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Abstract and Definitions.
A Fermat composite is a non prime number of the form F,, = 22" + 1, where n is an integer > 1. Original characterizations of
Fermat composites via divisibility are given in [7] and [8] and [9] and [10]. It is known (see [1] or [2] or [3] or [4] and [5] and [6])
that F5 and Fg are Fermat composites; Fermat composites are known for some integers > Fg, and the Fermat composites problem
stipulates that there are infinitely many Fermat composites. In this paper, we give the short proof of the Fermat composites
problem, by reducing this problem into a simple equation of two unknowns and by using elementary combinatoric coupled with
elementary arithmetic calculus, elementary arithmetic congruences, trivial complex calculus and elementary computation. More-
over, our paper clearly shows that divisibility helps to characterize composite numbers as we did in [7] and [8] and [9] and [10],
and elementary arithmetic calculus coupled with elementary arithmetic congruences help to give the simple proof of the Fermat
composites problem .

AMS classification 2000: 05zx and 11zx.

Preliminaries. In Section.1, we introduce definitions that are not standard and we present some
elementary properties deduced from these definitions. In Section.2, we reduce the Fermat compos-
ites problem into a simple equation of two unknowns and we prove properties linked to elementary
arithmetic claculus, elementary arithmetic congruences, trivial complex calculus and elementary com-
putation. In Section.3, using a simple proposition proved in Section.1, and some elementary properties
of Section.2, we give the short proof of the Fermat composites problem.

1. Introduction. In this section, we introduce definitions that are not standard and we present
some elementary properties deduced from these definitions.
Definitions 1.1. For every integer n > 2, we define FCO(n), oy, and 0,1 as follows:

FCO(n) = {z;1 < z < 2nandx is a Fermat composite}, o, = glcfg(( )0, and oy,.1 = 40%" [observing
o€ n

(see Abstract) that Fj is a Fermat composite, then it becomes immediate to deduce that for every
integer n > F5, F5 € FCO(n)].
Using the previous definitions and denotations, let us remark.

Remark 1.1.Let n be an integer > F5; look at FCO(n), on, and o1 introduced in Definitions 1.1.
Then we have the following three simple properties.

(1.1.0.) =1+ F5 <op <o0ni; op1=40o"; op1 > F5F5; and op.1 18 even.

(1.1.1.) If o, <n, then: o, = 0p—1 and op.1 = Op—1.1-

(1.1.2.) Ifo,1 <2n, then o, <n andopi = 0p_11.

Proof. Property (1.1.0) is trivial [Indeed, it suffices to use the definition of o, and 0,1, and the fact
that F5 € FCO(n) ( note that Fs is a Fermat composite (use Abstract ), and observe that n is an
integer > F3)]. Property (1.1.1) is immediate | Indeed, if 0, < n, clearly n > F5 (use the definition
of o, and observe that F5 € FCO(n), since n is an integer > F5), and so o, < n < 2n — 2 ( since
n > Fy (by the previous) and o, < n (by the hypotheses) ); consequently

on <2n—2 (1.1).



Inequality (1.1) immediately implies that FCO(n) = FCO(n — 1) and therefore

Op, = Op—1 (1.2).

Equality (1.2) immediately implies that 0,1 = 0,—1.1. Property (1.1.1) follows|. Property (1.1.2)
is trivial [Indeed, clearly

on <n (1.3);
( otherwise

op>n (1.4).

Now look at on.1 and observe (by using property (1.1.0)) that
on.1 = 4ofm (1.5).

Noticing (by the hypotheses) that n > Fs, then, using (1.4) and (1.5), it becomes trivial to deduce that on.1 > —1 4 4n™ > 2n;
S0 0.1 > 2n and we have a contradiction, since 0,1 < 2n (by the hypotheses). So 0, < n ) Clearly Op1 = Op—1.1 ( use
inequality (1.3) and property (1.1.1) ). Property (1.1.2) follows]. Remark 1.1 follows. O

Using the definition of 0,1 (see Definitions 1.1) , then the following remark and proposition become
immediate.

Remark 1.2. If limy, 4o 0n.1 = +00, then there are infinitely many Fermat composites.
P’FOOf. Immediate [indeed7 it suffices to use the definition of 0,1 (see Definitions 1.1) ] O

Proposition 1.1.  If for every integer n > F5, we have 0,1 > n, then there are infinitely many
Fermat composites.
Proof.  Clearly limy,, o 0n.1 = +00; therefore there are infinitely many Fermat composites [use the
previous equality and apply Remark 1.2} .0

Proposition 1.1 clearly says that: if for every integer n > F5, we have 0,1 > n, then, there
are infinitely many Fermat composites; this is what we will do in Section.3, by using Proposition
1.1, elementary combinatoric, elementary arithmetic congruences, elementary complex calculus, and
reasoning by reduction to absurd. Proposition 1.1 is stronger than all the investigations that have
been done on the Fermat composites problem in the past. Morerover, the reader can easily see that
Proposition 1.1 does not use divisibility and is completely different from all the investigations that
have been done on the Fermat composites problem in the past. So, in Section.3, when we will give
the analytic simple proof of the Fermat composites problem, we will not need strong investigations
that have been done on the previous problem in the past.

