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Abstract Robust Optimization (RO) arises in two stages of optimization, first
level for maximizing over the uncertain data and second level for minimizing over
the feasible set. It is the most suitable mathematical optimization procedure to
solve real-life problem models. In the present work, we characterize robust solutions
for both homogeneous and non-homogeneous quadratically constrained quadratic
optimization problem where constraint function and cost function are uncertain.
Moreover, we discuss about optimistic dual and strong robust duality of the con-
sidered uncertain quadratic optimization problem. Finally, we complete this work
with an example to illustrate our solution method.
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1 Introduction

The present paper is devoted to the characterization of the solutions of optimiza-
tion problems which are affected by data uncertainty. This means that all the data
of the problem are neither known nor available when its optimal solution has to
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Université Nazi BONI (UNB)
E-mail: yesmzongo@gmail.com

S. Traoré
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be computed. Such an optimization model assumes the usual one but it is clearly
different. In fact, it allows to handle model error, to take into account imperfec-
tions, additive noises or external uncertainties. For examples: (a) An entrepreneur
must estimate the time required to finish a job. Uncertainties due to the labor
market, the supply of materials, bad weather conditions, etc. constitute unknown
parameters to consider; (b) In robot design, even if the movement model is care-
fully planned to provide a stable locomotion, a humanoid robot is very likely
to fall due to the uncertainties induced by the irregularities in the ground; (c)
When designing a nuclear power plant, engineers have to consider the uncertain-
ties about earthquakes, the strength of beams, etc. Moreover, one can not always
ignore uncertainties during modeling process (i.e. always considering a determinist
model) because that could lead to security issues in real-world applications (e.g.,
designing nuclear power installations, autonomous car control system, aeronauti-
cal structures optimization). Then, it is certain that optimization model subject
to data uncertainty is most adequate methodology for solving real-word problems
: it is Robust Optimization (RO). In a nutshell, RO provides a solution which is
immunized against the effect of parameters uncertainty : that solution is called
robust solution [1,2,5]. Nevertheless, there is a similarity between RO and Stochas-
tic Optimization (SO). The latter optimization model can be considered like a
particular case of RO where the uncertainty set distribution is assumed to follow
a probability law. Note that stochastic optimization is wholly a very important
field of research and profound to be developed here. However for more details,
we recommend the works of Peter Kall and Stein W. Wallace [32], John R. Birge
and François Louveaux [9], Alexander Shapiro, Andrzej Ruszczyński et al. [46,47],
Kurt Marti [37], George B. Dantzig and Gerd Infanger [15,27].

Concerning the concept of robustness and uncertainty in mathematical program-
ming models, it was shyly started with the pioneer works of S. K. Gupta, J. Rosen-
head [22,44], G. B. Dantzig [15], F. J. Gould, and A. L. Soyster who first called it
“Inexact Linear Programming” [21,49]. Afterwards, the topic of RO was quickly
expanded through mainly the contributions of J. M. Mulvey et al. [38], P. Kouvelis,
and Gang Yu [34], L. El Ghaoui et al. [17,18], A. Ben-Tal and A. Nemirovski [2,3,
4,5], D. Bertsimas and M. Sim [6,7,8,48], V. Jeyakumar et al. [30,31,35]. In these
last years, RO has been a focus within many research communities starting with
the field of control, convex optimization, mathematical programming, or even eco-
nomics, and many fields of engineering science [2,26,33]. Basically, whenever an
optimization problem is formulated, the question arises whether really all parame-
ters and inputs are exactly known and what changes if they are not. In this sense,
it is not surprising that many researchers were and are attracted by the challenges
of robust optimization.

Finally in this work, our purpose is to analyze Quadratically Constrained Quadratic

Optimization Problems (QCQOPs) subjected to uncertain data both in the con-
straint function and cost function. And we next investigate the characterization
of their solutions. In fact, QCQOPs are very important in their own right but not
enough studies with uncertainties. This choice is also motivated by the fact that
QCPOPs are in some ways the general forms of almost all mathematical program-
ming models. In addition, the literature about analysis of quadratic forms [13,
16,19,42], quadratic programming and QCQOP solution methods (basically in
determinist form) is well-supplied with well-known and sophisticated techniques.
For instance, they occur as subproblems in methods for numerical/algorithmic
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optimization problems such as Newton-Lagrange methods (Sequential Quadratic
Programming (SQP), Interior-Point Method (IMP), BFGS (Broyden, Fletcher,
Goldfarb, and Shanno) method) in one hand. In other hand, any smooth opti-
mization problem can be approximated with a quadratic model (thought of doing
second order Taylor series approximation). Even if the considered problem is not
enough smooth, it could be approximated quadratically. For this technique, we
refer to the topic of Derivative Free Optimization (DFO) methods, see for ex-
ample the introductory book of Andrew R. Conn, Katya Scheinberg and Luis N.
Vicente [14]. We also recall that under some basic assumptions (at least symmetry
and semi-define positivity) on the data of a QCQOP, we can get convex or Second
àOrder Conic Optimization Problem (SOCP), see Section 2. It is well-known that
in the field of optimization an ideal and wanted framework is the convexity one [5,
10,11,20,23,24,25,28,29,31,36,39,40,43,45] since that can make easiest to solve
exactly optimization problems (i.e. the characterization of their global solution).
With the uncertainties, this advantage is in the most of time difficult to have in
RO without well-thought-out assumptions.

The rest of the paper is organized as follows. Section 2 recall some preliminar-
ies and describes the Quadratically Constrained Quadratic Optimization Problem
Model which will be study throughout this paper. In Section 3, we give some
fundamental results basically joint-range convexity conditions and S-Lemma. The
Section 4 is dedicated to the characterization of robust optimal solutions for an
uncertain quadratic optimization problem with respect to homogeneous case and
non-homogeneous one. In Section 5, we compare optimistic dual and robust strong
dual of the uncertain optimization problem. We deal with an example in the ho-
mogeneous case in the Section 6 for an illustration. Section 7 concludes our work.

