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Abstract and Definitions.
A Fermat composite is a non prime number of the form F,, = 22" + 1, where n is an integer > 1. Original characterizations of
Fermat composites via divisibility are given in [7] and [8] and [9] and [10]. It is known (see [1] or [2] or [3] or [4] and [5] and [6])
that Fs and Fg are Fermat composites; Fermat composites are known for some integers > Fg, and the Fermat composites problem
stipulates that there are infinitely many Fermat composites. In this paper, we give the short proof of the Fermat composites
problem, by reducing this problem into a trivial equation of four unknowns and by using elementary combinatoric coupled with
elementary arithmetic calculus, elementary divisibility, trivial complex calculus and elementary computation. Moreover, our paper
clearly shows that divisibility helps to characterize composite numbers as we did in [7], [8], [9] and [10], and elementary arithmetic
calculus coupled with elementary divisibility, elementary complex calculus and trivial computation help to give the simple proof of
the Fermat composites problem .

AMS classification 2000: 05zx and 11zx.

Preliminaries. In Section.1, we introduce definitions that are not standard and we present some
elementary properties deduced from these definitions. In Section.2, we reduce the Fermat compos-
ites problem into a trivial equation of four unknowns and we prove properties linked to elementary
arithmetic calculus, elementary divisibility, trivial complex calculus and elementary computation. In
Section.3, using a simple proposition proved in Section.1, and some elementary properties of Section.2,
we give the short proof of the Fermat composites problem.

1. Introduction. In this section, we introduce definitions that are not standard and we present
some elementary properties deduced from these definitions.
Definitions 1.1. For every integer n > 2, we define FCO(n), oy, and 0,1 as follows:

FCO(n) = {z;1 < z < 2nandx is a Fermat composite}, o, = glcfg(( )0, and 0,1 = 40%" [observing
o€ n

(see Abstract) that Fj is a Fermat composite, then it becomes immediate to deduce that for every
integer n > F5, F5 € FCO(n)].
Using the previous definitions and denotations, let us remark.

Remark 1.1.Let n be an integer > Fy5; look at FCO(n), on, and o1 introduced in Definitions 1.1.
Then we have the following three simple properties.

(1.1.0.) =1+ F5<op <oni; op1=40o"; o1 > F5F5; and op.1 15 even.

(1.1.1.) If o, <n, then: o, = op—1 and op.1 = Op—1.1-

(1.1.2.) Ifo,1 <2n, then o, <n andopi = 0np_11.

Proof. Property (1.1.0) is trivial [Indeed, it suffices to use the definition of o, and 0,1, and the fact
that F5 € FCO(n) ( note that Fs is a Fermat composite (use Abstract ), and observe that n is an
integer > F3)]. Property (1.1.1) is immediate | Indeed, if 0, < n, clearly n > F5 (use the definition
of o, and observe that F5 € FCO(n), since n is an integer > F5), and so o, < n < 2n — 2 ( since
n > Fy (by the previous) and o, < n (by the hypotheses) ); consequently

on <2n—2 (1.1).



Inequality (1.1) immediately implies that FCO(n) = FCO(n — 1) and therefore

Op, = Op—1 (1.2).

Equality (1.2) immediately implies that 0,1 = 0,—1.1. Property (1.1.1) follows|. Property (1.1.2)
is trivial [Indeed, clearly

on <n (1.3);
( otherwise

op>n (1.4).

Now look at on.1 and observe (by using property (1.1.0)) that

On.1 = 40°m (1.5).

n

Noticing (by the hypotheses) that n > Fs, then, using (1.4) and (1.5), it becomes trivial to deduce that on.1 > —1 4 4n™ > 2n;
S0 0.1 > 2n and we have a contradiction, since 0,1 < 2n (by the hypotheses). So 0, < n ) Clearly Op1 = Op—1.1 ( use
inequality (1.3) and property (1.1.1) ). Property (1.1.2) follows]. Remark 1.1 follows. O

Using the definition of 0,1 (see Definitions 1.1) , then the following remark and proposition become
immediate.

Remark 1.2. If limy, 4o 0n.1 = +00, then there are infinitely many Fermat composites.
P’FOOf. Immediate [indeed7 it suffices to use the definition of 0,1 (see Definitions 1.1) ] O

Proposition 1.1.  If for every integer n > F5, we have 0,1 > n, then there are infinitely many
Fermat composites.
Proof.  Clearly limy,, o 0n.1 = +00; therefore there are infinitely many Fermat composites [use the
previous equality and apply Remark 1.2} .0

Proposition 1.1 clearly says that: if for every integer n > Fy, we have 0,1 > n, then, there are
infinitely many Fermat composites; this is what we will do in Section.3, by using Proposition 1.1,
elementary combinatoric, elementary complex calculus, elementary divisibility, elementary arithmetic
calculus, and reasoning by reduction to absurd. Proposition 1.1 is stronger than all the investigations
that have been done on the Fermat composites problem in the past. Morerover, the reader can easily
see that Proposition 1.1 does not use divisibility and is completely different from all the investigations
that have been done on the Fermat composites problem in the past. So, in Section.3, when we will give
the analytic simple proof of the Fermat composites problem, we will not need strong investigations
that have been done on the previous problem in the past.

