let us consider :

$$
\mathbb{R}^{n} \longrightarrow \mathbb{R}, x \longmapsto \phi(x):=\frac{1}{2} x^{T} A_{\bar{u}} x+a_{\bar{\omega}}^{T} x+\alpha+\lambda\left(\frac{1}{2} x^{T} B_{\bar{v}} x+b_{\varsigma}^{T} x+\beta\right) .
$$

By using the definition of α, (14) and (15), we get : $\phi(x) \geq 0$ and $\phi(\bar{x}) \leq 0$. It follows that $\phi(x) \geq \phi(\bar{x})$. \bar{x} minimize ϕ on \mathbb{R}^{n}. Then, $\nabla \phi(\bar{x})=0$ and $\nabla^{2} \phi(\bar{x}) \succeq 0$.
Therefore,

$$
\left\{\begin{array}{l}
\left(A_{\bar{u}}+\lambda B_{\bar{v}}\right) \bar{x}+a_{\bar{\omega}}+\lambda b_{\bar{\varsigma}}=0 \\
A_{\bar{u}}+\lambda B_{\bar{v}} \succeq 0
\end{array}\right.
$$

$[(i i) \Longrightarrow(i)]$. Suppose that there exist $\lambda \geq 0$ and $(\bar{u}, \bar{v}, \bar{\omega}, \bar{\varsigma}) \in \mathcal{U}$ such that :

$$
\begin{cases}\left(A_{\bar{u}}+\lambda B_{\bar{v}}\right) \bar{x}+a_{\bar{\omega}}+\lambda b_{\bar{\varsigma}}=0, & \text { (First-order Condition) } \\ \lambda\left(\frac{1}{2} \bar{x}^{T} B_{\bar{v}} \bar{x}+\lambda b_{\bar{\varsigma}} \bar{x}+\beta\right)=0, & \text { (Complementary Slackness) } \\ A_{\bar{u}}+\lambda B_{\bar{v}} \succeq 0 . & \text { (Second-order Condition) }\end{cases}
$$

Let us consider the map, $\psi: \mathbb{R}^{n} \longrightarrow \mathbb{R}, x \longmapsto \psi(x)=\frac{1}{2} x^{T} A_{\bar{u}} x+a \frac{T}{\omega} x+\lambda\left(\frac{1}{2} x^{T} B_{\bar{v}} x+b_{\bar{\zeta}}^{T} x+\beta\right)$
and assume that x is a robust feasible solution of (NH-QCQP).
First-order condition and second-order condition gives us that $\nabla \psi(\bar{x})=0$ and ψ
is convex. Then \bar{x} is a global minimizer of ψ and one has :

$$
\begin{aligned}
\psi(x) \geq \psi(\bar{x}) & \Longrightarrow \frac{1}{2} x^{T} A_{\bar{u}} x+a_{\bar{\omega}}^{T} x \geq \frac{1}{2} \bar{x}^{T} A_{\bar{u}} \bar{x}+a_{\bar{\omega}}^{T} \bar{x}+\lambda\left(\frac{1}{2} \bar{x}^{T} B_{\bar{v}} \bar{x}+b_{\bar{\varsigma}}^{T} \bar{x}+\beta\right)-\lambda\left(\frac{1}{2} x^{T} B_{\bar{v}} x+b_{\varsigma}^{T} x+\beta\right) \\
& \Longrightarrow \frac{1}{2} x^{T} A_{\bar{u}} x+a_{\bar{\omega}}^{T} x \geq \frac{1}{2} \bar{x}^{T} A_{\bar{u}} \bar{x}+a_{\bar{\omega}}^{T} \bar{x}-\lambda\left(\frac{1}{2} x^{T} B_{\bar{v}} x+b_{\bar{\varsigma}}^{T} x+\beta\right) \\
& \Longrightarrow \frac{1}{2} x^{T} A_{\bar{u}} x+a_{\bar{\omega}}^{T} x \geq \frac{1}{2} \bar{x}^{T} A_{\bar{u}} \bar{x}+a_{\bar{\omega}} \bar{x} .
\end{aligned}
$$

Therefore, \bar{x} is robust optimal solution of (NH-QCQP).

