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Extinction Growth Model
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Abstract

Magin and Cock in their roan antelopes recovery plan considered

the effect of poaching in their model. Okseandal and Lungu developed

a growth model in a crowded environment by introducing randomness

in their differential equation via additional noise term. Inbreeding in

small population have substantial impact in population growth rate. In

this paper, we develop a mathematical model that incorporates genetic

defect in estimating the growth rate of roan antelopes in Ruma Park,

Kenya.
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1 Introduction

Verhust in his classical logistics growth model

dPt
dt

= fPt = λPt

(
1− Pt

M

)
(1)

with 0 and M the equilibrium levels of the equation and letting P0 be the initial

value corresponding to the equilibrium stable solution

Pt =
MP0e

−λt

(M − P0) + P0eλ(t−t0)
: P0 6= M and (M − P0) + P0e

λ(t∗−t0) 6= 0 (2)
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2 Extinction Growth Model

whenever t∗ is a point of jump discontinuity with

eλ(t∗−t0) =

(
P0 −M
P0

)
Since P0 > M and P0 6= 0 the RHS > 0 therefore a positive logarithm (raising

to the log).

λ(t∗ − t0) = ln

(
P0 −M
P0

)
> 0

t∗ − t0 =
1

λ
ln

(
P0 −M
P0

)
> 0 (3)

When t0 = 0 then

t∗ =
1

λ
ln

(
P0 −M
P0

)
> 0

We solve for t. According to Greisen [3] analysis of Voltera is insightful but has

no intra-specific competition i.e natural resources has no diminishing returns.

Several variations of Verhust logistics growth models have been modified for

resource management. A case in point, Shaffer who modeled fish population

dPt
dt

= λ

(
1− Pt

M

)
− EPt (4)

Where E is a positive constant that measures total effort made to harvest given

species of fish. Genetic drift is the cumulative and non-adaptive fluctuation in

allele frequencies resulting from random sampling of genes in each generation

that can impede or accelerate wildlife population [7]. Inbreeding is not strictly

a component of genetic drift but correlated with it has been documented to

cause loss of fitness and reduces the ability of the population to adapt to future

changes in the environment [1, 12].

Gilpin [4] described these synergistic destabilizing effects of stochastic process

on small wildlife population as extinction vortices. Most population growth

processes are inherently stochastic yet much theoretical analysis involves de-

terministic models with the assumption that biological systems consist of large

collection of individuals in the same ecological interaction. This assumption

implies that dynamics of measure (mean) is sufficient description and ignores

the influence of variance [16].

Oksendal & Lungu [9] proposed a stochastic logistic model in estimating pop-

ulation growth at any time. We have worked along this line and derived a

mathematical model that estimates population growth of roan antelopes by

incorporating genetic defect that was not considered by Magin & Kock [5].
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2 Preliminaries

Randomness is an intrinsic property of biological observation which makes

deterministic models incomplete.

Pt = λPt

(
1− Pt

M

)
dt (5)

where

λ is the intrinsic growth rate,

Pt is the population at any time t and

M is the carrying capacity.

However, for Pivato if some intrinsic randomness in the system which makes

perfect prediction of the future impossible but strong trends or correlation

exists, the mathematical structure used to model this phenomenon is stochastic

process [10]. Stochastic process consist of space, time and probability measure

Definition 2.1. If Ω is a given set, then a σ algebra F on Ω is a family F

of subset of Ω with the following properties.

(i)Φ ∈ F

(ii)f ∈ F ⇒ f c ∈ F

where f c = Ω/F is the compliment of F in Ω

(iii)

A1, A2, · · · ∈ F ⇒
∞⋃
i=1

Ai ∈ F

The pair (Ω, F ) is called a measurable space.

A probability measure P on a measurable space (Ω, F ) is a function P :

F → [0, 1] such that

(a) P (Φ) = 0, P (Ω) = 1

(b) If A1, A2, · · · ∈ F and(
Ai

)∞
i=1

is a disjoint i.e.

(
Ai
⋂

Aj = Φ : i 6= j

)
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then

P

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai)

The triple (Ω, F, P ) is called a probability space. It is called a complete prob-

ability space if F contains all the subsets of G of Ω with P outer measure

zero.