2.Simple properties linked to elementary arithmetic calculus, elementary divisibility,
trivial complex calculus, and trivial computation. In this section, we reduce the Fermat com-
posites problem into a trivial equation of four unknowns and we prove properties linked to elementary
arithmetic calculus, elementary divisibility, trivial complex calculus and trivial computation. Here
definitions of FCO(n), oy, and 0,1 (see Definitions 1.1) are crucial.

Recalls 2.1 (Real numbers, complex numbers, relative integers, Cy(c,y, k), Tn(k), and L, (u) ). Recall
that R is the set all real numbers, and 0 is a complexr number if 0 = x + iy, where x and y are real and
where i is the complex entity satisfying i2 = —1. We recall that ¢’ is a relative integer if ¢’ is an integer
> 0 orif ¢ is an integer < 0 ( For example —108 and —13 and —11 and 0 and 7 and 24 are relative in-

tegers; % is not a relative integer ). We recall that Z is the set of all relative integers ( note ( see above)

that R is the set all real numbers ); clearly R? x 22 = {(c,y, k,u);c € R, y€R, k€ Z, and u € Z}.
Now let n be an integer > F5 and let 0,1 ( see Definitions 1.1), consider (c,y, k,u) € R? x Z2; then



Cn(c,y, k), Tn(k), and L, (u) are defined as follows:

Cnle,y, k) = cop 1 (49 — 0,57 )(2i + 1) +iy(Toyhy — 1) + &
k(6i02% — 9io8 | —1i) N k(—70i0k4 —10i)  k(42i03% —63i0%?)

k) = ;
n(k) 3op, —i 2 +4 (1—70M%)(30%, — 1)
and
Cofu)= (7t 14iolY + 980LY, | 4bio2? —42i0}% (24 7oyt )(63i02% — 42i030 )]
T Ton 2i+4 30p1 — @ (1-Toy1) (301 1) 7

Since n > Fy, then it becomes trivial that for every (c,y,k,u) € R? x 22, (Cu(c,y, k), Tn(k), Ln(u))
exists, is well defined and gets sense. Example.0( Fundamental ). Let n be an integer > F5 and let
on1 ( see Definitions 1.1); look at (c,y,k,u) € R? x 22 and let (Cy(c,y,k), Tn(k), Ln(u)) defined
above. If

20,5 + 49023 21018, + 49014 + 60k | + 7

n.1l

—28 14
49 — o2 Top1 —

(Ca Y, k7u) = ( ) _7071:11 4 _702.1 )7

then,
PT’OOf. Indeed, observe (by the hypotheses) that

2077 44902, 21018, + 49014, + 60k, +7
H-o P Tord, 1

n.1

(C7 Y, k? u) = ( 7_7011';.11 -2, _70?7,.1 )

Using the previous equality and the definition of (Ch(c,y,k), Tn(k), Ln(u)), then it becomes trivial to check (by elementary
computation and elementary divisibility) that

Chnl(c,y, k) = 49028, — 7ol + 98i028, + 21008 + 49i0l% + 6iot | + 114 (2.0);
and 22 8 14 28
61022, + 18i08 | +2i + Ti 4906028, + 204
Tn(k) + L) = —ond T 2500ng BT W0ny | P00 T 2R 4 40i0ld, +7i (2.1).
30, | —1 2i+4 :

That being so, to prove Example.0, it suffices to prove this Fact.
Fact: Cn(c,y,k) # Tn(k) + Ln(u). Otherwise (we reason by reduction to absurd),

Cn(c,y,k) = Tn(k) + Ln(u) (2.2).
Now using equalities (2.0) and (2.1), then it becomes trivial to deduce that equality (2.2) says that

6022, + 18i08 | + 2i + Tiolt,  490i028, + 20i

49i0t, +7i (2.3).
301 —i 2iva T Aona ¥ (2:3)

49028, — 70, 4 98i028, + 214018 +49i0%, +6i0t | +11i =

It is trivial that equality (2.3) clearly implies that

61022, + 18i08 | + 2i + Tiol%,  490i028 + 20i
30t —i 2i 44

49028, — 7ol + 98028, 4 21008, + 6iok | 4 4i =

(2.4).