2. Simple properties linked to elementary arithmetic calculus, trivial complex calculus,
elementary arithmetic cnogruences and trivial computation. In this section, we reduce the
Fermat composites problem into a simple equation of two unknowns and we prove properties linked
to elementary arithmetic calculus, elementary arithmetic congruences, trivial complex calculus and
trivial computation. Here definitions of FCO(n), o, and 0,1 (see Definitions 1.1) are crucial.

Recalls 2.1 ( Real numbers, the real number zy1, relative integers, elementary arithmetic congru-
ences, and complex numbers). Recall that R is the set all real numbers and for every real number y,
siny + cos®y = 1. We recall that c is a relative integer if ¢ is an integer > 0 or if ¢ is an integer
< 0. For example —108 and —13 and —11 and 0 and 7 and 24 are relative integers; % is not a relative
integer. We recall that Z is the set of all relative integers. Let n be an integer > F5 and let 0,1 ( see
Definitions 1.1); look at the real number

Zn1 = 400 | — 702 | + 3051 + (30p.1 — 302 |)sin0n1 + (302 | — 30p.1)c05%0p.1.



Now let 4/ be a real number; we recall that y' = 0 mod(z,.1) if and only if there exists a relative
integer k/ such that y' = k’z,1. We recall ( see above) that R is the set all real numbers and clearly
ZXxR={(c,z);c € Zand x € R} (in other words, Z x R is the set of all couples (¢, z), where c € Z
and z € R). Finally, we recall that 0 is a complex number, if § = x + iy, where x and y are real, and
where i is the complex entity satisfying i = —1.

We will use definitions of Recalls 2.1 in Definition 2.1 (in Definition 2.1, we will introduce the
notion of tackle; this notion is fundamental and crucial for the short complete simple proof of the
Fermat composites problem).

Definition 2.1 (tackle). Let n be an integer > F5; look at 0,1 ( see Definitions 1.1) and let the real
number z, 1 introduced in Recalls 2.1. We say that Y tackles tackles z, 1, if there exists (¢,y) € ZxR
such that
Y =c+ 5yop1 + (—c+ 4yon1)i
and
c( —0d 1+ 5021 —40p1 + (30n.1 — 302 1)cos?on.1 )
03 +02, +on1+1

+y(op1 —1) = 0mod(zn.1)

( in Example.3, the previous definition will help us to reduce the Fermat composites problem into

a simple equation of two unknowns ) Example.0. Let n be an integer > F5 and let 0,1 ( see
Definitions 1.1). Now look at the couple of equations (v 1, tin.1), where

Up1=—1+ 200721'1 — 25073;'1 + Oi_l + 502,1 + (150%_1 — 150%_1)00320%1,

and
pn1=( 1+ 160721.1 — 200%1 — 031.1 + 4021 + (1203’1.1 — 12031.1)00520”1 )i;i2 =—1.

If 0,1 = 2n + 2, then the complex number v, 1 + py, 1 tackles z, 1. Proof. Indeed, observing (by the
hypotheses) that 0,1 = 2n + 2 and using the definition of the couple (v,.1, i1n.1) introduced above,
then it becomes immediate to check (by elementary computation) that

Vni+ pn1 = ¢+ 5yon1 + (—c+ 4yop 1)i (2.1),

where ¢ =041 —1 and y = 40p1 — 5021 + 03 1 + (302 | — 30p.1)c05*0n.1 (2.2).

Now observing that o}, —1 = (0n1 — 1)(03 | + 021 + 0n.1 + 1) and using the previous equality
along with the two equalities of (2.2), then it becomes trivial to check (by elementary computation)
that 0(702.1+50i'1f4on,1+(3on,1730%1)00320”,1)
03 | +02 |+on1+1

c(—of‘l'l—i-t')o%'l—4onA1+(3on,1—30%'1)005207“)

oi.1+oi.1+on-1+1

the previous congruence along with (2.1) and (2.2) and the definition of tackle introduced above).
Example.0 follows. Example.1l. Let n be an integer > F5 and let 0,1 ( see Definitions 1.1). Now

consider equations

+ y(on1 — 1) = 0; the previous equality clearly says that

+y(on1—1) = 0mod(zn1). So Vp1 + pna tackles z, 1 (use

On.1 —2n—2

Vno = ( 5 )(1+o0p1 — 4031.1 — 1402.1 — 150;11.1 — 1502.1 + 1502152'7120”_1 )
_ Op1—2n—2 2 3 4 5 2 .2 N N
fno = (f)( —1 —op1— 50,1 — 130, 1 — 120, ; — 120, | + 1207 ;sin“on.1 )i, i = —1;
Un1 = —1+ 2002 1 — 2505 1 + o0 1 + 505 | 4 (1503 1 — 1502 1)cos®0n 1;
g = (141602 | — 2003 | — o | +408 | + (1203 | — 1202 |)cos’0,1 )i, i* = —1;
and

On.2 = Vno + tno + Vni + fni.



If 0,,.1 = 2n, then ¢, 2 = ¢p.o + dpn.1, where
Gno=—2—0n1+90%, — 110> | + 160;11.1 + 1505 | + 508 | 4 1503 cos*o, 1,
and
bni = (24 0p1 +902 | — 702 | +110% | + 1205 | + 408 | + 1203 | cos%0,1)i; 02 = —1.