5 Optimistic Dual and Strong Robust Duality of QCQOP

In this section, we characterize the solutions of dual optimistic. We also show that the robust strong duality property holds.
Let us consider

$$
\mathbb{R}^{n} \times \mathcal{U} \times \mathbb{R}^{+} \longrightarrow \mathbb{R},(x, \xi, \lambda) \longmapsto \mathcal{L}(x, \xi, \lambda):=q_{0}(x, \xi)+\lambda q_{1}(x, \xi)
$$

where $\xi=(u, v, \omega, \varsigma), q_{0}(x, \xi):=\frac{1}{2} x^{T} A_{u} x+a_{\omega}^{T} x$ and $q_{1}(x, \xi):=\frac{1}{2} x^{T} B_{v} x+b_{\varsigma}^{T} x+\beta$. The problem

$$
\begin{array}{ll}
\max & \inf _{x \in \mathbb{R}^{n}} \mathcal{L}(x, \xi, \lambda) \\
\text { s.t. } & (\xi, \lambda) \in \mathcal{U} \times \mathbb{R}^{+}
\end{array}
$$

(OD-QCQP)
is called the optimistic dual of (NH-QCQP).

Theorem 5 Assume that assumptions of Theorem 4 hold. If \bar{x} is a robust solution of (NH-QCQP), then there exist $(\bar{\xi}, \bar{\lambda}) \in \mathcal{U} \times \mathbb{R}^{+}$such that $(\bar{\xi}, \bar{\lambda})$ is an optimal solution of (OD-QCQP).

Proof From Theorem 4, there exists $(\bar{u}, \bar{v}, \bar{\omega}, \bar{\varsigma}, \bar{\lambda}) \in \mathcal{U} \times \mathbb{R}^{+}$such that

$$
\begin{cases}\left(A_{\bar{u}}+\bar{\lambda} B_{\bar{v}}\right) \bar{x}+a_{\bar{\omega}}+\bar{\lambda} b_{\bar{\varsigma}}=0, & \text { (First-order Condition) } \\ \bar{\lambda}\left(\frac{1}{2} \bar{x}^{T} B_{\bar{v}} \bar{x}+b_{\bar{\varsigma}} \bar{x}+\beta\right)=0, & \text { (Complementary Slackness) } \\ A_{\bar{u}}+\bar{\lambda} B_{\bar{v}} \succeq 0 . & \text { (Second-order Condition) }\end{cases}
$$

We set $\bar{\xi}=(\bar{u}, \bar{v}, \bar{\omega}, \bar{\varsigma})$. For all feasible solution $(u, v, \omega, \varsigma) \in \mathcal{U} \times \mathbb{R}^{+}$of (OD-QCQP), one has:

$$
\begin{aligned}
\mathcal{L}(\bar{x}, \bar{\xi}, \bar{\lambda}) & =q_{0}(\bar{x}, \bar{\xi})+\bar{\lambda} q_{1}(\bar{x}, \bar{\xi}) \\
& =q_{0}(\bar{x}, \bar{\xi}) \\
& =\max _{\xi \in \mathcal{U}} q_{0}(\bar{x}, \xi) \\
& \geq q_{0}(\bar{x}, \xi), \forall \xi \in \mathcal{U} \\
& \geq q_{0}(\bar{x}, \xi)+\lambda q_{1}(\bar{x}, \xi), \forall(\xi, \lambda) \in \mathcal{U} \times \mathbb{R}^{+} \\
& =\mathcal{L}(\bar{x}, \xi, \lambda), \forall(\xi, \lambda) \in \mathcal{U} \times \mathbb{R}^{+} .
\end{aligned}
$$

Hence, $(\bar{\xi}, \bar{\lambda})$ is an optimal solution of (OD-QCQP).
Corollary 2 Suppose that assumptions of Theorem 5 hold. If (RNH-QCQP) has an optimal solution, then the strong duality property is fulfilled.