That being so, define pp.0 and p,.1 as follows: pn.o0 = (30;51 —4)(2t + 4)(490%’_31 — 705'11 + 982'03;31 + 211'0715’1 + Gioi'1 + 4i) and
pn.1 = (2i+4)(6i022, +18i0% | +2i+ Tiol* )+ (302 | —4)(490i028, +20i). Now using the preceding two equalities, then it becomes
very easy to deduce that equality (2.4) immediately implies that

Pn.0 = Pn.1 (25)

Now let Re[pn.o] be the real part of p,.0 and Re[pn.1] be the real part of py,.1; it is trivial that equality (2.5) implies that

Re[Pn.o} - Re[pn.l] (26)

That being so, look at (pn.0, pn.1) defined above; recalling that i2 = —1, then it becomes trivial to check (by elementary computation
and the fact that 2 = —1) that

Relpn.0] = —12602% — 3605 | — 140l + 490028, 4 16 (2.7),



and
Relpn.1] = —12022, — 3608 ;| — 14014, + 490028, + 16 (2.8).

Now using equalities (2.8) and (2.7) and (2.6), then immediately deduce that
—12602% — 3605 | — 140L%, + 490028, 4 16 = —12022] — 360 | — 1404, + 490025, + 16 (2.9).
Equality (2.9) immediately implies that —126022, = —12022, and therefore

114022, =0 (2.10).

Equality (2.10) is clearly impossible ( indeed, since on.1 > FF5 (use property (1.1.0 of Remark 1.1), then using the previous
inequality, it becomes trivial to deduce that 1140 *, > 0, and the previous inequality clearly says that equality (2.10) is impossible
). So assuming that Cp(c,y, k) = Tn(k) + Ln(u) gives rise to a serious contradiction. Consequently Cpr(c,y, k) # Tn(k) + Ln(u).
The Fact follows and Example.0 immediately follows.

We will use definitions of Recalls 2.1 in Definition 2.1, and Example.0 of Recall 2.1 will help
us in Example.4 of Definition 2.1 (in Definition 2.1, we will introduce the notion of tackle; this no-
tion is fundamental and crucial for the short complete simple proof of the Fermat composites problem).

Definition 2.1 (tackle). Let n be an integer > Fs, and look at o1 ( see Definitions 1.1). We
say that Y tackles o, 1, if there exists (c,y, k,u) € R? x Z? such that

Y = (147 — 30, ) +iy(28 — 4o, 1),

and
(=49 + 0,5 ) +iy(=Topt +1) = (k+iu) (70}, + 0,7 + 3iop 1 ),
and
Culc,y, k) = Tn(k) + Ln(u),

where (Cp(c,y,k), Jn(k), L,(u)) is defined in Recalls 2.1, and where i2 = —1 ( we will see in Ex-
ample.4 that the previous definition helps to reduce the Fermat composites problem into a trivial
equation of four unknowns ) Example.1. Let n be an integer > F5 and let 0,,.1. Then the complex
number 147023 — 30,5 +i( 8402 | — 120, ') tackles 0,.1. Proof. Indeed, it is immediate to check (by
elementary computation and elementary dlvisibility) that

147023 — 30,5 +i( 840k | —120,10) = ¢(147 — 30, 2 ) +iy( 28 — 40, 1*) (2.11),

and

—928 . 14 o . 9 —5 - 4

C( —49 + On.1 ) + 2y< _7071,1 +1 ) - (k + Zu)( 70n.1 to,1+ 32On.l ) (212)a

and
Cule,y, k) = Tn(k) + Ln(u) (2.13);

where

c=02 and y =30} andk =1 — ToL*, andu = 0 (2.14).

Since it is immediate that
(023, 30k, 1 —7To!, 0) e R? x 22 (2.15),

clearly 147023 — 30,;.? +i( 8404 | 120 ) tackles oy,.1 ( use (2.15) and (2.11) and (2.12) and (2.13) and (2.14)

and the definition of tackle introduced above ) . Example.l follows. Example.2. Let n be an integer > F5 and
let 0,1 ( see Definitions 1.1). Now consider equations ¢, ¢ and ¢, 1, where

(op1—2n—2)

5 (=905 — 196i — 36i0,, }* — 280, }*), i* = —1;

¢n.0 =

and
bna = 147023 — 30,5 +i( 8402 | —120,10); 2 = 1.



If 0,,.1 = 2n, then
Gno + Pn1 = 147023 + 60,5 + i( 8407 | + 196 + 240,10 4280, 1%).

Proof. Indeed, observing (via the hypotheses) that 0,1 = 2n, then, using the previous equality and
the definition of the couple ( ¢p.0, pn.1 ) introduced above, it becomes trivial to check ( by elementary
computation) that ¢no + ¢n1 = 147023 + 60n1 + i( 840k | 4+ 196 + 240_10 + 280_14 ). Example.2
follows. Example.3. Let n be an 1nteger > F5 and let 0,1 ( see Definitions 1.1). Now consider
equations ¢, and ¢, introduced in Example.2. If 0,1 = 2n + 2, then ¢, 0 + ¢n.1 tackles o,1.
Proof. Indeed, look at equations ¢, and ¢, introduced in Example.2 ; observing (via the hy-
potheses) that 0,1 = 2n + 2 and using the previous equality, then it becomes trivial to deduce that
Gn0+ dn1 = 147023 — 30,5 +i( 8402 1 —120,1%).  Clearly ¢+ ¢n1 tackles 0,1 ( Use the previous
equality and Example.1). Example.3 follows. Example.4 (fundamental: reduction of the Fermat
composites problem into a trivial equation of four unknowns ) . Let n be an integer > F5 and let
on.1- Now consider equations ¢, o and ¢, 1 introduced in Example.2. If 0,1 = 2n, then