Proof. Indeed, observing (via the hypotheses) that 0,1 = 2n and remarking that sin2o, 1 +cos?o0,.1 =
1, then, using the previous two equalities and the definitions of (vp.0, n.0s Vn.1s fn.1s Pn.0s Pn.1) given
above, it becomes trivial to check ( by elementary computation) that ¢,0 = vp0 + V1 and ¢ =
tn.0 + fin.1; now using the previous two equalities along with the definition of ¢, 2 (recall that ¢, o =
Vn.0+n.0+Vn.1+1n.1), then it becomes trivial to deduce that ¢p.2 = Vy.o+n.0+Vn1+tn1 = Onotodn1-
Example.1 follows. Example.2. Let n be an integer > F5 and let 0,1 ( see Definitions 1.1). Now
consider equations Vn.o, fn.0, Vn.1, Mn1 and ¢,o introduced in Example.1. If 0,1 = 2n + 2, then
¢dn.2 tackles z,.1. Proof. Indeed, look at equations vy, g, tin.0, Yn.1 and pi,.1 introduced in Example.1;
observing (via the hypotheses) that 0,1 = 2n + 2 and using the previous equality, then it becomes
trivial to check (by elementary computation) that

Uno+ pno +Un1+ pn1 =0+0+vp1+ tin1 = Vn1+ tn (23)

Now consider equation ¢y, 2 introduced in Example.1; then using (2.3), it becomes trivial to deduce
that

¢n.2 =VUpn1+ Uni (24)

Clearly ¢, 2 tackles z,.1 ( use equality (2.4) and Example.0). Example.2 follows. Example.3 (fun-
damental: reduction of the Fermat composites problem into an equation of two unknowns ) . Let
n be an integer > F5 and let 0,.1. Now consider equations vy 0, fn.0, Vn.1, tn.1 and ¢n .o introduced
introduced in Example.1. If 0,1 = 2n, then

On.o does not tackle z,1

where z,1 is introduced in Recalls 2.1. Proof. Otherwise (we reason by reduction to absurd), let(c,y) €
Z x Rsuchthat

Sn.2 = c+5yon.1 + (—c+ 4yon.1)i (2.5)
and .
c( —op 1+ 5031'1 —4op.1 + (30n.1 — 30%'1)005207” )

+y(on.1 —1) = 0 mod(zn. 2.5,
03 +02 +on1+1 y(on.1 —1) (2n.1) (2.5")

such a (c,y) exists, since ¢n.2 is supposed to tackle z,.1. Observing (under the hypotheses) that 0,.1 = 2n and using Example.1,
then we immediately deduce that

d)n.Z = ¢n.0 + ¢n.1 (26)7

where
Gn.0=—2—o0n1+90% ; — 1105 | +160% | + 1502 ; + 508 | + 1505 cos?on.1,

and
dn1 = (2+0n1+902 | —T0> | + 1102 | + 1205 | 4+ 408 | + 1203 | cos?on.1)i.

Using equality (2.6), then it becomes very easy to deduce that equality (2.5) says that

®n.0 + én.1 = c+5yon.1 + (—c+4dyon.1)i (2.7).

Now using equations ¢n_.o and ¢,.1 (given above) along with the fact that i2 = —1, then it becomes trivial to deduce that (2.7)
clearly says that

c+5yon.1 = ¢n.o and (—c+4yon.1)i = Pn.1 (2.8).

It is very easy to check that the two equalities of (2.8) imply that

c=—-2—op1— 03141 — 03’1‘1 + 0;1141 and y = 20n.1 — 2031_1 + 30%}1 + 30?1'1 + 02.1 + 3031‘100320”,1 (2.9).



Using the two equalities of (2.9), then it becomes trivial to deduce that

o( fo;r‘l_l + 5031'1 —40p.1 + (30n.1 — 30%}1)00820”1 )
03 1 4+02, ton1+1

+y(on1 —1) # 0mod(zn.1),

where zp.1 is introduced in Recalls 2.1 [[indeed, observing (by using the two equalities of (2.9) ) that
(e,y) = (=2 = o0n.1 —0p 1 —0p1 +0p1,20n.1 = 20, 1 + 30}, 1 + 3051 + 051 + 307, 1c05°0n.1),

then using the previous equality, it becomes trivial to check (by elementary computation) that

2

c( —05 | +502 | —4dop.1 + (30n.1 — 302 |)cos?on.1 )

0%.1 + O%J +on1+1

+y(on.1—1) = —20,.1 + 205 1;

( _Oi.l"'soi.l_40n.1+(30n,1—30%1)00520".1 )
of 1+07 jtonatl
( 70?1.1 +50i_1 —4op. 1+ (3001 730241 YeosZon.1)
03 [ +02 [ Fon1+1
the previous congruence along with the previous equality, it becomes trivial to deduce that

the previous equality clearly implies that < +y(on1—1) #Z 0mod(zn.1).

+ y(on.1 —1) = 0 mod(zn.1), then using

Indeed assume otherwise and suppose that £

—20p.1 +205 | = 0 mod(zn.1) (2.9%),
where 2, 1 is introduced in Recalls 2.1 and is of the form
Znl = 402.1 — 70%1 +30n.1 + (30n.1 — 30%A1)sin20n,1 + (3031‘1 — 30n.1)c05%0n.1.
Using the fact that sin20,.1 = 1 — cos20,,.1, then it becomes trivial to deduce that the previous equality is of the form
Zn1 = 40‘;3'1 - 100%1 + 60n.1 + (60%_1 - 60n‘1)coszonA1 (2.9").