P ∗(G) = inf{P (F ) : f ∈ F,G ⊂ F} = 0

Given any family µ of subsets of Ω there is a smallest σ algebra Hµ containing

µ namely

Hµ =
⋂
{H : H σ algebra of Ω, µ ⊂ H}

Let (Ω, F, P ) denote a complete given probability space, then a random vari-

able X is F measurable function X : Ω→ Rn Every random variable induces

probability measure µx on Rn defined by µx(B) = P (x−1(B)), µx is the distri-

bution of X. If ∫
Ω

|X(ω)|dP (ω) <∞

then

E[X] =

∫
Ω

X(ω)dP (ω) =

∫
Rn

xdµx

where x is called the expectation of X(w.r.t.P )

Definition 2.2. A stochastic process is a parameterized collection of ran-

dom variables {Xt}t∈T and defined on probability space (Ω, F, P ) and assuming

values in Rn. The parameter space T is usually half line [0,∞) but may belong

to [a, b] the non-negative integers and even subsets of Rn for n ≥ 1 such that

for each t ∈ T fixed we have a random variable W → Xt(ω) : ω ∈ Ω and on

fixing ω ∈ Ω, t ∈ T which is called the path of Xt

For clarity Xt ≡ X(t).

A stochastic process X = {X(t), t ∈ T} is a collection of random variables.

For each T in the index set T,X(t) is a random variable with t interpreted

as time and Xt the state of the process at a time t [14]. If we let X be some

set, time for some other set and we let W be some σ-algebra on X the W

measurable stochastic process on the state space X over time T is a probability

measure W [10]

Stochastic processes are sequences of events governed by probabilistic laws.

These systems occupy one state at a given time and could make transition
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probabilities from one state to another. The set X of possible status may be

finite or infinite depending on application. X consist of discrete elements Xi

for i = 0, 1, 2 . . . with element Xi being possible states of the systems at any

time t.

The probability Pi,j(t) of the system making transition from the state i to j in

the interval time t is the conditional probability defined as

Pi,j(t) = Pr{Xt0+1/Xt0 = Xi} (6)

where Xt0 is the state of the state of the system at the time t0. The index set

T is a countable set and X discrete time stochastic process or continuous time

stochastic if it forms a continuum.

Definition 2.3. A discrete time stochastic process is the probability mea-

sure on (X+,
⊗

n ∈ T ),[31]. Discrete time stochastic processes are ranked in

increasing order of complexity.

This hierarchy follows either Bernoulli or Markov processes. Discrete time

processes can be demonstrated by random walks with probability p of a particle

moving to the right and probability [(p− 1) = q] of particle moving to the left.

Let Pi,j be the transition probability then

Pi,j+1 = P = 1− Pi,j−1 : i = ±1,±2,±3, . . .

suppose for abitrary time i, x in a random variable Xi takes p = 1, q = −1 and

Xi are independent and identically distributed (iid) with identity function.

ρδ(x− 1)− (1− q)d(x+ 1)

E[X] = 2p− 1

and

V ar[X] = 4p(1− p)

If the nth partial sum of the random variable

Yn = X1 +X2+, . . . Xn =
n∑
i=1

Xi

Then the sequence for the random variable

{Y1, Y2, . . . Yn}
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is the random walk with the probability distribution

E[Yn] = n(2p− 1)

and

V ar[Yn] = 4npq

at stage n. If we let µ and σ2 be the mean and variance respectively then

E[Yn] = nµ

and

V ar[Yn] = nσ2

Definition 2.4. Let X be some set and time t be some open set and closed

interval in R representing an interval of time and W be some σ algebra, then

W be some measurable continuous time stochastic process on state space X

over time interval T is the probability measure W Continuous time stochastic

process {X(t), t ≥ 0} has independent increments if ∀t0 < t1 < tn the random

variables

X(t1)−X(t0), X(t2)−X(t1), . . . X(tn −X(tn−1))

are independent.