On.o + dn1 does not tackle oy 1.
Proof. Otherwise (we reason by reduction to absurd), let (¢, y, k,u) € R? x Z2such that

Gn.0 + Ona1 = (147 — 30, 7) + iy( 28 — 4o, ) (2.16),

and
(=49 + 0, 7) +iy(=Toply + 1) = (k +iu)(Top 1 + 0,3 + 3ioy 1) (2.17),

and
Cnl(c,y, k) = Tn(k) + Ln(u) (2.18),

where (Cp(c,y, k), Tn(k), Ln(u)) is defined in Recalls 2.1, and where i = —1; such a (c,y, k,u)
exists, since ¢,.0 + ¢n.1 is supposed to tackle o, 1. Clearly

Gno + dn1 = 147023, + 60,5 + (840} 1 + 196 + 240,10 + 280, 11) (2.19)

( observe (by the hypotheses) that 0,1 = 2n and use Example.2 ) Using equality (2.19), then it
becomes trivial to deduce that equality (2.16) clearly says that

147023 + 60,5 + i( 8404 | 4+ 196 + 240, 10 + 280714 ) = ¢(147 — 30, 2 ) +iy(28 — 40, 1Y) (2.20).
Using the fact that 72 = —1, then it becomes elementary to deduce that equality (2.20) says that
147023, + 60,5 = (147 — 30, 2%) and 840} | + 196 + 240, 10 + 280, 1* = y(28 — 40, 1) (2.21).
The two equalities of (2.21) trivially imply that

_ 49073 +20, 7 210% | +49+60, " + 70 1" 21018, + 49014 + 60t | +7

n.1 . . .
and y = = 2.22).
90,7 o} Tort, 1 =22

That being so, observing ( by (2.22)) that

49023 4+ 20,5 21088, + 49014 + 602 | + 7

(C7 y) = ( 49 — —28 ) 707114.11 1

) (2.23),

and using equality (2.23), then it becomes trivial to deduce that equality (2.17) says that

(=49 + 0, B) +iy(—Tok +1) = (k+iu)(702 ; + 0,5 + 3iot ;) (2.24),

ot



49023 4+ 20,5 21088, + 49084 + 60k | + 7

) (2.25).

where (c,y) = (

49 — 0,1 Toyh —
Using equality of (2.25) and the fact that > = —1 and elementary divisibility, then it becomes

elementary to deduce that equality (2.24) implies that
k=70 —2and u= —703, (2.26).

Now using equality of (2.25) and the two equalities of (2.26) and Example.0 of Recalls 2.1, then we
immediatelly deduce that

Cnlc,y, k) # Tn(k) + Ly (u) (2.27).

(2.27) contradicts equality (2.18). So, assuming that ¢,, o+ ¢n.1 tackles 0,1 when 0,1 = 2n gives rises
to a serious contradiction. Consequently, ¢,.0 + ¢,.1 does not tackle o, 1 when 0,1 = 2n. Example.4
follows.

Example.4 reduces the Fermat composites problem into a simple equation of four unknowns. In-
deed, Example.4 clearly says that, if 0,1 = 2n, then we will have a simple equation of four unknowns
which implies that ¢,.0+ ¢n.1 does not tackle o, 1. We will use Example.4 in Section.3 to immediately
deduce the Fermat composites problem. Examples of Definition 2.1 will help us in Section.3. Now,
via Definition 2.1, let us define:

Definitions 2.2 (Fundamental). Let n be an integer > Fj5, and let o0,.1; then equations ¢,
and ¢, 1 are defined as follows.

(On‘l —2n — 2)

5 (—90,,% — 196i — 36i0, 10 — 28i0, 1), i* = —1;

n.1l

¢n.0 =

and
Pn1 = 14702 — 30,5 +i(840k | —120,1°); i* = —1.

n.1l

It is immediate that for every integer n > F5, equations ¢, ¢ and ¢, 1 are well defined and get sense
(see Example.2 of Definition 2.1). Now using Definitions 2.2, then we have the following elementary
Proposition.

Proposition 2.1.Let n be an integer > 1+ F5 and let 0,1 ( see Definitions 1.1); now look at equations
®On.o and ¢p.1 introduced in Definitions 2.2, and via (¢n.o, dn.1), consider equations ¢n_10 and ¢n—11
(these considerations get sense, since n > 1+ F5, and therefore n — 1 > F5). If 0,1 < 2n, then we
have the following two simple properties.