Observing that 0,1 > F5F5 (note that n > F5 and use property (1.1.0) of Remark 1.1), and using inequality on.1 > F5F5 previously
mentioned, then it becomes trivial to deduce that equality (2.9) implies that

Zn.1 > 200 1 > —20n.1 + 205 | > 0. (2.9

(2.9") trivially implies —20p,.1 + 20%1 % 0 mod(zn.1), and the previous contradicts the congruence (2.9’). So
c( 70‘2_1 + 502'1 —4on.1 + (3on.1 — 302'1)0032071'1 )

+y(on.1 —1 0 mod(zn.1).
02114}0721‘14"»0”‘1%»1 y( n.1 ) 7‘:é (nl)]]

5 2 2 2
c(_—op 14507 | —4op.1+(30n.1—30; )cos®on.1 )

3 2
on.1-"_0n,1+0"'1+1

Since + y(on1 — 1) #Z 0mod(zn.1), we have a contradiction (because ¢n.2 was

<( 702.1+50721.17407l-1+<30n.1*303,,'1)6052071,_1 )
3 2
on,l+on.1+o"'1+1

supposed tackling z,.1; so in particular +y(op.1 —1) = 0 mod(zn.1)). Example.3
follows.

Example.3 reduces the Fermat composites problem into a simple equation of two unknowns. In-
deed, Example.3 clearly says that, if 0,1 = 2n, then we will have a simple equation of two unknowns
which does not tackle z,1. We will use Example.3 in Section.3 to immediately deduce the Fermat
composites problem. Examples of Definition 2.1 will help us in Section.3. Now, via Definition 2.1, let

us define:

Definitions 2.2 (Fundamental). Let n be an integer > F5, and let o,.1; then equations v, g,
n.0s Un.l, fn.1 and ¢, o are defined as follows.

on1—2n—2 .
Vpo = (%)( 1+op1— 40%.1 — 140%1 — 150i.1 — 15021 + 150%‘15m20n,1 )
—2n—2
Lo = (%)( —1 =01 — 502, — 1303 | — 120} | — 1203 | + 1202 | sin’op1 )i, i° = —1;
Un1 = —142002 | — 2502 | + 0t | + 508 | + (150 | — 1502 | )cos®op 1;
pn1=(1+ 16031.1 — 2002.1 — oﬁll + 402_1 + (1205’1.1 — 120,21.1)0052071_1 )i, i =—1;



and
¢n.2 = Vno+ Uno+ Vn1+ Uni-

It is immediate that for every integer n > Fy, equations vy,.0, tn.0s Yn.1, tUn.1 and ¢,o are well
defined and get sense (see Example.1 of Definition 2.1). Now using Definitions 2.2, then we have the
following elementary Proposition.

Proposition 2.1.Let n be an integer > 1+ F5 and let 0,1 ( see Definitions 1.1); now look at equation
On.2 introduced in Definitions 2.2, and via ¢,.2, consider equation ¢,_1.2 (this consideration gets sense,
since n > 1+ F5, and therefore n — 1 > F5). If 0,1 < 2n, then we have the following two simple
properties.

(2.1.0.) Onl1 =0p-1.1-

(2.1.1.) ¢p_1.2 — ¢n2 tackles zn1, where z,1 is introduced in Recalls 2.1 and is of the form

2 2\ .. 2 2 2
Zpl = 402.1 — 705 1 4+ 30n1 + (30n.1 — 30, 1)sin“on1 + (307 1 — 30n.1)c0s"0n 1.

PT’OOf. (2.1.0). Indeed, observing (by the hypotheses) that o,.1 < 2n, clearly op.1 = 0p—1.1 (use the previous inequality and
property (1.1.2) of Remark 1.1). Property (2.1.0) follows.
(2.1.1). Indeed, look at ¢n.2 and observe (by using Definitions 2.2) that

¢7’L42 =vno+ Hn.0 + VUn.1 + Mn.1 (210)7
where 5 5
Un.o = (%)( 14 0n.1 — 402 1 — 1403 | — 1502 | — 1505 1 + 1502 1sin0.1) (2.11),
On.1—2n—2 2 3 4 5 2 2 ;
Hn.0 = (f)( —1—op.1 —50;, 1 — 130, 1 — 120, 1 — 120, ; + 120;, 1 sin“opn.1 )t (2.12),
Vna = =14 200}, 1 — 2505 1 + 05, 1 + 50§, 1 + (150} 1 — 150, 1)cos’op.1 (2.13),
and
pn1 = (141602 | — 2003 | — 0% | 4+ 408 | + (1203 | — 1202 )cos®on.1 )i (2.14).

Using equality (2.10), then it becomes trivial to deduce that
$rn—1.2 =Vn-1.0 + fn-1.0 + Vn—1.1 + fn—1.1 (2.15).

Look at equality (2.15) and consider v,—1.0; then using the expression of v, ¢ given by equality (2.11), it becomes trivial to decuce
that

On—1.1—2(n—1)—2
2

vn—1.0 = ( J(1+on—1.1— 40%—1.1 - 140%—1.1 - 150%—11 - 1502—1.1 + 150%—1151‘”2071—141 ) (2.16).