2 Quadratically Constrained Quadratic Optimization Problem Model

In this section, we start by recalling some basic definitions and fixing some no-
tations. In what follow, R denotes the set of real numbers, Rn denotes the linear
space of n-dimension vector, and Sn(R) denotes the space of n×n symmetric ma-
trices with real entries. For all, A,B ∈ Sn(R), A � 0 (respectively A � 0) means
that the matrix A is positive semi-definite (respectively A is positive definite). By
analogy, A � B (respectively A � B) is equivalent to A − B � 0 (respectively
A � B). For any twice differentiable function q : Rn =⇒ R, ∇q denotes the gradi-
ent (first derivative) of q and ∇2q denotes the Hessian matrix (second derivative)
of q. Given a set E, intE denotes the interior of E. If E1 and E2 are subsets of a
set E, then the set E1 +E2 = {e = e1 + e2 ∈ E | (e1, e2) ∈ E1 ×E2}. The segment
[ν1, ν2] is defined by [ν1, ν2] = {ν | ν := tν2 + (1− t)ν1, t ∈ [0, 1]}. A set C is convex
if the line segment between any two points in C lies in C i.e., if for any c1, c2 ∈ C
and any λ ∈ [0, 1], we have λc1 + (1− λ)c2 ∈ C. A function f : Rn =⇒ R is convex
if and only if its epigraph is a convex set.

A general formulation of a quadratic optimization problem under uncertainty
can be formulated as follows :
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min
x∈Rn

1

2
xTAux+ aTωx,

s.t.
1

2
xTBvx+ bTς x+ β ≤ 0,

(QCQP)

where : β ∈ R, aω, bς ∈ Rn, Au, Bv ∈ Sn(R), and (u, v, ω, ς) belongs to the uncer-
tainty set U .

In addition, we use an affine interpolation to define uncertainty data. Then,
we set : Au = A0 + uA1; Bv = B0 + vB1; aω = a0 + ωa1; bς = b0 + ςb1, with :
A0, A1, B0, B1 ∈ Sn(R) and a0, a1, b0, b1 ∈ Rn. U is an euclidian product of sets
and given by U = [u1, u2]× [v1, v2]× [ω1, ω2]× [ς1, ς2]. We also put : U1 = [u1, u2],
U2 = [v1, v2], U3 = [ω1, ω2], and U4 = [ς1, ς2].

3 Convex Analysis of Quadratic forms and S-procedures

The convex analysis and the study of quadratic forms are the essential ingredients
to concoct a good recipe in the field of optimization. Indeed, in a convex world
or in the presence of quadratic forms, the characterization of the solutions for an
optimization problem can be carried out without major difficulty. This is why, R. T.
Rockafellar stated that the great watershed in optimization is not between linearity
and nonlinearity, but convexity and non-convexity (Rockafellar 1993, [11]). In this
work, we use mainly joint-range convexity results for quadratic forms which were
initially proposed by L. L. Dines [16] and improved later by other authors such that
B.T. Polyak [42]. In addition, these convexity properties of quadratic are helpful
to prove some results like Lemma 1, Theorem 2 and Corolary 1 : we talk about
S-procedure for generality. The S-Lemma is a useful tool especially in Control
Theory and RO.

Theorem 1 (L. L. Dines (1941) [16])

Given A,B ∈ Sn(R). Then the set
{(
xTAx, xTBx

)
|x ∈ Rn

}
is convex.

The generalization of convexity result for more than two homogeneous quadratic
forms was established by B.T. Polyak [42] and given as follows :

Proposition 1 ( [42])

Let A1, ..., Am ∈ Sn(R). If the matrices A1, ..., Am commute, then the set{(
xTA1x, ..., x

TAmx
)
| x ∈ Rn

}
is closed convex cone.

The following lemma is the homogeneous version of the famous S-lemma.

Lemma 1 (S-lemma [29,41])

Let A1, A2 ∈ Sn(R). Assume that there exists x0 ∈ Rn such that xT0 A1x0 < 0.

Then, the following statements are equivalent :

(i) ∀x ∈ Rn, xTA2x ≤ 0 =⇒ xTA1x ≥ 0.

(ii) ∃λ ≥ 0 | A1 + λA2 � 0.
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Theorem 2 Let A0, A1, B0, B1 ∈ Sn(R); u1, u2, v1, v2 ∈ R such that u1 ≤ u2 and

v1 ≤ v2.

Let U1 = [u1, u2], U2 = [v1, v2] and assume that :

Ω =
{(
xTAu1x, x

TAu2x, x
TBv1x, x

TBv2x
)
| x ∈ Rn

}
is convex. (1)

Then for some α, β ∈ R, exactly one of the following two statements holds :

(i) ∃x ∈ Rn | 1

2
xTAux < α,

1

2
xTBvx+ β < 0, ∀(u, v) ∈ U1 × U2.

(ii) ∃(λ1, λ2) ∈ R2
+ \ {(0, 0)} ,∃(ū, v̄) ∈ U1 × U2, such that :

λ1

(1

2
xTAūx− α

)
+ λ2

(1

2
xTBv̄x+ β

)
≥ 0, ∀x ∈ Rn.

Proof [(ii) =⇒ ¬(i)]. Assume that (ii) holds. If (i) is satisfied, then

∃x ∈ Rn | 1

2
xTAux < α and

1

2
xTBvx+ β < 0,∀(u, v) ∈ U1 × U2.

This implies that for all (λ1, λ2) ∈ R2
+ \ {(0, 0)}, we have :

∃x ∈ Rn | λ1

(1

2
xTAux− α

)
+ λ2

(1

2
xTBvx+ β

)
< 0, ∀(u, v) ∈ U1 × U2.

Which contradicts (ii).
Let us show that [¬(i) =⇒ (ii)].
Firstly, let us show that the set

Γ =

{(
max
u∈U1

xTAux,max
u∈U2

xTBvx

)
| x ∈ Rn

}
+ intR2

+ (2)

is convex.

Let (q1, r1), (q2, r2) ∈ Γ and δ ∈ [0, 1]. So, there exist x1, x2 ∈ Rn such that :

max
u∈U1

xT1 Aux1 < q1,

max
v∈U2

xT1 Bvx1 < r1,

max
u∈U1

xT2 Aux2 < q2,

max
v∈U2

xT2 Bvx2 < r2.

(3)

For all x ∈ Rn, u 7−→ xTAux is a affine mapping with respect to (w.r.t.) u. Con-
sequently, it attains its maximum value on the compact set U1 more precisely, we
have :

max
u∈U1

xTAux = max
{
xTAu1x, x

TAu2x
}
.

Reasoning in the same manner that previously, one has :

max
v∈U2

xTBvx = max
{
xTBv1x, x

TBv2x
}
.
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By reporting these maximum value equalities in inequality system (3), one finds :

xTAu1x < q1,

xTAu2x < q1,

xTBv1x < r1,

xTBv2x < r1,

yTAu1y < q2,

yTAu2y < q2,

yTBv1y < r2,

yTBv2y < r2.