(2.1.0.) on1=o0p-11.

(211) Gn—-1.0 + Pn—1.1 — ( ®n.o + Pn1 ) tackles op.1.

PTOOf. (2.1.0). Indeed, observing (by the hypotheses) that o,.1 < 2n, clearly 0p.1 = 0p—1.1 (use the previous inequality and

property (1.1.2) of Remark 1.1). Property (2.1.0) follows.
(2.1.1). Indeed, look at (¢n.0,¢n.1) and observe (by using Definitions 2.2) that

—2n—2
Pn.o = (0"'127")( —90,,5 — 196i — 36i0,, 0 — 28io, }*) (2.28)
and
bn.1 = 147023 — 305 +i(840% | — 120,10 (2.29).
Using equalities (2.28) and (2.29), then it becomes trivial to deduce that
41—-2n—-1)—2
nro = On=tLl 2(” ) =2 (95 |~ 196i — 36i0- 10 | — 28i0 14 | (2.50),
and
bn—11 = 147023 | | — 305 | +i(840k_ | — 120" ) (2.31).

It is trivial to check (by elementary computation) that equality (2.30) is of the form

(on—11—2n—2) -5 . . —10 . 14 -5 , . —10 . 14
nf( —90, %, 1 — 196i — 3610, _ ; — 28i0 ) —90,°, , — 196i — 36i0 —28i0,, " 4 (2.52).

bn-1.0 = n—1.1 n n—1.1



Now look at equalities (2.32) and (2.81); noticing ( by property (2.1.0) ) that on.1 = op—1.1, then it becomes trivial to deduce
that equalities (2.82) and (2.81) clearly say that

(0n.1 —2n —2)

$n—1.0 = 5 (=90, % — 196i — 36i0,, 10 — 28i0, 1) — 90,5 — 196i — 360, ' — 28i0; | (2.33),
and
Pn—1.1 = 147023 — 3075 +i(840% | —120;%0) (2.84).
Clearly
bn—1.0 = bn.0 — 90,5 — 196i — 36i0 10 — 28i0, 1 (2.35)

( use equalities (2.28) and (2.83) ) , and clearly
(bnfl.l = ¢n.1 (236)

( use equalities (2.29) and (2.34) ) . Using (2.85), then it becomes trivial to deduce that

bn—1.0 — dn.0 = —90, 5 — 196 — 36i0,, \° — 28i0, 1* (2.87),

and using (2.36) then it becomes trivial to deduce that

$n—1.1— ¢n1 =0 (2.58).
Clearly

brn-1.0+ Pn-1.1— ( $n.0+ bn1 ) = =90, — 196i — 36i0;, " — 28i0; }* (2.39)

( use equalities (2.87) and (2.38) ) . It is trivial to check (by elementary computation) that equality (2.39) is of the form

Gn-1.0+ Pn-1.1— ( n.0o+dn1 ) = c(147 — 30,7 ) + iy(28 — 40, ") (2.40),

and
(=49 +0,3%) +iy(—Topt +1) = (k+iu)(70) 1 + 0, + 3iop ;) (2.41),

and
Cn(c,y, k) = Tn(k) + Ln(u) (2.42),

where (Cp(c,y, k), Tn(k), Ln(u)) is defined in Recalls 2.1, and 32 = —1; and where

3078 4904 +90% | 47
c= ﬁ and y = % and k=3 and u = 702, (2.48).
0,7 — —ona

Now using (2.40) and (2.41) and (2.42) and (2.43), then it becomes very easy to deduce that

there exists (c,y,k,u) € R? x 22 such that, (2.44)
$n-1.0+ Sn-1.1 = ( $n.0 + dna ) = (147 = 30, 3% ) + iy(28 — 40, ) (2.45),

and
(=49 + 0, ) +iy(=Topt + 1) = (k+iu)(Top 1 + 0, + 3ioy, ;) (2.46),

and
Cn(c,y, k) = Tn(k) + Ln(u) (2.47).

Clearly ¢n—1.0 + ¢n—-1.1 — ( ¢n.0 + dn.1 ) tackles on.1 (use (2.44) and (2.45) and (2.46) and (2.47) and the definition of tackle
introduced in Definition 2.1 ) Property (2.1.1) follows and Proposition 2.1 immediately follows. O

The previous simple Proposition made, we are now ready to give the analytic simple proof of the
Fermat composites problem.

3. The short proof of the Fermat composites problem. In this Section, the definitions of
FCO(n), o, and op1 (see Definitions 1.1), the definition of relative integers (see Recalls 2.1), the
definition of tackle (see Definition 2.1), and the definition of (¢y,.0, ¢n.1) (see Definitions 2.2), are fun-
damental and crucial.

Now the following Theorem immediately implies the Fermat composites problem.