It is trivial to check (by elementary computation) that equality (2.16) is of the form

Op—1.1—2n—2

5 Y1+ op_1.1—402_1 1 —140>_, | —150%_1 1 — 1500 _1 1 + 1502 _; 1sinop_1.1) + ' (2.17),

Vn—1.0 = (

where
Vi =(14o0n_11—402_;, —1403 | —150% | | — 150> |, +1502_, ;sin%on_11) (2.18).

Now look at (2.17) and (2.18); noticing ( by property (2.1.0) ) that 0,,.1 = 0n—1.1, then it becomes trivial to deduce that equalities
(2.17) and (2.18) clearly say that

on1—2n—2

Un_1.0=( 5 V(14 on.1 —402 | — 1405 | | —150% | — 1502 | + 1502 ;sin%on.1) 4+ (2.19),
where )
V' = (14 o0n1 — 402 | — 1403 | —150% | — 1505 | + 1502 1 sin20p.1) (2.20).
Clearly
Un—1.0 = Vn.0 + (1 + 0on.1 — 402 | — 1402 | — 150% | — 1505 | 4 1502 ;sin%on.1) (2.21),

by using equalities (2.11) and (2.19) and (2.20). It is immediate that equality (2.21) says that

Un—1.0 — Vn.o = (1 4+ 0p.1 — 402 | — 1403 | — 1508 | — 1505 | + 1502 ;sin%0p.1) (2.22).



Look again at equality (2.15) and consider pp—1.0; then using the expression of p,. 0 given by equality (2.12), it becomes trivial to

decuce that

On—11—2(n—1)—2
2

pn—1.0=( (=1 —o0p—1.1—502_14—1305 1 —120% || —1200 1, +1202_, 1sinon_1.1)i (2.23).

It is trivial to check (by elementary computation) that equality (2.23) is of the form

On—1.1—2n

-9 . .
Bn—1.0 = ( D) J(—1—on_1.1— 5031—1.1 - 130?1—1.1 - 120;’11,—1,1 - 120%—141 + 120%—1.15”1207171.1 Yit+u' o (2:24),

where
W=(=1—o0p_1.1—502_1 1 —1302_1 1 —120%_1 1 —1205_; 1 +1202_; sin®0n_1.1)i (2.25).

Now look at (2.24) and (2.25); noticing ( by property (2.1.0) ) that 0,.1 = 0n—1.1, then it becomes trivial to deduce that equalities
(2.24) and (2.25) clearly say that

o —2n —2
Un—1.0 = (”-1#)( —1—o0p1 —502 ] —130> | —120% | —120% | + 1202 ;sin0n.1 )i + 1’ (2.26),
where
W= (=1—o0p1—502, — 1303 | — 1204 | — 1205 | 4 1202 ;sin%0p.1 )i (2.27).
Clearly
Pn—1.0 = fin.0 + (=1 —o0p.1 — 502 ;| — 1303 | — 1202 | — 1203 | + 1202 ;sin0,.1 )i (2.28),

by using equalities (2.12) and (2.26) and (2.27). It is immediate that equality (2.28) says that
Bn—1.0 — fin.o = (=1 —0p.1 — 502 | — 1303 | — 1202 | — 1203 | + 1202 ;sin0y,.1 )i (2.29).

That being so, consider again equality (2.15) and look at v,,—1.1; then using the expression of vy,.1 given by equality (2.13), it
becomes trivial to decuce that

Un—11=—142002_1 1 —2505_1 1 +0% 11 +505_1 1+ (1502 _1 1 —150%_1 1)cos®0on—1.1 (2.30).

Now look at (2.30); noticing ( by property (2.1.0) ) that 0,.1 = on—1.1, then it becomes trivial to deduce that equality (2.30) clearly
say that
Un—1.1 = —142002 ; — 2505 1 + o 1 4+ 505 1 + (1505 1 — 1502 ;)cos®on.1 (2.31).

Clearly
Vn—1.1 = Vn.1 (2.32),

by using equalities (2.13) and (2.31). It is immediate that equality (2.32) says that
Un—1.1—Vn1 =0 (233)

Finally, consider again equality (2.15) and look at pyn—1.1; then using the expression of equation py,.1 given by equality (2.14), it
becomes trivial to decuce that
pn—11 = (14160} 11 — 2005 ;1 —0p_1q +405_11 + (120}, _1 1 — 1205 _; 1)cos’0n_1.1 )i (2.34).

Now look at (2.34); noticing ( by property (2.1.0) ) that 0,.1 = 0n—1.1, then it becomes trivial to deduce that equality (2.34) clearly
says that
pn—1.1 = (141602 | — 2003 | — o | +408 | + (1203 | — 1202 |)cos?0n.1 )i (2.35).
Clearly
Hn—1.1 = Hn.1 (2.36),

by using equalities (2.14) and (2.35). It is immediate that equality (2.36) says that
Hn—1.1 — Hn.1 =0 (2.37).

Using equalities (2.22) and (2.29) and (2.33) and (2.37), then it becomes trivial to see that

Vn—1.0 — Vn.0 + Bn—-1.0 = #n.0 + Vn—1.1 — Un.1 + n—1.1 — Hn.1 = Pn.0 + Pho (2.38),
where
Pn.o = (14 0,1 —402 | — 1403 | — 1502 | — 1505 1 + 1502 | sin0n.1) (2.39),
and .
Pho=(—1—o0n1—502 ] —1305 | —120% | — 1205 | + 1202 ;sin’0p.1 )i (2.40).
It is trivial that equality (2.38) clearly says that
Vn—1.0 + Hn—1.0 T Vn—1.1 + fin—1.1 — (Un.0 + in.0 + Vn.1 + fin.1) = pn.0 + Ph.o (2.41).