Proof Let \bar{x} be an optimal solution of (RNH-QCQP). So,

$$
\begin{aligned}
\min (\mathrm{RNH}-\mathrm{QCQP}) & =\frac{1}{2} \max _{u \in U_{1}} \bar{x}^{T} A_{u} \bar{x}+\max _{\omega \in U_{3}} a_{\omega}^{T} \bar{x} \\
& =\frac{1}{2} \bar{x}^{T} A_{\bar{u}} \bar{x}+a_{\bar{\omega}}^{T} \bar{x} .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
\max (\mathrm{OD}-\mathrm{QCQP}) & =\max _{(\xi, \lambda) \in \mathcal{U} \times \mathbb{R}^{+}} \inf _{x \in \mathbb{R}^{n}} \mathcal{L}(x, \xi, \lambda) \\
& =\mathcal{L}(\bar{x}, \bar{\xi}, \bar{\lambda}) \\
& =q_{0}(\bar{x}, \bar{\xi})+\bar{\lambda} q_{1}(\bar{x}, \bar{\xi}) \\
& =\frac{1}{2} \bar{x}^{T} A_{\bar{u}} \bar{x}+a_{\bar{\omega}}^{T} \bar{x} .
\end{aligned}
$$

Thus, $\min ($ RNH-QCQP $)=\max ($ OD-QCQP $)$.

6 Example

We deal with the following 2-dimensions QCQOP

$$
\begin{align*}
\min _{x \in \mathbb{R}^{n}} & \frac{1}{2} x^{T} A_{u} x \tag{P}\\
\text { s.t. } & \frac{1}{2} x^{T} B_{v} x+\beta \leq 0
\end{align*}
$$

Where :

$$
A_{0}=\left(\begin{array}{cc}
\frac{1}{2} & -\frac{3}{2} \\
-\frac{3}{2} & \frac{1}{2}
\end{array}\right), A_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), B_{0}=\left(\begin{array}{cc}
1 & \frac{1}{2} \\
\frac{1}{2} & 1
\end{array}\right), B_{1}=\left(\begin{array}{cc}
-5 & -10 \\
-10 & -5
\end{array}\right),
$$

$\beta=-1,|u| \leq 10^{-1}$ and $|v| \leq 5.10^{-2}$.
With the interval interpolation approach regarding to :

- matrices A_{0} and $A_{1}, A_{u}=A_{0}+u A_{1}=\left(\begin{array}{cc}\frac{2 u+1}{2} & -\frac{3}{2} \\ -\frac{3}{2} & \frac{2 u+1}{2}\end{array}\right)$,
- matrices B_{0} and $B_{1}, B_{v}=B_{0}+v B_{1}=\left(\begin{array}{ll}1-5 v & \frac{1-20 v}{2} \\ \frac{1-20 v}{2} & 1-5 v\end{array}\right)$.

Let $x_{0}=\left(\frac{1}{2}, \frac{1}{2}\right)^{T}$. Then we verify that the strictly feasibility condition holds with this point x_{0}.
The matrices $A_{u_{1}}, A_{u_{2}}, B_{v_{1}}$ and $B_{v_{2}}$ commute. From Proposition 1, the set

$$
\Xi=\left\{\left(x^{T} A_{u_{1}} x, x^{T} A_{u_{2}} x, x^{T} B_{v_{1}} x, x^{T} B_{v_{2}} x\right) \mid x \in \mathbb{R}^{2}\right\}
$$

is convex. Where :

$$
A_{u_{1}}=\left(\begin{array}{cc}
\frac{2}{5} & -\frac{3}{2} \\
-\frac{3}{2} & \frac{2}{5}
\end{array}\right), A_{u_{2}}=\left(\begin{array}{cc}
\frac{3}{5} & -\frac{3}{2} \\
-\frac{3}{2} & \frac{3}{5}
\end{array}\right), B_{v_{1}}=\left(\begin{array}{cc}
\frac{5}{4} & 1 \\
1 & \frac{5}{4}
\end{array}\right) \text { and } B_{v_{2}}=\left(\begin{array}{cc}
\frac{3}{4} & 0 \\
0 & \frac{3}{4}
\end{array}\right)
$$