(4)

It follows from the system (4) above that :
(q1, q1, r1, r1) ∈

{(
xTAu1x, x

TAu2x, x
TBv1x, x

TBv2x
)}

+ intR4
+,

(q2, q2, r2, r2) ∈
{(
yTAu1y, y

TAu2y, y
TBv1y, y

TBv2y
)}

+ intR4
+,

which is equivalent to {
(q1, q1, r1, r1) ∈ Ω + intR4

+,

(q2, q2, r2, r2) ∈ Ω + intR4
+.

Since Ω is convex, the set Ω + intR4
+ is also convex. Then(

δq1 + (1− δ)q2, δq1 + (1− δ)q2, δr1 + (1− δ)r2, δr1 + (1− δ)r2
)
∈ Ω + intR4

+.

Thus, there exists z ∈ Rn such that :
zTAu1z < δq1 + (1− δ)q2,
zTAu2z < δq1 + (1− δ)q2,
zTBv1z < δr1 + (1− δ)r2,
zTBv2z < δr1 + (1− δ)r2.

Hence,  max
u∈U1

zTAuz < δq1 + (1− δ)q2,

max
v∈U2

zTBvz < δr1 + (1− δ)r2.

So, δ(q1, r1) + (1− δ)(q2, r2) ∈ Γ and consequently Γ is convex.
Secondly since (i) fails, we can separate Γ and the set {(2α,−2β)}. Then, by
hyperplane separation theorem (also known as the geometric form of Hahn-Banach
Theorem, see H. Brezis (1983) [12]), there exists (λ1, λ2) ∈ R2 \ {(0, 0)} such that

λ1

(
max
u∈U1

1

2
xTAux+ η

)
+λ2

(
max
v∈U2

1

2
xTBvx+ ε

)
> αλ1−βλ2, ∀x ∈ Rn, ∀η, ε ∈ intR+.

(5)
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– Suppose that λ1 < 0.
When (η, ε) tends to (+∞, 0) in Inequality (5), we get at the limit :
−∞ ≥ αλ1 − βλ2. Which is a contradiction. Thus, λ1 ≥ 0.

– In the same way, we show that λ2 ≥ 0.
– And afterwards, one has (λ1, λ2) ∈ R2

+ \ {(0, 0)}.

We have just shown that there exists (λ1, λ2) ∈ R2
+ \ {(0, 0)} such that :

λ1 max

{
1

2
xTAu1x,

1

2
xTAu2x

}
+ λ2 max

{
1

2
xTBv1x,

1

2
xTBv2x

}
≥ αλ1 − βλ2, ∀x ∈ Rn.

This implies that the following inequalities system (6) below has no solution,

1

2
xT
(
λ1Au1 + λ2Bv1

)
x < αλ1 − βλ2,

1

2
xT
(
λ1Au1 + λ2Bv2

)
x < αλ1 − βλ2,

1

2
xT
(
λ1Au2 + λ2Bv1

)
x < αλ1 − βλ2,

1

2
xT
(
λ1Au2 + λ2Bv

)
x < αλ1 − βλ2.

(6)

Let

Λ =
{(
xT (λ1Au1 + λ2Bv1)x, xT (λ1Au1 + λ2Bv2)x, xT (λ1Au2 + λ2Bv1)x, xT (λ1Au2 + λ2Bv2)x

)
| x ∈ Rn

}
.

Let us consider the following mapping :

Φ : R4 −→ R4, (t1, t2, t3, t4) 7−→
(
λ1t1 + λ2t3, λ1t1 + λ2t4, λ1t2 + λ2t3, λ1t2 + λ2t4

)
.

Φ is a linear transformation and Ω is a convex set (assumption), it follows that
Λ = Φ(Ω) is a convex set, see Equation (1) in Theorem 2.
By remarking that(

2(αλ1 − βλ2), 2(αλ1 − βλ2), 2(αλ1 − βλ2), 2(αλ1 − βλ2)
)
/∈ Λ+ int R4

+,

the hyperplane separation theorem shows that there are (γi)1≤i≤4 ∈ R4
+ \ {0R4}

such that for all x ∈ Rn, one has :

γ1

[
1

2
xT
(
λ1Au1 + λ2Bv1

)
x−

(
αλ1 − βλ2

)]
+γ2

[
1

2
xT
(
λ1Au1 + λ2Bv2

)
x− (αλ1 − βλ2)

]
+γ3

[
1

2
xT
(
λ1Au2 + λ2Bv1

)
x− (αλ1 − βλ2)

]
+γ4

[
1

2
xT
(
λ1Au2 + λ2Bv2

)
x− (αλ1 − βλ2)

]
≥ 0. (7)
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Put γ = γ1 + γ2 + γ3 + γ4. Then, we have the following equivalences :

(7) ⇔ λ1

[
1

2
xT
(
γ1Au1 + γ2Au1 + γ3Au2 + γ4Au2

)
x− αγ

]
+ λ2

[
1

2
xT
(
γ1Bv1 + γ2Bv2 + γ3Bv1 + γ4Bv2

)
x+ βγ

]
≥ 0,

⇔ λ1

[
1

2
xT
(

(γ1 + γ2)Au1 + (γ3 + γ4)Au2

)
x− αγ

]
+ λ2

[
1

2
xT
(

(γ1 + γ3)Bv1 + (γ2 + γ4)Bv2

)
x+ βγ

]
≥ 0,

⇔ λ1

[
1

2
xT
(

(γ1 + γ2)(A1 + u1A2) + (γ − γ1 − γ2)(A1 + u2A2)
)
x− αγ

]
+ λ2

[
1

2
xT
(

(γ1 + γ3)(B1 + v1B2) + (γ − γ1 − γ3)(B1 + v2B2)
)
x+ βγ

]
≥ 0,

⇔ λ1

[
1

2
xT
(

(γ1 + γ2)u1A2 + γ(A1 + u2A2)− (γ1 + γ2)u2A2

)
x− αγ

]
+ λ2

[
1

2
xT
(

(γ1 + γ3)v1B2 + γ(B1 + v2B2)− (γ1 + γ3)v2B2

)
x+ βγ

]
≥ 0,

⇔ λ1

[
1

2
xT
(
A1 + u2A2 +

(γ1 + γ2)(u1 − u2)A2

γ

)
x− α

]
+ λ2

[
1

2
xT
(
B1 + v2B2 +

(γ1 + γ3)(v1 − v2)B2

γ

)
x+ β

]
≥ 0,

⇔ λ1

[
1

2
xT
(
A1 +

γu2 + (γ1 + γ2)(u1 − u2)

γ
A2

)
x− α

]
+ λ2

[
1

2
xT
(
B1 +

γv2 + (γ1 + γ3)(v1 − v2)

γ
B2

)
x+ β

]
≥ 0,

⇔ λ1

[
1

2
xT
(
A1 +

(γ1 + γ2)u1 + (γ3 + γ4)u2

γ
A2

)
x− α

]
+ λ2

[
1

2
xT
(
B1 +

(γ1 + γ3)v1 + (γ2 + γ4)v2

γ
B2

)
x+ β

]
≥ 0.