Now look at (2.41), then using equalities (2.10) and (2.15), it becomes trivial to deduce that equality (2.41) clearly says that

bn-1.2 = Pn.2 = pn.0 + Pp.o (2.42).

That being so, consider equality (2.42) , then, using expressions of the couple (pn.0, p, ) given by equalities (2.39) and (2.40), it
becomes very easy to check (by elementary computation) that equality (2.42) is of the form

Pn—1.2 — dn.2 = ¢+ 5yon.1 + (—c+ 4yon.1)i (2.43),

wherec =1+ 0.1 +02 | +05 | and y = —op.1 — 302 | — 303 | — 304 | + 3on.15in%0p.1 (2.44).

Now look at zp.1 introduced in Recalls 2.1, then using the two equalities of (2.44), it becomes trivial to check (by elementary
c(_—0) 14502 | —40p.1+(30n.1 =302 ;)cos®on.1 )
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computation) that

+ y(on.1 — 1) = —2n.1, and clearly

o( —oi_l + 5031'1 —40p.1 + (30n.1 — 30%}1)00320,1‘1 )
03 1 4+02, ton1+1

+y(on1—1) = 0mod(zn.1),

by using the previous equality. Using the previous congruence along with (2.43) and (2.44), then it becomes very easy to deduce
that
there exists (¢,y) € Z X R such that, (2.45)

¢n—142 - ¢n42 =c+ 5y0n.1 + (_C + 4y0n.1)7;7 (246)

o( 70%1 + 502'1 —4op.1 + (3on.1 — 3031'1)00520“‘1 )

and = 5
O 1 + On1 +on1+ 1

+y(on.1 —1) = 0mod(zn.1). (2.47).

Clearly ¢pn—1.2 — ¢n.2 tackles 2,1 (use (2.45) and (2.46) and (2.47) and the definition of tackle introduced in Definition 2.1 )
Property (2.1.1) follows and Proposition 2.1 immediately follows. O

The previous simple Proposition made, we are now ready to give the analytic simple proof of the
Fermat composites problem.

3. The short proof of the Fermat composites problem. In this Section, the definitions of
FCO(n), o, and 0,1 (see Definitions 1.1), the definition of relative integers (see Recalls 2.1), the
definition of tackle (see Definition 2.1), and the definition of equation ¢, o (see Definitions 2.2), are
fundamental and crucial.

Now the following Theorem immediately implies the Fermat composites problem.

Theorem 3.1. Let n be an integer > F5 and let 0,1 (see Abstract and Definitions for the meaning
of F5, and see Definitions 1.1 for the meaning of oy,.1); look at equation ¢, o introduced in Definitions
2.2. If o1 <2n+ 2, then

$n.2 tackles zy 1,

where z,.1 1s introduced in Recalls 2.1 and is of the form

2 2 .9 2 2
Znl = 40,51.1 — 705 1 + 30p1 + (30p.1 — 307 1)sin“on1 + (305, 1 — 30n.1)Cc08 0 1.

We are going to prove simply Theorem 3.1. But before, let us remark.

Remark 3.1. Let n be an integer > F5 and let 0,.1. We have the following three trivial proper-
ties.
(3.1.0.) If 0,1 > 2n+4, then Theorem 3.1 is satisfied by on.1.

(3.1.1.) If 0,1 =2n+ 2, then Theorem 3.1 is satisfied by oy 1.
(3.1.2.) If n < 2+ Fy, then Theorem 3.1 is satisfied by op1

PT’OOf. Property (310) is trivial. Property (311) is immediate (indeed let n be an integer > Fs; observing
(by the hypotheses) that on.1 = 2n + 2, then

bn .2 tackles zp 1 (3.1),

by using Example.2 of Definition 2.1.  (8.1) clearly says that Theorem 3.1 is satisfied by o,.1. Property (3.1.1) follows) .
Property (312) is immediate ( indeed, observing (by using property (1.1.0) of Remark 1.1) that o,.1 > F5F57 and



remarking (by the hypotheses) that n < 2 + Fy, then, using the previous two inequalities, it becomes trivial to deduce that

On.1 >F§?5 >6+3F5>2n+4 (3.2);

SO

on1>2n+4 (3.9),

by using (8.2). Clearly Theorem 3.1 is satisfies by o,.1, by using inequality (3.3) and property (3.1.0)) .0
Using Remark 3.1, let us Remark.

Remark 3.2.  Suppose that Theorem 3.1 is false; then there exists an integer n > F5 such that
on.1 does not satisfied Theorem 3.1. ( Proof. Immediate.O)
From Remark 3.2, let us define

Definitions 3.1 (Fundamental). (i). We say that n is a counter-example to Theorem 3.1, if n > Fj
and if 0,1 does not satisfied Theorem 3.1 ( If Theorem 3.1 is false, then such a n exists, by using
Remark 3.2) .
(ii). We say that n is a minimum counter-example to Theorem 3.1, if n is a counter-example to
Theorem 3.1 with n minimum (If Theorem 3.1 is false, then such a n exists, by using (i) ).

The previous simple remarks and definitions made, we now prove simply Theorem 3.1.