Theorem 3.1. Let n be an integer > F5 and let 0,1 (see Abstract and Definitions for the mean-
ing of F5, and see Definitions 1.1 for the meaning of o,.1); look at equations ¢no and ¢p.1 introduced
in Definitions 2.2. If o,1 <2n+ 2, then

On.o + On.1 tackles oy1.

We are going to prove simply Theorem 3.1. But before, let us remark.
Remark 3.1.  Let n be an integer > F5 and let 0,1. We have the following three trivial proper-

ties.

(3.1.0.) If 0,1 >2n+4, then Theorem 3.1 is satisfied by oy, 1.
(3.1.1.) If 0,1 =2n+ 2, then Theorem 3.1 is satisfied by op.1.
(3.1.2.) If n < 2+ Fj, then Theorem 3.1 is satisfied by on1

Proof. Property (3.1.0) is trivial. Property (3.1.1) is immediate (indeed let n be an integer > Fs; observing
(by the hypotheses) that on.1 = 2n + 2, then

¢n.0 + ¢n.1 tackles On.1 (31)

(use Example.3 of Definition 2.1).  (8.1) clearly says that Theorem 3.1 is satisfied by o0,.1. Property (3.1.1) follows) .

Property (312) is immediate ( indeed, observing (by using property (1.1.0) of Remark 1.1) that op.1 > F5F57 and
remarking (by the hypotheses) that n < 2 + Fy, then, using the previous two inequalities, it becomes trivial to deduce that

on1 > Fi® >6+3F; >2n+4 (3.2);

SO
On1>2n+4 (8.9)

(use (3.2)) . Clearly Theorem 3.1 is satisfied by op.1 ( use inequality (3.3) and property (3.1.0) )) .0
Using Remark 3.1, let us Remark.

Remark 3.2.  Suppose that Theorem 3.1 is false; then there exists an integer n > Fys such that
on.1 does not satisfied Theorem 3.1. ( Proof. Immediate.O)
From Remark 3.2, let us define:

Definitions 3.1 (Fundamental). (i). We say that n is a counter-example to Theorem 3.1, if n > Fj
and if 0,1 does not satisfied Theorem 3.1 ( If Theorem 3.1 is false, then such a n exists, by using
Remark 3.2) .
(ii). We say that n is a minimum counter-example to Theorem 3.1, if n is a counter-example to
Theorem 3.1 with n minimum (If Theorem 3.1 is false, then such a n exists, by using (i) ).

The previous simple remarks and definitions made, we now prove simply Theorem 3.1.

Proof of Theorem 3.1.  Otherwise ( we reason by reduction to absurd), let n be a minimum counter-
example to Theorem 3.1 ( such a n exists, by using Remark 3.2 and Definitions 3.1). We observe the
following.

Observation.3.1.i. Look at n (recall n is a minimum counter-example to Theorem 3.1), and let oy 1.
Thenn > 2+ F5 and op1 < 2n + 2.

Clearly n > 2 + F5 ( Otherwise n < 2 + F5 and clearly Theorem 3.1 is satisfied by 0,1 ( use the
previous inequality and property (3.1.2) of Remark 3.1); a contradiction, since in particular o, 1 does
not satisfied Theorem 3.1); and clearly 0,1 < 2n+2 ( Otherwise 0,1 > 2n+ 2; noticing that 0,1 and
2n + 2 are even ( 0p,.1 is even (use the definition of 0,.1) and 2n + 2 is trivially even), then it becomes
trivial to deduce that the previous inequality implies that o, 1 > 2n+242; so 0,.1 > 2n+4 and clearly
Theorem 3.1 is satisfied by 0,1 (use the previous inequality and property (3.1.0) of Remark 3.1); we
have a contradiction since 0,1 does not clearly satisfied Theorem 3.1. Observation.3.1.: follows.
Observation.3.1.4i. Look at n (recall n is a minimum counter-ezample to Theorem 3.1), and let oy, 1.
Then

On.o + dn1 does not tackle oy1.



Immediate, since in particular, n is a counter-example to Theorem 3.1.
Observation.3.1.411. Look at n, and let 0,1. Then

On1 <2n and op1 = 0p—_1.1-

Firstly, we are going to show that 0,1 < 2n. Fact: 0,1 < 2n. Otherwise,

On1 > 2n; (3.4);

remarking that o, 1 and 2n are even ( 0.1 1s even (use the definition of 0, 1) and 2n is trivially even),
then inequality (3.4) immediately implies that 0,1 > 2n + 2. Note (by using Observation.3.1.7) that
on1 < 2n+2. Now using the previous two inequalities, then it becomes trivial to see that 0,1 = 2n+2;
so Theorem 3.1 is satisfied by 0,1 ( use the previous equality and property (3.1.1) of Remark 3.1),
and we have a contradiction, since 0,1 does not clearly satisfied Theorem 3.1. So

On1 < 2n (3.5).