Consequently, we obtain the existence of (ū, v̄) ∈ U ×V and (λ1, λ2) ∈ R2
+ \{(0, 0)}

such that :

λ1

(
1

2
xTAūx− α

)
+ λ2

(
1

2
xTBv̄x+ β

)
≥ 0,∀x ∈ Rn, (8)

where : ū =
(γ1 + γ2)

γ
u1 +

(γ3 + γ4)

γ
u2 and v̄ =

(γ1 + γ3)

γ
v1 +

(γ2 + γ4)

γ
v2. �

Remark 1 Some particular cases of Theorem 2 are given as, if :

– U1 or U2 is a singleton, then Theorem 2 is reduced to Theorem 3.1 of [31].
– Both U1 and U2 are singletons, then Theorem 2 consists merely of Dines The-

orem (see Theorem 1 or [16]).

Note that the following result is an uncertain version of the classical S-lemma
given in Lemma 1.
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Corollary 1 (Robust S-lemma)

Let A0, A1, B0, B1 ∈ Sn(R); u1, u2, v1, v2 ∈ R such that u1 ≤ u2 and v1 ≤ v2.

Assume that :

1. Ω =
{(
xTAu1x, x

TAu2x, x
TBv1x, x

TBv2x
)
| x ∈ Rn

}
is convex.

2. there exists x0 ∈ Rn such that xT0 Bvx0 < 0 for all v ∈ U2.

Then, the following statements are equivalent :

(i) xTBvx ≤ 0, ∀v ∈ U2 =⇒ xTAux ≥ 0,∀u ∈ U1.

(ii) ∃λ ≥ 0, ∃(ū, v̄) ∈ U1 × U2 | Aū + λBv̄ � 0.

Proof [(ii) =⇒ (i)]. This implication is always satisfied.
[(i) =⇒ (ii)]. Suppose that (i) holds. Hence, the inequalities system{

xTAux < 0, ∀u ∈ U1,

xTBvx < 0, ∀v ∈ U2,

has no solution. From Theorem 2, there exist (λ1, λ2) ∈ R2
+\{(0, 0)}, (ū, v̄) ∈ U1×U2

such that :
λ1x

TAūx+ λ2x
TBv̄x ≥ 0, ∀x ∈ Rn.

If λ1 = 0 then λ2 > 0 and xTBv̄x ≥ 0 for all x ∈ Rn. Which is a contradiction

since xT0 Bvx0 < 0. Hence λ1 > 0. It follows that Aū + λBv̄ � 0, with : λ =
λ2

λ1
. �

4 Characterization of Robust Solution of QCQOP under Data Uncertainty

4.1 Homogeneous Case

In this subsection, we give a characterization of robust optimal solution for homo-
geneous quadratic programming problem under data uncertainty.
For this purpose, we consider the following problem

min
x∈Rn

1

2
xTAux,

s.t.
1

2
xTBvx+ β ≤ 0.

(H-QCQP)

The robust counterpart (worst case) of (H-QCQP) is given by

min
x∈Rn

max
u∈U1

1

2
xTAux,

s.t. max
v∈U2

1

2
xTBvx+ β ≤ 0.

(RH-QCQP)

Theorem 3 (Characterization of robust solution)

Let A0, A1, B0, B1 ∈ Sn(R); u1, u2, v1, v2 ∈ R such that u1 ≤ u2 and v1 ≤ v2.

Assume that :

(H1) There exists x0 ∈ Rn such that :
1

2
xT0 Bvx0 + β < 0 for all v ∈ U2;

(H2) The set Ω =
{(
xTAu1x, x

TAu2x, x
TBv1x, x

TBv2x
)
| x ∈ Rn

}
is convex.
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Then, the following statements are equivalent :

(i) x̄ is a robust optimal solution of (H-QCQP);

(ii) There exist λ ≥ 0 and (ū, v̄) ∈ U1 × U2 such that :
(Aū + λBv̄)x̄ = 0, (First-order Condition)

λ(1
2 x̄
TBv̄x̄+ β) = 0, (Complementary Slackness)

Aū + λBv̄ � 0, (Second-order Condition).

(9)

Proof [(i) =⇒ (ii)] Assume that x̄ is a robust optimal solution of (H-QCQP). Then,
for all x ∈ Rn :

1

2
xTBvx+ β ≤ 0, ∀v ∈ U2 =⇒ max

u∈U1

1

2
xTAux ≥ α :=

1

2
max
u∈U1

x̄TAux̄. (10)

This implies that 
max
u∈U1

1

2
xTAux < α,

1

2
xTBvx+ β < 0, ∀v ∈ U2,

has no solution. This means that the following inequalities system
1

2
xTAux < α,∀u ∈ U1,

1

2
xTBvx+ β < 0, ∀v ∈ U2,

has no solution. Thanks to hypothesis (H2) by applying Theorem 2, there exist
(λ1, λ2) ∈ R2

+ \ {(0, 0)} and (ū, v̄) ∈ U1 × U2 such that :

λ1

(
1

2
xTAūx− α

)
+ λ2

(
1

2
xTBv̄x+ β

)
≥ 0,∀x ∈ Rn.

If λ1 = 0, then: λ2

(
1

2
xTBv̄x+ β

)
≥ 0 for all x ∈ Rn.

For x = x0, with (H1), we see that λ2 ≤ 0 and λ2 = 0. which contradicts the fact
that (λ1, λ2) ∈ R2

+ \ {(0, 0)}. Hence, λ1 > 0. This means that(
1

2
xTAūx− α

)
+ λ

(
1

2
xTBv̄x+ β

)
≥ 0, ∀x ∈ Rn, (11)

where λ =
λ2

λ1
. Inequality (11) implies that

(
1

2
max
u∈U1

xTAux− α
)

+ λ

(
1

2
xTBv̄x+ β

)
≥ 0,∀x ∈ Rn.