Proof of Theorem 3.1.  Otherwise ( we reason by reduction to absurd), let n be a minimum counter-
example to Theorem 3.1 ( such a n exists, by using Remark 3.2 and Definitions 3.1). We observe the
following.

Observation.3.1.i. Look at n (recall n is a minimum counter-example to Theorem 3.1), and let oy, 1.
Thenn > 2+ F5 and 0,1 < 2n + 2.

Clearly n > 2 + F5 ( Otherwise n < 2 + F5 and clearly Theorem 3.1 is satisfied by 0,1 ( use the
previous inequality and property (3.1.2) of Remark 3.1); a contradiction, since in particular o, 1 does
not satisfied Theorem 3.1); and clearly 0,1 < 2n+2 ( Otherwise 0,1 > 2n+ 2; noticing that 0,1 and
2n 4+ 2 are even ( 0,1 is even (use the definition of o, 1) and 2n + 2 is trivially even), then it becomes
trivial to deduce that the previous inequality implies that 0,1 > 2n+242; so 0,1 > 2n+4 and clearly
Theorem 3.1 is satisfied by 0,1 (use the previous inequality and property (3.1.0) of Remark 3.1); we
have a contradiction since o,.1 does not clearly satisfied Theorem 3.1. Observation.3.1.i follows.
Observation.3.1.ii. Look at n (recall n is a minimum counter-example to Theorem 3.1), and let oy, 1.
Then

¢Pn.2 does not tackle z, 1.

Immediate, since in particular, n is a counter-example to Theorem 3.1.
Observation.3.1.1i1. Look at n, and let 0,1. Then

on.1 < 2n and 0p1 = Op—1.1-

Firstly, we are going to show that 0,1 < 2n. Fact: 0,1 < 2n. Otherwise,

Oon.1 > 2n; (3.4);

remarking that 0,1 and 2n are even ( 0n.1 1s even (use the definition of 0, 1) and 2n is trivially even),
then inequality (3.4) immediately implies that 0,1 > 2n + 2. Note (by using Observation.3.1.7) that
on.1 < 2n+2. Now using the previous two inequalities, then it becomes trivial to see that 0,1 = 2n+2;
so Theorem 3.1 is satisfied by 0,1 ( use the previous equality and property (3.1.1) of Remark 3.1),
and we have a contradiction, since 0,1 does not clearly satisfied Theorem 3.1. So

on1<2n (3.5).



Now we show that 0,1 = 0,—1.1. Indeed, using inequality (3.5) and property (1.1.2) of Remark 1.1
,then it becomes trivial to deduce that 0,1 = 0,-1.1. Observation.3.1.iii follows.
Observation.3.1.iv. Look at n. Now let ¢n.o (see Definitions 2.2), and via ¢n.2, consider ¢p_1.2 (
this consideration gets sense, since n > 2+ F5 (use Observation.3.1.i), and son —1> 1+ F5 > F5).
Then ¢p_1.2 — ¢no tackles zp1.

Indeed, observing (by Observation.3.1.ii¢) that 0,1 < 2n and noticing (by Observation.3.1.7) that
n > 2 + Fy, then using the previous two inequalities, it becomes trivial to deduce that all the hy-
potheses of Proposition 2.1 are satisfied, therefore, all the conclusions of Proposition 2.1 are satisfied;
in particular property (2.1.1) of Proposition 2.1 is satisfied; consequently ¢, 1.9 — ¢pn.2 tackles z, 1.
Observation.3.1.iv follows.

Observation.3.1.v. Look at n (recall n is a minimum counter-example to Theorem 3.1). Now let ¢y, .2
(see Definitions 2.2), and via ¢n.2, consider ¢n_1.2 ( this consideration gets sense, since n > 2 + Fy
(use Observation.3.1.i), and son —1> 1+ F5 > F5). Then ¢p_19 tackles zp1.

Indeed, look at n (recall n is a minimum counter-example to Theorem 3.1), and via n, consider n—1
(this consideration gets sense, since n > 2 + Fj (use Observation.3.1.7), and son —1 > 1+ F5 > F5).
Observing (by Observation.3.1.7i7) that 0,1 = 0,—1.1 and 0,1 < 2n, then, by the minimality of n, it
becomes trivial to deduce that n—1 is not a counter-example to Theorem 3.1 and ¢,,_1 .o tackles z,,_1.1;
the previous clearly says that ¢,_1 2 tackles 2,1 (observe that 0,1 = 0,-1.1 (use Observation.3.1.7i7)),
and the previous equality immediately implies that z,1 = z,-1.1 ( use the fact that 0,1 = 0,-1.1 and
the definition of z,; introduced in Recalls 2.1) ). Observation.3.1.v follows.

Observation.3.1.vi. Look at n and let let ¢, 0. Then ¢ tackles z,1.