They may make stationary increments if X(t+s)−X(t) has distribution values

∀t i.e. the distribution only depends on s. This implies that for n time points

the random variables set

{X(t1), X(t2), . . . X(tn)}

and

{X(t1 + s), X(t2 + s), . . . X(tn + s)}

has the same joint probability distribution thus

E[E(t)] = E[X(t+ s)]

Markov process is a continuous time X = {X(t), t ≥ 0} with the

Pr{X(t) ≤ x|X(µ), µ ∈ [0, s] = Pr[X(t)] 6 x|X(s)}
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Markov processes are stochastic processes for which all its future knowledge

is summarized in current value. Examples of these processes are Brownian

motion, stable processes, Poisson processes and even Levy processes. We can

therefore ascertain that stochastic processes are variable with both the ex-

pected variable term (drift term) and random term (diffusion term).

The drift-coefficient term, models dominant actions while diffusion-coefficients

represents randomness along the dominant curve. Roan antelope population

growth varies in random number and represents stochastic process.

3 Brownian Motion and Stochastic Differen-

tial Equations

An irregular movement of pollen grains suspended in water as was observed

by a botanist Robert Brown in 1828 has a wide range of application. Nobert

Wiener came up with a concise and rigorous mathematical definition of Brow-

nian motion, sometimes called Weiner Process.

Definition 3.1. A Brownian motion or Wiener process is a stochastic pro-

cess ξ(t) ≥ 0 satisfying

(i)ξ(0) = 0

(ii) For any 0 ≤ to < t1, . . . < tn the random variables

ξ(tk),−x(tk)(1 ≤ k ≤ n) are independent

(iii) If 0 ≤ s ≤ t, x(t)− x(s) is normally distributed with

E(P (t)− P (s)) = (t− s)µE(ξ(t)− ξ(s)2) = (t− s)σ2,

where µ and σ are constants, σ 6= 0

If ξ(t) is a Brownian motion,then µ is the drift and σ2 is the variance. Brownian

motion can be a Weiner process dW = ε
√
dt : ε is a random drawn from

standard normalized if µ = 0 and σ2 = 1 any continuous time process with

stationary independent increments and can be proved to be Brownian motion.

Brownian motions are used in models that resemble random movements of
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particles. A (µ, σ) Brownian motion ξ = {ξ(t), t ≥ 0} can be expressed as a

Weiner process i.e

ξ(t) = µt+ σWt

and a normal variable with mean of zero and a variance of one. The values of

dW for any two intervals are independent such that small infinite change can

be written as ∆Wt = ξ
√

∆t adding up each of those intervals, we obtain

Wt −W (0) = lim
t→0

{ n∑
i=1

εi
√

∆t

}
One dimensional Weiner process has ξ(t) determined by the stochastic differ-

ential equation(SDE) of the form of

dξ(t) = µdt+ σdWt : P (0) = Pt, (7)

where µ (drift rate) and σ standard deviation.

Thus dξ(t) is the sum of the deterministic term dt and the stochastic term

(dWt)and in the short term interval [ti−1, t] and the increase may be given by

ξi(t)− ξi−1(t) = µ

∫ i

i−1

dt+ σ

∫ i

i−1

dWt (8)

With a general solution of the form

ξ(t) = ξi−1(ti−1) + µ(ti − ti−1) + σ(W (ti)−W (ti−1)) (9)

and in particular if the interval is [0,1] the equation (8) becomes

ξ(t) = ξ0 + µ

∫ 1

0

dt+ σ

∫ 1

0

dWt (10)

whose solution is

ξt = ξ0 + µt+ σWt (11)

with ξ(0) = 0 and λW (0) = 0

A generalized Weiner process with non-constant coefficient

dξ = µ(ξ, t)dt+ σ(ξ, t)dWt (12)

where µ(ξ, t) and σ(ξ, t) are functions of variable ξ and time t is called Ito’s

process if it solves the equation

ξ(t) = ξ0 +

∫ t

0

µ(ξ(t), t)dt+

∫ t

0

σ(ξ(t), t)dWt : t ≥ 0 (13)
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where ξ0 is the initial value, µ(ξ(t), t) is the drift term and σ(ξ(t), t) is the

diffusion term. A special type of Ito’s with linear coefficient is the geometric

Brownian motion (gBm) and has the stochastic differential equation of the

form

dξ(t) = µξ(t)dt+ σξ(t)dWt : µ > 0, σ > 0, (14)

where µ is the mean growth rate and σ is the rate of diffusion. Equation (14)

can be expressed as a growth function

dξ(t)

ξ(t)
= µdt+ σdWt, ξ(0) = ξt (15)

over infinitely short time interval (t, t+ ∆t).