It is clear that for x = x̄, one has :

λ

(
1

2
x̄TBv̄x̄+ β

)
= 0 (by using the defintion of α in Inequality (10)).
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Then, the complementary slackness conditions holds. Let us consider the function
ϕ defined by :

ϕ : Rn −→ R, x 7−→ ϕ(x) :=

(
1

2
xTAūx− α

)
+ λ

(
1

2
xTBv̄x+ β

)
.

The Inequality (11) implies that ϕ(x) ≥ 0 and ϕ(x) = 0. x̄ minimize ϕ on Rn and
ϕ is twice differentiable. Then, x̄ solve the Euler equation ∇ϕ(x) = 0 and inequal-
ities system ∇2ϕ(x) � 0. Thus, the first and second order necessary conditions of
optimality in the point x lead to :

{
(Aū + λBv̄)x̄ = 0, (First-Order Condition)

Aū + λBv̄ � 0. (Second-Order Condition)

[(ii) =⇒ (i)]. Now, suppose that there exist λ ≥ 0 and (ū, v̄) ∈ U1 × U2 such that


(Aū + λBv̄)x̄ = 0, (First-order Condition)

λ(1
2 x̄
TBv̄x̄+ β) = 0, (Complementary Slackness)

Aū + λBv̄ � 0. (Second-order Condition)

Let x be a robust feasible solution of (H-QCQP). By using complementary slack-
ness condition, one has :

1

2
xTBv̄x+ β ≤ λ

(1

2
x̄TBv̄x̄+ β

)
.

Let us consider Rn −→ R, x 7−→ ϕ(x) :=
1

2
xTAūx+ λ

(
1

2
xTBv̄x+ β

)
.

The first-order condition and second-order condition (necessary condition of opti-
mality) mean that ∇ϕ(x̄) = 0 and ϕ is convex function over Rn. Thus,

ϕ(x) ≥ ϕ(x̄) =⇒ 1

2
xTAūx ≥

1

2
x̄TAūx̄+ λ

(1

2
x̄TBv̄x̄+ β

)
− λ
(1

2
xTBv̄x+ β

)
=⇒ 1

2
xTAūx ≥

1

2
x̄TAūx̄− λ

(1

2
xTBv̄x+ β

)
=⇒ 1

2
xTAūx ≥

1

2
x̄TAūx̄.

Hence, x̄ is robust optimal solution of (H-QCQP).

Remark 2 Note that the robust optimal solution characterization of the uncertain
homogeneous quadratic optimization problem given in Theorem 3 was established
in [31] by assuming that U1 is a singleton and where the corresponding additive
scalar β is assumed to be negative (regarding to our problem formulation).
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4.2 Non-homogeneous Case

In this subsection, at first we will derive necessary and sufficient conditions of
robust optimal solution for quadratic programming under bounded interval un-
certainty. Secondly, we will give a characterization of optimal solutions of the
optimistic dual.
Let us consider the following uncertain quadratic problem

min
x∈Rn

1

2
xTAux+ aTωx,

s.t.
1

2
xTBvx+ bTς x+ β ≤ 0,

(NH-QCQP)

where Au, Bv ∈ Sn(R), aω, bς ∈ Rn, β ∈ R, (u, v, ω, ς) belongs to the uncertainty
set U =

∏4
i=1 Ui = [u1, u2]× [v1, v2]× [ω1, ω2]× [ς1, ς2] .

The robust counterpart (worst case) of (NH-QCQP) is given by

min
x∈Rn

1

2
max
u∈U1

xTAux+ max
ω∈U3

aTωx,

s.t.
1

2
max
v∈U2

xTBvx+ max
ς∈U4

bTς x+ β ≤ 0.
(RNH-QCQP)

Given a x̄ in Rn, we set α = − max
(u,ω)∈U1×U3

{
1

2
x̄TAux̄+ aTω x̄

}
and

Ξx =

{(
x

t

)T
H1

(
x

t

)
,

(
x

t

)T
H2

(
x

t

)
,

(
x

t

)T
H3

(
x

t

)
,

(
x

t

)T
H4

(
x

t

)
| (x, t) ∈ Rn ×R

}
,

where :

H1 =

(
Au1 aω1

aTω1
2α

)
, H2 =

(
Au2 aω2

aTω2
2α

)
, H3 =

(
Bv1 bς1
bTς1 2β

)
and H4 =

(
Bv2 bς2
bTς2 2β

)
.

We give the following definition with regards to convexity of QCQOPs at a
given point in Rn. This definition is inspired by the works of Dines (1941), Polyak
(1998) and Jeyakumar (2012) about analysis of convexity properties of quadratic
forms, and named after them.

Definition 1 (Convexity in the sense of Dines-Polyak-Jeyakumar) The prob-
lem (NH-QCQP) is said to be DPJ-convex (or regular) w.r.t. x̄ if the set Ξx is
convex.

Theorem 4 (Characterization of robust solution)

Let x̄ be a robust feasible solution of (NH-QCQP) such that :

(H1) (NH-QCQP) is DPJ-convex at x̄;

(H2) There exists x0 ∈ Rn such that:
1

2
xT0 Bvx0+bTς x0+β < 0 for all (v, ς) ∈ U2×U4.

Then, the following statements are equivalent :

(i) x̄ is a robust optimal solution of (NH-QCQP);
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(ii) There exist λ ≥ 0 and (ū, v̄, ω, ς) ∈ U such that :
(Aū + λBv̄)x̄+ aω + λbς = 0, (First-order Condition)

λ(1
2 x̄
TBv̄x̄+ bς x̄+ β) = 0, (Complementary Slackness)

Aū + λBv̄ � 0. (Second-order Condition)

(12)

Proof [(i) =⇒ (ii)]. Let x̄ be a robust optimal solution of (NH-QCQP) and

α = − max
(u,ω)∈U1×U3

{
1

2
x̄TAux̄+ aTω x̄

}
.

Then for all x ∈ Rn, one has :

max
(v,ς)∈U1×U3

{
1

2
xTBvx+ bTς x

}
+ β ≤ 0 =⇒ max

(u,ω)∈U1×U3

{
1

2
xTAux+ aTωx

}
≥ −α.