The problem (\mathcal{P}) can be rewritten under the analytically form still denoted (\mathcal{P}) and given by :

$$
\begin{align*}
\min _{x \in \mathbb{R}^{n}} & \frac{1}{4}(2 u+1) x_{1}^{2}-\frac{3}{2} x_{1} x_{2}+\frac{1}{4}(2 u+1) x_{2}^{2}, \tag{P}\\
\text { s.t. } & \frac{1}{2}(1-5 v) x_{1}^{2}+\frac{1}{2}(1-20 v) x_{1} x_{2}+\frac{1}{2}(1-5 v) x_{2}^{2} \leq 0 .
\end{align*}
$$

From Theorem 3, we deduce that the robust solution of (\mathcal{P}) satisfies

$$
\begin{cases}{[2 u+1+2 \lambda(1-5 v)] x_{1}+[-3+\lambda(1-20 v)] x_{2}} & =0, \\ {[-3+\lambda(1-20 v)] x_{1}+[2 u+1+2 \lambda(1-5 v)] x_{2}} & =0, \\ \lambda\left[\frac{1}{2}(1-5 v) x_{1}^{2}+\frac{1}{2}(1-20 v) x_{1} x_{2}+\frac{1}{2}(1-5 v) x_{2}^{2}-1\right] & =0, \\ \binom{\frac{2 u+1}{2}+\lambda(1-5 v) \frac{1}{2}(-3+\lambda(1-20 v))}{\frac{1}{2}(-3+\lambda(1-20 v)) \frac{2 u+1}{2}+\lambda(1-5 v)} & \succeq 0 .\end{cases}
$$

Letting $\bar{u}=3.10^{-2}, \bar{v}=4.10^{-2}$ and $\bar{\lambda}=\frac{97}{90}$. The resolution of this system give us the following robust solutions :

$$
\bar{x}= \pm\left(\frac{\sqrt{10}}{3}, \frac{\sqrt{10}}{3}\right)^{T}
$$

7 Conclusion

We have dealt with a non-convex quadratic optimization problem subjected to data uncertainties both in constraint and in criterion. Such an optimization model is extremely difficult to solve thanks its two levels of optimization (in short "minimax"). We propose a new definition of convexity for a RO problem and an adequate S-procedure in order to characterize the global robust optimal solution of these quadratic uncertain problem in homogeneous case in one hand. We have also dealt with the non-homogeneous case in other hand. The example given in Section 6 allows to validate this paradigm in the reality. In this work, we bring some necessary and sufficient conditions in Theorem 5 and Corollary 2 to make strong duality property holds. A next step could be to address some numerical optimization algorithms for solving a large scale of these kind of QCQOPs.