Now we show that 0,1 = 0,—1.1. Indeed, using inequality (3.5) and property (1.1.2) of Remark 1.1
,then it becomes trivial to deduce that 0,1 = 0,_1.1. Observation.3.1.7i7 follows.
Observation.3.1.iv. Look at n. Now let (¢n.o, Pn.1) (see Definitions 2.2), and wvia (¢n.o, dn.1), con-
sider (pn—-1.0, Pn—1.1) ( this consideration gets sense, since n > 2+ Fy (use Observation.3.1.i), and so
n—1>1+F5 > F5). Then ¢n—1.0+ ¢n-1.1 — ( Pn.o + ¢n.1 ) tackles op1.

Indeed, observing (by Observation.3.1.ii¢) that 0,1 < 2n and noticing (by Observation.3.1.7) that

n > 2+ F3, then using the previous two inequalities, it becomes trivial to deduce that all the hypothe-
ses of Proposition 2.1 are satisfied, therefore, all the conclusions of Proposition 2.1 are satisfied; in
particular property (2.1.1) of Proposition 2.1 is satisfied; consequently ¢n,—1.0+ ¢n—1.1—( Pn.o+ én.1 )
tackles o0,.1. Observation.3.1.iv follows.
Observation.3.1.v. Look at n (recall n is a minimum counter-ezample to Theorem 3.1). Now let
(Pn.0, Pn1) (see Definitions 2.2), and wvia (¢pn.0,¢n.1), consider (pn_1.0, Pn—1.1) ( this consideration

gets sense, since n > 2+ F5 (use Observation.3.1.i), and son—1 > 1+ F5 > F5) . Then ¢p_10—On_1.1
tackles oy 1.

Indeed look at n (recall n is a minimum counter-example to Theorem 3.1), and via n, consider n—1
(this consideration gets sense, since n > 2 + F5 (use Observation.3.1.i), and son —1 > 1+ F5 > F5).
Observing (by Observation.3.1.iii) that 0,1 = 0,-1.1 and 0,1 < 2n, then, by the minimality of n, it
becomes trivial to deduce that n — 1 is not a counter-example to Theorem 3.1 and ¢,,_ 1.0 + ¢n_1.1
tackles 0,,—11; the previous clearly says that ¢,_1.0 + ¢n—1.1 tackles 0,1 (since 0,1 = op—1.1 (use
Observation.3.1.7i7)). Observation.3.1.v follows.

Observation.3.1.vi. Look at n and let let (¢pn.o, Pn.1). Then ¢no+ ¢n1 tackles op1.

Indeed, using Observation.3.1.iv and the definition of tackle (see Definition 2.1), then it becomes

trivial to deduce that

there exists (c,y, k,u) € R?> x 2% such that (3.6)
Gr1.0+ P11 — ( o+ Pn1 ) = c(147 — 30,2 ) 4+ iy(28 — 40, 1) (8.7),

and
o =494 0,28 ) +iy(—Tolt, + 1) = (k+iu)(70) 1 + 0,5 + 3ioh 1) (3.8),

and
Cnle,y, k) = Tn(k) + Ln(u) (3.9),



where (Cpr(c,y, k), Tn(k), Ln(u)) is defined in Recalls 2.1, and where 2 = —1. That being so, using
Observation.3.1.v and the definition of tackle (see Definition 2.1), then it becomes trivial to deduce that

there exists (¢,y, k', u') € R* x 2% such that (3.10)
Gr1.0 + dn_1.1 = (147 — 30,28 ) + iy (28 — 40, 1*) (8.11),

and
¢(—49+ 073) + iy (—Tolly +1) = (K + i )( T}, + 073 + 3o, ) (9.12),

and
Co(c Y k) = Tn(K) + L (u)) (3.13).

Now using (5.6) and (3.7) and (3.8) and (3.9) and (3.10) and (3.11) and (3.12) and (3.13) , then it
becomes trivial to deduce that
Ono+ dn1 = (¢ —c)(14T = 30, 3°) +i(y' — y)(28 — 40,7") (3.14),
and
(&= c)(—49+ 0,3 ) +i(y —y)(~Toly +1) = (¥ — k) +i(t/ — u) ) (7ol + 0,3 + 3ok, ) (3.15),

and
Culd Y k) = Crle,y k) = Tn(K') + Lo(u) = (Tn(k) + Ln(u)) (5.16),

and where
(d —c,yf —y k' —k,u/ —u) € R? x 2° (3.17).

That being so, look at equality (3.16); it is trivial (by the definition of (Cy(c,y, k), Tn(k), Ln(uw)))
that

Cn(c,y' k) — Cnlc,y, k) = On(c —c,y —y, k' — k) and Tn (k') + Ln(u') — (Tn(k) + Ln(w)) = Tn (K — k) + Ly (v — ).
Now using the preceding two equalities, then it becomes trivial to deduce that (3.16) clearly says that
Cn(d =,y —y, K — k) = Tn(K — k) + Ln(v/ — ) (3.18).