Consequently, the system
max

(u,ω)∈U1×U3

{
1

2
xTAux+ aTωx

}
< −α,

max
(v,ς)∈U2×U4

{
1

2
xTBvx+ bTς x

}
+ β < 0,

has no solution. Thus, the system
1

2
xTAux+ aTωx+ α < 0, ∀(u, ω) ∈ U1 × U3,

1

2
xTBvx+ bTς x+ β < 0, ∀(v, ς) ∈ U2 × U4,

(S1)

has no solution.
Moreover, we can show that for all t ∈ R, the following system

1

2
xTAux+ taTωx+ t2α < 0, ∀(u, ω) ∈ U1 × U3,

1

2
xTBvx+ tbTς x+ t2β < 0, ∀(v, ς) ∈ U2 × U4,

(S2)

has no solution in Rn ×R. Indeed if (x∗, t∗) ∈ Rn ×R is a solution of (S2), then
1

2
x∗TAux

∗ + t∗aTωx
∗ + t∗2α < 0, ∀(u, ω) ∈ U1 × U3,

1

2
x∗Bvx

∗ + t∗bTς x
∗ + t∗2β < 0,∀(v, ς) ∈ U2 × U4.

So for t∗ 6= 0, one has :
1

2
(x

∗

t∗ )TAu(x
∗

t∗ ) + aTω (x
∗

t∗ ) + α < 0, ∀(u, ω) ∈ U1 × U3,

1

2
(x

∗

t∗ )TBv(x
∗

t∗ ) + bTς (x
∗

t∗ ) + β < 0, ∀(v, ς) ∈ U2 × U4.



14 M. Barro, S. Sanogo, M. Zongo & S. Traoré

Which contradicts the fact that (S1) has no solution.
If t∗ = 0, it follows that x∗ is a solution of the system

1

2
xTAux < 0,∀u ∈ U1,

1

2
xTBvx < 0,∀v ∈ U2.

In this case x∗ 6= 0 and for a fairly large number n ∈ N, xn = nx∗ is a solution of
the system (S1). Which is a contradiction. We conclude that the system (S2) has
no solution.

Let us show that there exist (ū, v̄, ω, ς) ∈ U and (λ1, λ2) ∈ R2
+ \ {(0, 0)} such

that

λ1

(
1

2
xTAūx+ aTω + α

)
+ λ2

(
1

2
xTBv̄x+ bTς + β

)
≥ 0, ∀x ∈ Rn. (13)

One proceeds by distinguishing four cases as follows.
First case : u1 < u2 and v1 < v2.
Let

M1 =


A1 a1 +

ω1u2 − ω2u1

u2 − u1
a2,

aT1 +
ω1u2 − ω2u1

u2 − u1
aT2 2α

 ,M2 =


A2

ω2 − ω1

u2 − u1
a2

ω2 − ω1

u2 − u1
aT2 0

 ,

M3 =


B1 b1 +

ς1v2 − ς2v1

v2 − v1
b2

bT1 +
ς1v2 − ς2v1

v2 − v1
bT2 2β

 and M4 =


B2

ς2 − ς1
v2 − v1

b2

ς2 − ς1
v2 − v1

bT2 0

 .

Then, we have the following linear matrix equalities :

M1 + u1M2 = H1; M1 + u2M2 = H2; M3 + v1M4 = H3; and M3 + v2M4 = H4.

By applying the fact that (S2) has no solution, we deduce that the system below
1

2

(
x

t

)T
(M1 + uM2)

(
x

t

)
< 0, ∀u ∈ U1,

1

2

(
x

t

)T
(M3 + vM4)

(
x

t

)
< 0, ∀ς ∈ U4,

also has no solution.
Thanks to the convexity of the set Ξx and from Theorem 2, there exist (λ1, λ2) ∈
R2

+ \ {(0, 0)} and (ū, v̄) ∈ U1 × U2 such that

λ1

[
1

2

(
x

t

)T
(M1 + ūM2)

(
x

t

)]
+ λ2

[
1

2

(
x

t

)T
(M3 + v̄M4)

(
x

t

)]
≥ 0
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for all (x, t) ∈ Rn ×R.
By setting t = 1, one has :

λ1

[
1

2
xTAūx+

(
a1 +

(
ω1u2 − ω2u1

u2 − u1
+ ū

ω2 − ω1

u2 − u1

)
a2

)
x+ α

]
+

λ2

[
1

2
xTBv̄x+

(
b1 +

(
ς1v2 − ς2v1

v2 − v1
+ v̄

ς2 − ς1
v2 − v1

)
b2

)
x+ β

]
≥ 0, ∀x ∈ Rn.

Therefore, there exist (ū, v̄, ω, ς) ∈ U and (λ1, λ2) ∈ R2
+ \ {(0, 0)} such that rela-

tion (13) holds with :

ω =
ω1u2 − ω2u1

u2 − u1
+ ū

ω2 − ω1

u2 − u1
and ς =

ς1v2 − ς2v1

v2 − v1
+ v̄

ς2 − ς1
v2 − v1

.

Second case : u1 < u2 and v1 = v2 = v̄.
Putting

M1 =


A1 a1 +

ω1u2 − ω2u1

u2 − u1
a2

aT1 +
ω1u2 − ω2u1

u2 − u1
aT2 2α

 ; M2 =


A2

ω2 − ω1

u2 − u1
a2

ω2 − ω1

u2 − u1
aT2 0

 ;

M3 =

Bv̄ b1

bT1 2β

 and M4 =

 0Sn(R) b2

bT2 0

 .

Then,

M1 + u1M2 = H1; M1 + u2M2 = H2; M3 + ς1M4 = H3; and M3 + ς2M4 = H4.

From system (S2), we obtain that the system
1

2

(
x

t

)T
(M1 + uM2)

(
x

t

)
< 0, ∀u ∈ U1,

1

2

(
x

t

)T
(M3 + ςM4)

(
x

t

)
< 0, ∀ς ∈ U4,

has no solution.
Since the set Ξx is convex, we can apply Theorem 2, thus we can find (λ1, λ2) in
R2

+ \ {(0, 0)} and (ū, ς) in U1 × U4 such that :

λ1

[
1

2

(
x

t

)T
(M1 + ūM2)

(
x

t

)]
+λ2

[
1

2

(
x

t

)T
(M3 + ςM4)

(
x

t

)]
≥ 0, ∀(x, t) ∈ Rn×R.

Letting t = 1, one has :

λ1

[
1

2
xTAūx+

(
a1 +

(
ω1u2 − ω2u1

u2 − u1
+ ū

ω2 − ω1

u2 − u1

)
a2

)
x+ α

]
+ λ2

(
1

2
xTBv̄x+ bςx+ β

)
≥ 0,∀x ∈ Rn.