References

1. M. Barro. Contribution à l'étude de la robustesse et à la dualité en optimisation, PhD Thesis, University of Avignon, France, 2016.
2. A. Ben-Tal, L. El Ghaoui and A. Nemirovski. Robust Optimization, Princeton Series in Applied Mathematics, Princeton University Press, 2009.
3. A. Ben-Tal and A. Nemirovski. Robust Convex Optimization, Mathematics of Operations Research, Vol. 23, No. 4, pp. 769-805, 1998.
4. A. Ben-Tal and A. Nemirovski. Robust solutions of uncertain linear programs, Operations Research Letters, Vol. 25, Issue 1, pp. 1-13, Elsevier B.V., 1999.
5. A. Ben-Tal and A. Nemirovski. Lectures on modern convex optimization : analysis, algorithms and engineering applications, MPS-SIAM Series on Optimization, Society for Industrial and Applied Mathematics, 2001, 2012.
6. D. Bertsimas and M. Sim. Robust discrete optimization and network flows, Mathematical Programming, Vol. 98, No. 1, pp. 49-71, Springer-Verlag, 2003.
7. D. Bertsimas and M. Sim. The Price of Robustness, Operations Research, Vol. 52, No. 1, pp. 35-53, INFORMS, 2004.
8. D. Bertsimas and M. Sim. Tractable Approximations to Robust Conic Optimization Problems, Mathematical Programming, Vol. 107, No. 1, pp. 5-36, Springer-Verlag, 2005.
9. J. R. Birge and F. Louveaux, Introduction to Stochastic Programming, Springer-Verlag, New York, NY, USA, 1997.
10. J. Bonnans, J. C Gilbert, C. Lemaréchal and C. Sagastizábal. Numerical Optimization : Theoretical and Practical Aspects, Second Edition, Springer-Verlag Berlin Heidelberg, New York, 2006.
11. S. Boyd and L. Vandenberghe. Convex Optimization, Cambridge University Press, 2004.
12. H. Brezis. Analyse fonctionnelle : Théorie et Applications, Collection Mathématiques pour la maîtrise, MASSON, Paris, 1983.
13. L. Brickman. On the field of values of a matrix, Proceedings of the American Mathematical Society, Vol. 12, pp. 61-66, 1961.
14. A. Conn, K. Scheinberg and L. Vicente. Introduction to Derivative-Free Optimization, MPS-SIAM Series on Optimization, 2009.
15. G. B. Dantzig. Linear Programming under Uncertainty, Management Science, Vol. 1, No. 3 \& 4, pp. 197-206, 1955.
16. L. L. Dines. On the mapping of quadratic forms, Bulletin of the American Mathematical Society, Vol. 47, No. 6, pp. 494-498, 1941.
17. L. El Ghaoui and H. Lebret. Robust Solutions to Least-Squares Problems with Uncertain Data, SIAM Journal on Matrix Analysis and Applications, Vol. 18, Issue 4, pp. 1035-1064, Society for Industrial and Applied Mathematics, 1997.
18. L. El Ghaoui, F. Oustry, and H. Lebret. Robust Solutions to Uncertain Semidefinite Programs, SIAM Journal on Optimization, Vol. 9, Issue 1, pp. 33-52, Society for Industrial and Applied Mathematics, 1998.
19. B.-F. Eva, L. David and R. Andrew. Quadratic Forms and Their Applications, Proceedings of the Conference on Quadratic Forms and Their Applications, July 5-9, 1999, University College Dublin, Contemporary mathematics, Vol. 272, American Mathematical Society, 2000.
20. R. Fletcher. Practical Methods of Optimization, Second Edition, JohnWiley \& Sons, New York, 1987.
21. F. J. Gould. Proximate Linear Programming : An Experimental Study of a Modified Simplex Algorithm for Solving Linear Programs with Inexact Data, Statistics Mimeo Series No. 789, Department of Statistics, University of North Carolina, Chapel Hill, North Carolina, 1971.
22. S. K. Gupta and J. Rosenhead. Robustness in sequential investment decisions, Management Science, Vol. 15, No. 2, pp. 18-29, 1968.
23. J.-B. Hiriart Urruty. Global optimality conditions in maximizing a convex quadratic function under convex quadratic constraints, Journal of Global Optimization, Vol. 21, pp. 445455, 2001.
24. J.-B. Hiriart Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms I: Fundamentals, Grundlehren der mathematischen Wissenschaften, Vol. 305, Springer-Verlag, Berlin, New York, 1993.