Indeed, using Observation.3.1.iv and the definition of tackle (see Definition 2.1), then it becomes

trivial to deduce that

there exists (c,y) € Z x R such that (3.6)

¢n71.2 - ¢n.2 =c+ 5y0n.1 + (_C + 4y0n.1)i (37)a

c( =03 1 + 502 — 40,1 + (30n.1 — 302 {)cos?0n1 )
031 +02 +on1+1

That being so, using Observation.3.1.v and the definition of tackle (see Definition 2.1), then it be-
comes trivial to deduce that

and +y(on1—1) = 0mod(z,.1) (3.8).

thereexists (¢, y') € Z x R such that (3.9)

bn-12="C +5yon1+ (—c +4y'on1)i (3.10),

'( =03 1 4+ 502 | — 40,1 + (30,1 — 302 1)cos*0,1 )
03, +02 +on1+1

Now using (3.6) and (3.7) and (3.8) and (3.9) and (3.10) and (3.11), then it becomes trivial to deduce
that

and ¢ +y'(on1—1) = 0mod(zn.1) (3.11).

fn2=(—c)+5 —yon1+( —( —c) +4(¥ —y)op.1 )i (8.12),
(c" —¢)( —oi_l + 50%}1 —4o0p.1 + (30n.1 — 30%}1)00320%1 )
02 4+02 +on1+1

and where (¢ —c,y —y) € ZxR (3.14).
(8.12) and (3.13) and (3.14) clearly say that

where + (@ —y)(on1—1) = 0mod(zn.1) (3.13),

there exists (c",y") € Z x R such that (3.15)
pn2 =" +5y"on1 + (=" +4y"op1)i (3.16),
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(=03 1+ 502, — 40,1 + (30,1 — 302 1)cos?0,1 )

+¢"(0n1—1) = 0 mod(z 3.17),
0?1.1 +0¢21.1 +op1+1 Yy (on1 ) (zn1) ( )

where

and where ¢! =c —candy’ =y —y (3.18).

Clearly ¢, 2 tackles z,1 (use (3.15) and (3.16) and (3.17) and (3.18)). Observation.3.1.vi follows.
These simple observations made, then it becomes trivial to see that Observation.3.1.vi clearly
contradicts Observation.3.1.ii. Theorem 3.1 follows.O
Now the Fermat composites problem directly results from the following Theorem.

Theorem 3.2 (the using of Example.3 of Section.2). For every integer n > F5, we have 0,1 > 2n .
Proof. Otherwise ( we reason by reduction to absurd), let n be a minimun counter-example and let
0p.1; then

on1 < 2n (3.19),

and we observe the following.
Observation.3.2.1. n > 2 + F5.

Otherwise n < 2 4+ F5; now observing (by using property (1.1.0) of Remark 1.1) that 0,1 > F5F5
and using the previous two inequalities, then it becomes trivial to deduce that o, 1 > F; 5> 2n+4;
SO 0.1 > 2n + 4 and the previous inequality contradicts inequality (3.19). Observation.3.2.1 follows.
Observation.3.2.2. 0,1 = 0p—1.1-

Indeed, remarking (by (3.19)) that 0,1 < 2n, then, using the previous inequality and property
(1.1.2) of Remark 1.1, it becomes trivial to deduce that 0,1 = 0,—1.1 Observation.3.2.2 follows.
Observation.3.2.3. on.1 = 2n.

Indeed, look at n, and via n, consider n — 1 ( this consideration gets sense, since n > 2 + F5 (by
Observation.3.2.1), and therefore n — 1 > 1+ F5 > F5>. Then, by the minimality of n, n — 1 is not a
counter-example to Theorem 3.2; consequently 0,11 > 2(n — 1) and the previous inequality clearly
says that

On—11>2n—2 (320)
Note that

On1 = 0n—-1.1 (3.21),
by Observation.3.2.2. Now using (3.20) and (3.21), then it becomes trivial to deduce that

Op1 >2n—2 (3.22).

Noticing that 0,1 and 2n — 2 are even ( 0,1 is even (use the definition of 0,.1) and 2n — 2 is trivially
even), then it becomes trivial to deduce that inequality (3.22) implies that 0,1 > 2n — 2 + 2; the
previous inequality clearly says that

On1 > 2n (3.23).

Clearly o,.1 = 2n (use inequalities (3.23) and (3.19)). Observation.3.2.3 follows.
Observation.3.2.4(the using of Example.3 of Section.2). Look at 0,1 and consider ¢, o (see Definitions
2.2). Then ¢no does not tackle z,1, where z,1 is introduced in Recalls 2.1.

Indeed, observing (by Observation.3.2.3) that 0,1 = 2n and using Example.3 of Definition 2.1,
then it becomes trivial to deduce that ¢, o does not tackle z,1. Observation.3.2.4 follows.

These simple observations made, look at o, 1 and consider ¢, 2 (see Definitions 2.2); observing that
on.1 = 2n (by Observation.3.2.3) and remarking that n > 2 + F5 (by Observation.3.2.1), then using
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the previous, it becomes immediate that all the hypotheses of Theorem 3.1 are satisfied, therefore, the
conclusion of Theorem 3.1 is satisfied; consequently

Pn.2 tackles zp1 (3.24).

(3.24) clearly contradicts Observation.3.2.4. Theorem 3.2 follows.O
Theorem 3.2 immediately implies the Fermat composites problem.

Theorem 3.3 (The Proof of the Fermat composites problem). There are infinitely many Fermat
coOmposites. [Proof. Observe [by using Theorem 3.2] that

For every integer n > Fswe have 0,1 > 2n (3.25);

consequently, there are infinitely many Fermat composites, by using (3.25) and Proposition 1.1. D]

Epilogue. Our simple article clearly shows that divisibility helps to characterize Fermat composites
as we did in [T] and [8] and [9] and [10], and elementary arithmetic congruences coupled with trivial
arithmetic calculus help to give a simple analytic proof of problem posed by the Fermat composites.
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