Hence, there exist (ū, v̄, ω, ς) ∈ U and (λ1, λ2) ∈ R2
+ \ {(0, 0)} such that (13) holds

with
ω =

ω1u2 − ω2u1

u2 − u1
+ ū

ω2 − ω1

u2 − u1
.
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Third case : u1 = u2 = ū and v1 < v2.
Setting

M1 =

Aū a1

aT1 2α

 ; M2 =

 0Sn(R) a2

aT2 0

 ;

M3 =


B1 b1 +

ς1v2 − ς1v2

v2 − v1
b2

bT1 +
ς1v2 − ς1v2

v2 − v1
bT2 2β

 and M4 =


B2

ς2 − ς1
v2 − v1

b2

ς2 − ς1
v2 − v1

bT2 0

 ,

We proceed like in the second case by changing the role of u and v with

ς =
ς1v2 − ς2v1

v2 − v1
+ v̄

ς2 − ς1
v2 − v1

.

Fourth case : u1 = u2 = ū and v1 = v2 = v̄.
Putting :

M1 =

Aū a1

aT1 2α

 ; M2 =

 0Sn(R) a2

aT2 0

 ; M3 =

Bv̄ b1

bT1 2β

 and M4 =

 0Sn(R) b2

bT2 0

 .

In this case, we remark that

M1 + ω1M2 = H1; M1 + ω2M2 = H2; M3 + ς1M4 = H3 and M3 + ς2M4 = H4.

The system 
1

2

(
x

t

)T
(M1 + ωM2)

(
x

t

)
< 0, ∀ω ∈ U3,

1

2

(
x

t

)T
(M3 + ςM4)

(
x

t

)
< 0, ∀ς ∈ U4,

has no solution because it is equivalent to another one like (S2). Again from the
convexity of Ξx and Theorem 2, there exist (λ1, λ2) ∈ R2

+ \ {(0, 0)} and (ω, ς) ∈
U3 × U4 such that

λ1

[
1

2

(
x

t

)T
(M1 + ωM2)

(
x

t

)]
+λ2

[
1

2

(
x

t

)T
(M3 + ςM4)

(
x

t

)]
≥ 0, ∀(x, t) ∈ Rn×R.

Letting t = 1, one has :

λ1

(
1

2
xTAūx+ aTωx+ α

)
+ λ2

(
1

2
xTBv̄x+ bTς x+ β

)
≥ 0,∀x ∈ Rn.

Finally, in all cases, there exist (ū, v̄, ω, ς) ∈ U and (λ1, λ2) ∈ R2
+ \ {(0, 0)} such

that (13) holds.
From Slater condition, one obtains that : λ1 > 0 and(

1

2
xTAūx+ aTωx+ α

)
+ λ

(
1

2
xTBv̄x+ bTς x+ β

)
≥ 0,∀x ∈ Rn, (14)
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with : λ =
λ2

λ1
. From this Inequality (14), we get :

max
(u,ω)∈U1×U3

(
1

2
xTAux+ aTωx

)
+ α+ λ

(
1

2
xTBv̄x+ bTς x+ β

)
≥ 0, ∀x ∈ Rn.

For x = x̄, since x̄ is a feasible solution of (NH-QCQP), we obtain :

λ

(
1

2
x̄TBv̄x̄+ bTς x̄+ β

)
= 0. (15)

Let us consider :

Rn −→ R, x 7−→ φ(x) :=
1

2
xTAūx+ aTωx+ α+ λ

(
1

2
xTBv̄x+ bTς x+ β

)
.

By using the definition of α, (14) and (15), we get : φ(x) ≥ 0 and φ(x) ≤ 0. It
follows that φ(x) ≥ φ(x̄). x̄ minimize φ on Rn. Then, ∇φ(x̄) = 0 and ∇2φ(x̄) � 0.
Therefore, {

(Aū + λBv̄)x̄+ aω + λbς = 0,

Aū + λBv̄ � 0.

[(ii) =⇒ (i)]. Suppose that there exist λ ≥ 0 and (ū, v̄, ω, ς) ∈ U such that :
(Aū + λBv̄)x̄+ aω + λbς = 0, (First-order Condition)

λ(1
2 x̄
TBv̄x̄+ λbς x̄+ β) = 0, (Complementary Slackness)

Aū + λBv̄ � 0. (Second-order Condition)

Let us consider the map, ψ : Rn −→ R, x 7−→ ψ(x) =
1

2
xTAūx+aTωx+λ

(
1

2
xTBv̄x+ bTς x+ β

)
and assume that x is a robust feasible solution of (NH-QCQP).
First-order condition and second-order condition gives us that ∇ψ(x̄) = 0 and ψ

is convex. Then x̄ is a global minimizer of ψ and one has :

ψ(x) ≥ ψ(x̄) =⇒ 1

2
xTAūx+ aTωx ≥

1

2
x̄TAūx̄+ aTω x̄+ λ

(1

2
x̄TBv̄x̄+ bTς x̄+ β

)
− λ
(1

2
xTBv̄x+ bTς x+ β

)
=⇒ 1

2
xTAūx+ aTωx ≥

1

2
x̄TAūx̄+ aTω x̄− λ

(1

2
xTBv̄x+ bTς x+ β

)
=⇒ 1

2
xTAūx+ aTωx ≥

1

2
x̄TAūx̄+ aTω x̄.

Therefore, x̄ is robust optimal solution of (NH-QCQP).

5 Optimistic Dual and Strong Robust Duality of QCQOP

In this section, we characterize the solutions of dual optimistic. We also show that
the robust strong duality property holds.
Let us consider

Rn × U × R+ −→ R, (x, ξ, λ) 7−→ L(x, ξ, λ) := q0(x, ξ) + λq1(x, ξ)
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where ξ = (u, v, ω, ς), q0(x, ξ) :=
1

2
xTAux+aTωx and q1(x, ξ) :=

1

2
xTBvx+ bTς x+β.

The problem
max inf

x∈Rn
L(x, ξ, λ)

s.t. (ξ, λ) ∈ U ×R+
(OD-QCQP)

is called the optimistic dual of (NH-QCQP).

Theorem 5 Assume that assumptions of Theorem 4 hold. If x is a robust solution

of (NH-QCQP), then there exist (ξ, λ) ∈ U×R+ such that (ξ, λ) is an optimal solution

of (OD-QCQP).