25. J.-B. Hiriart Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms II : Advanced Theory and Bundle Methods, Grundlehren der mathematischen Wissenschaften, Vol. 306, Springer-Verlag, Berlin, New York, 1993.
26. B. Houska. Robust Optimization of Dynamic Systems, PhD Thesis, 2011.
27. G. Infange. Stochastic Programming, The State of the Art In Honor of George B. Dantzig, Springer New York Dordrecht Heidelberg London, 2011.
28. V. Jeyakumar, N. Q. Huy and G. Li. Necessary and sufficient conditions for S-lemma and nonconvex quadratic optimization, Optim. Eng. (2009) 10:491-503.
29. V. Jeyakumar, G. M. Lee and G. Y. Li. Alternative theorems for quadratic inequality systems and global quadratic optimization, SIAM J. Optim (2009) 2 : 983-1001.
30. V. Jeyakumar and G. Li. Strong duality in robust convex programming : complete characterizations, SIAM J. Optim. : 3384-3407, 2010.
31. V. Jeyakumar and G. Y. Li. Robust solutions of quadratic optimization over single quadratic constraint under interval uncertainty, J. Glob. Optim., 2012.
32. P. Kall and S. Wallace. Stochastic Programming, JohnWiley \& Sons, New York, Chichester, 1994.
33. P. P. Khargonekar, I. R. Petersen and K. Zhou. Robust stabilization of uncertain linear systems: quadratic stabilizability and H/sup infinity / control theory, IEEE Transactions on Automatic Control, Vol. 35, Issue 3, pp. 356-361, 1990.
34. P. Kouvelis, and G. Yu. Robust Discrete Optimization and Its Applications, Nonconvex Optimization and Its Applications, Vol. 14, Kluwer Academic Publishers \& Springer Science+Business Media Dordrecht - Verlag US, 1997.
35. G. Li, V. Jeyakumar and G. M. Lee. Robust conjugate duality for convex optimization under uncertainty with application to data classification, Nonlinear Analysis, 74: 2327-2341, 2011.
36. G. Li, Z. Wu and J. Quan. Global optimality for nonconvex minimization problems with quadratic constraints, Journal of inequalities and applications, (2015) 2015 : 257.
37. K. Marti. Stochastic Optimization Methods, Second Edition, Springer-Verlag Berlin Heidelberg, 2008.
38. J. Mulvey, R. Vanderbei and S. Zenios. Robust Optimization of Large-Scale Systems, Operations Research, Vol. 43, No. 2, pp. 264-281, INFORMS, 1995.
39. Y. Nesterov. Introductory Lectures on Convex Optimization : A Basic Course. Springer publishing Company, Incorporated Optimization, 1 edition, 2014.
40. J. Nocedal and S. Wright, Numerical Optimization, Second Edition, Springer Science+Business Media, LLC, 2006.
41. I. Olik and T. Terlaky. A survey of the S-lemma, SIAM Rev. 49, 371-418 (2007).
42. B. Polyak. Convexity of Quadratic Transformations and Its Use in Control and Optimization, Journal of Optimization Theory and Applications, Vol. 99, No. 3, pp.553-583, 1998.
43. R. T. Rockafellar and R. J.-B Wets. Variational Analysis, Grundlehren der mathematischen Wissenschaften, Vol. 317, Springer-Verlag Berlin Heidelberg London New York, 1998, Corrected 3rd printing 2009.
44. J. Rosenhead, M. C. J. Elton and S. K. Gupta, Robustness and Optimality as Criteria for Strategic Decisions, Operational Research Quarterly (1970-1977), Vol. 23, No. 4, pp. 413431, Dec., 1972.
45. S. Sanogo, Conception Optimale de Circuits Magnétiques dédiés à la Propulsion Spatiale Électrique par des Méthodes d'Optimisation Topologique, PhD thesis, LAPLACE, UPSToulouse, France, Février 2016.
46. A. Shapiro, D. Dentcheva and A. Ruszczyński. Lectures on Stochastic Programming: Modeling and Theory, Society for Industrial and Applied Mathematics and the Mathematical Programming Society, 2009.
47. A. Shapiro and A. Ruszczyński. Stochastic Programming, Operations Research and Management Science, ScienceDirect, Elsevier B.V., 2003.
48. M. Sim. Robust Optimization, PhD Thesis, Operation Research, Massachusetts Institute of Technology, 2004.
49. A. L. Soyster. Convex programming with set-inclusive constraints and applications to inexact linear programming, Operations Research, Vol. 21, No.5, pp. 1154-1157, 1973.