(8.14) and (3.15) and (3.18) and (3.17) clearly say that

there exists (", y" k" u") € R* x 2% such that (3.19)
$n.o + Pn1 = ¢ (147 = 30, 1) +iy" (28 — 40,1") (3.20),

and
(=49 +0,7°) +iy"(=Toph +1) = (K" + i )(Top 1 + 0,7 + Biop ;) (3.21),

and
C’n(c”,y", ]{2”) — jn(k,/) + Cn(u") (322)’

and where

(Cﬂa y//7 kﬂa u”) = (Cl -G y/ - Y, k/ - ka ul - u) (323)

Clearly ¢n.0 + ¢n1 tackles o,1 (use (3.19) and (3.20) and (3.21) and (3.22) and the definition of
tackle introduced in Definition 2.1 ). Observation.3.1.vi follows.
These simple observations made, then it becomes trivial to see that Observation.3.1.vi clearly
contradicts Observation.3.1.7:. Theorem 3.1 follows.O
Now the Fermat composites problem directly results from the following Theorem.

Theorem 3.2 (the using of Example.4 of Definition 2.1 (Section.2) ). For every integer n > Fy, we
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have op1 > 2n .
Proof. Otherwise ( we reason by reduction to absurd)7 let n be a minimun counter-example and let
0y,.1; then

on1 < 2n (3.24),

and we observe the following.
Observation.3.2.1. n > 2 + F5.

Otherwise n < 2 4 Fy; now observing (by using property (1.1.0) of Remark 1.1) that 0,1 > Fz®
and using the previous two inequalities, then it becomes trivial to deduce that o, 1 > F5F 5> 2n+4;
S0 0p.1 > 2n + 4 and the previous inequality contradicts inequality (3.24). Observation.3.2.1 follows.
Observation.3.2.2. 0,1 = 0p_1.1.

Indeed, remarking (by (3.24)) that 0,1 < 2n, then, using the previous inequality and property
(1.1.2) of Remark 1.1, it becomes trivial to deduce that 0,1 = 0,-1.1. Observation.3.2.2 follows.
Observation.3.2.3. op.1 = 2n.

Indeed look at n, and via n, consider n — 1 ( this consideration gets sense, since n > 2 + Fy (by
Observation.3.2.1), and therefore n — 1 > 1 + F5 > F5). Then, by the minimality of n, n — 1 is not a
counter-example to Theorem 3.2; consequently 0,-1.1 > 2(n — 1) and the previous inequality clearly
says that

On—11>2n—2 (325)
Note that

On.1 = Op-1.1 (3.26),
by Observation.3.2.2. Now using (3.25) and (3.26), then it becomes trivial to deduce that

On1>2n—2 (3.27).

Noticing that 0,1 and 2n — 2 are even ( 0,1 is even (use the definition of 0,.1) and 2n — 2 is trivially
even), then it becomes trivial to deduce that inequality (3.27) implies that 0,1 > 2n — 2 + 2; the
previous inequality clearly says that

On1 > 2n (3.28).

Clearly o5,.1 = 2n (use inequalities (3.24) and (3.28)). Observation.3.2.3 follows.
Observation.3.2.4(the using of Example.4 of Definition 2.1 of Section.2). Look at 0,1 and consider
(én.0,Pn.1) (see Definitions 2.2). Then ¢p. o+ ¢n1 does not tackle oy .

Indeed observing (by Observation.3.2.3) that 0,1 = 2n and using Example.4 of Definition 2.1,
then it becomes trivial to deduce that ¢,.0+ ¢,.1 does not tackle o,1. Observation.3.2.4 follows.

These simple observations made, look at 0,1 and consider ¢, g + ¢,.1; observing that 0,1 = 2n
(by Observation.3.2.3) and remarking that n > 2+ F5 (by Observation.3.2.1), then using the previous,
it becomes immediate that all the hypotheses of Theorem 3.1 are satisfied, therefore, the conclusion
of Theorem 3.1 is satisfied; consequently

On.o + ¢n.1 tackles op.1 (329)

(3.29) clearly contradicts Observation.3.2.4. Theorem 3.2 follows.O
Theorem 3.2 immediately implies the Fermat composites problem.

Theorem 3.3 (The Proof of the Fermat composites problem). There are infinitely many Fermat
composites. [Pmof. Observe [by using Theorem 3.2] that

For every integer n > F5 we have o,.1 > 2n (3.50);
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consequently, there are infinitely many Fermat composites ( use (3.29) and Proposition 1.1) . D]

Epilogue. Our simple article clearly shows that divisibility helps to characterize Fermat com-
posites as we did in [T] and [8] and [9] and [10], and elementary arithmetic calculus coupled with
trivial complex calculus and elementary computation help to give a simple analytic proof of problem
posed by the Fermat composites.
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