Proof From Theorem 4, there exists (u, v, ω, ς, λ) ∈ U × R+ such that
(Au + λBv)x+ aω + λbς = 0, (First-order Condition)

λ(1
2x
TBvx+ bςx+ β) = 0, (Complementary Slackness)

Au + λBv � 0. (Second-order Condition)

We set ξ = (u, v, ω, ς). For all feasible solution (u, v, ω, ς) ∈ U×R+ of (OD-QCQP),
one has :

L(x, ξ, λ) = q0(x, ξ) + λq1(x, ξ)

= q0(x, ξ)

= max
ξ∈U

q0(x, ξ)

≥ q0(x, ξ), ∀ξ ∈ U
≥ q0(x, ξ) + λq1(x, ξ), ∀(ξ, λ) ∈ U ×R+

= L(x, ξ, λ), ∀(ξ, λ) ∈ U ×R+.

Hence, (ξ, λ) is an optimal solution of (OD-QCQP). �

Corollary 2 Suppose that assumptions of Theorem 5 hold. If (RNH-QCQP) has an

optimal solution, then the strong duality property is fulfilled.

Proof Let x̄ be an optimal solution of (RNH-QCQP). So,

min (RNH-QCQP) =
1

2
max
u∈U1

xTAux+ max
ω∈U3

aTωx

=
1

2
xTAux+ aTωx.

Moreover,

max (OD-QCQP) = max
(ξ,λ)∈U×R+

inf
x∈Rn

L(x, ξ, λ)

= L(x, ξ, λ)

= q0(x, ξ) + λq1(x, ξ)

=
1

2
xTAux+ aTωx.

Thus, min (RNH-QCQP) = max (OD-QCQP). �
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6 Example

We deal with the following 2-dimensions QCQOP

min
x∈Rn

1

2
xTAux,

s.t.
1

2
xTBvx+ β ≤ 0.

(P)

Where :

A0 =

(
1
2 −

3
2

−3
2

1
2

)
, A1 =

(
1 0
0 1

)
, B0 =

(
1 1

2
1
2 1

)
, B1 =

(
−5 −10
−10 −5

)
,

β = −1, | u |≤ 10−1 and | v |≤ 5.10−2.
With the interval interpolation approach regarding to :

– matrices A0 and A1, Au = A0 + uA1 =

 2u+1
2 −3

2

−3
2

2u+1
2

,

– matrices B0 and B1, Bv = B0 + vB1 =

 1− 5v 1−20v
2

1−20v
2 1− 5v

.

Let x0 =

(
1

2
,
1

2

)T
. Then we verify that the strictly feasibility condition holds

with this point x0.
The matrices Au1 , Au2 , Bv1 and Bv2 commute. From Proposition 1, the set

Ξ =
{(
xTAu1x, x

TAu2x, x
TBv1x, x

TBv2x
)
| x ∈ R2

}
is convex. Where :

Au1 =

 2
5 −

3
2

−3
2

2
5

 , Au2 =

 3
5 −

3
2

−3
2

3
5

 , Bv1 =

 5
4 1

1 5
4

 and Bv2 =

 3
4 0

0 3
4

 .

The problem (P) can be rewritten under the analytically form still denoted (P)
and given by :

min
x∈Rn

1

4
(2u+ 1)x2

1 −
3

2
x1x2 +

1

4
(2u+ 1)x2

2,

s.t.
1

2
(1− 5v)x2

1 +
1

2
(1− 20v)x1x2 +

1

2
(1− 5v)x2

2 ≤ 0.
(P)
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From Theorem 3, we deduce that the robust solution of (P) satisfies

[2u+ 1 + 2λ(1− 5v)]x1 + [−3 + λ(1− 20v)]x2 = 0,

[−3 + λ(1− 20v)]x1 + [2u+ 1 + 2λ(1− 5v)]x2 = 0,

λ

[
1

2
(1− 5v)x2

1 +
1

2
(1− 20v)x1x2 +

1

2
(1− 5v)x2

2 − 1

]
= 0,


2u+ 1

2
+ λ(1− 5v)

1

2
(−3 + λ(1− 20v))

1

2
(−3 + λ(1− 20v))

2u+ 1

2
+ λ(1− 5v)

 � 0.

Letting u = 3.10−2, v = 4.10−2 and λ =
97

90
. The resolution of this system give us

the following robust solutions :

x = ±
(√

10

3
,

√
10

3

)T
.

7 Conclusion

We have dealt with a non-convex quadratic optimization problem subjected to
data uncertainties both in constraint and in criterion. Such an optimization model
is extremely difficult to solve thanks its two levels of optimization (in short “mini-
max”). We propose a new definition of convexity for a RO problem and an ade-
quate S-procedure in order to characterize the global robust optimal solution of
these quadratic uncertain problem in homogeneous case in one hand. We have
also dealt with the non-homogeneous case in other hand. The example given in
Section 6 allows to validate this paradigm in the reality. In this work, we bring
some necessary and sufficient conditions in Theorem 5 and Corollary 2 to make
strong duality property holds. A next step could be to address some numerical
optimization algorithms for solving a large scale of these kind of QCQOPs.
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25. J.-B. Hiriart Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms II
: Advanced Theory and Bundle Methods, Grundlehren der mathematischen Wissenschaften,
Vol. 306, Springer-Verlag, Berlin, New York, 1993.

26. B. Houska. Robust Optimization of Dynamic Systems, PhD Thesis, 2011.
27. G. Infange. Stochastic Programming, The State of the Art In Honor of George B. Dantzig,

Springer New York Dordrecht Heidelberg London, 2011.
28. V. Jeyakumar, N. Q. Huy and G. Li. Necessary and sufficient conditions for S-lemma and

nonconvex quadratic optimization, Optim. Eng. (2009) 10 : 491–503.
29. V. Jeyakumar, G. M. Lee and G. Y. Li. Alternative theorems for quadratic inequality

systems and global quadratic optimization , SIAM J. Optim (2009) 2 : 983–1001.
30. V. Jeyakumar and G. Li. Strong duality in robust convex programming : complete char-

acterizations, SIAM J. Optim. : 3384–3407, 2010.
31. V. Jeyakumar and G. Y. Li. Robust solutions of quadratic optimization over single

quadratic constraint under interval uncertainty, J. Glob. Optim., 2012.
32. P. Kall and S. Wallace. Stochastic Programming, JohnWiley & Sons, New York, Chichester,

1994.
33. P. P. Khargonekar, I. R. Petersen and K. Zhou. Robust stabilization of uncertain linear

systems: quadratic stabilizability and H/sup infinity / control theory, IEEE Transactions on
Automatic Control, Vol. 35, Issue 3, pp. 356–361, 1990.



22 M. Barro, S. Sanogo, M. Zongo & S. Traoré
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tiale Électrique par des Méthodes d’Optimisation Topologique, PhD thesis, LAPLACE, UPS-
Toulouse, France, Février 2016.
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