Solutions to equation (15) can not be obtained from standard Reinman Cal-

culus formula for total derivative. If we let f(x, t) be a continuous function

with (x, t) ∈ R× [0,∞) together with its derivatives ft, fx, fxx then the process

f(ξ(t), t) has the SDE (16). Ito achieved a rigorous treatment for integrating

such Weiner like differential equation,thus Ito calculus,[13].

The solution to equation (15) is the stochastic differential equation

df(ξ(t), t) = [ft(ξ(t), t) + fx(ξ(t), t)µ(t) +
1

2
(ξ(t), t)b2(t)]dt+

fx(ξ(t), t)σ(t)dWt (16)

This is called Ito’s formula. It is noticeable that if W (t) were continuously dif-

ferentiable in t then by Reinman calculus the term 1
2
fxxb

2dt would not appear.

Proof. See Friedman [2]

Theorem 3.2. Let dξi(x) = µi(t)dt + σi(t)dξ : 1 ≤ i ≤ m and let

f(x
i
, . . . xm, t) be a continuous function in (x, t) where x = (xi, . . . xm) ∈

Rm, t ≥ 0 together with its first t derivative and second x derivative then

f(ξi(t), . . . ξm, t) stochastic differential given by [2]

df(X(t), t) =

[
ft(X(t), t) +

m∑
i=1

fxi(X(t), t)µi(t) +

1

2

m∑
i,j=1

fxixj(X(t), t)σi(t)σj(t)

]
dt+

m∑
i=1

fxi(X(t), t)σi(t)dWt

(17)
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where X(t) = (ξi(t), . . . ξm(t))

Equation (17) is the Ito’s formula. From theorem (6), equation (17) the geo-

metric Brownian motion (gBm) is given by

dξ(t) = µξ(t)dt+ σξ(t)dWt, (18)

where µξ(t)dt is the drift and σξ(t)dWt is the diffusion term dWt = ε
√
dt

Dividing both sides of equation (18) by ξ(t), we obtain

dξ(t)

ξ(t)
= µdt+ σdWt (19)

and in order to get the strong solution of equation (19) we let f(ξ(t), t) be a

function of ξ and t twice differentiable in ξ and once in t such that

f(ξ(t), t) = ln ξ(t)

Note

dξ(t)

ξ(t)
= µdt+ σdWt

suggests the nature of f(ξ(t), t) differentiating f(ξ(t), t) twice with respect to

ξ and once with respect to t gives

d(ξ(t), t)

dξ
=

1

ξ

∂2(ξ(t), t)

dξ2
=
−1

ξ2

∂(ξ(t), t)

∂t
= 0

and by equation (16) we have integral in the form

df(ξ(t), t) = d(ln ξ(t)) =

(
µ− σ2

2

)
dt+ σε

√
t (20)

Equation (20) follows a generalized Weiner process with the drift rate

(
µ− σ2

2

)
and diffusion coefficient σ,which are constants. The distribution of this process

is given by

df(ξ(t), t) ∼ N

((
µ− σ2

2

)
dt, σ
√
dt

)
or

∂

(
ln ξ(t) ∼ N

(
µ− σ2

2

)
dt, σ
√
dt

)
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whose solution over the interval (ti−1, ti) is given by

ln ξ(t) = ln ξ(ti−1) +

(
µ− σ2

2

)
(ti−1, ti) + σξi(

√
ti−1, ti) (21)

Moreover, on putting like terms together, we obtain

ln

(
ξ(ti)

ξ(ti−1)

)
=

(
µ− σ2

2

)
(ti−1, ti) + σε(

√
(ti−1, ti) (22)

And in considering the interval (0, 1) then equation (20) becomes

ln ξ(t) = ln ξ0 +

(
µ− σ2

2

)
t+ σε

√
t ξ(0) = ξ0 > 0 (23)

Thus ln ξ(t) is normally distributed for any time t with the mean given by

ln ξ0 +

(
µ − σ2

2

)
and variance by σ2t and the change in logarithm of the

population size in the interval (0, 1) results in

ln ξ(t)− ln ξ0 =

(
µ− σ2

2

)
t+ σε

√
t (24)

with the corresponding distribution given by

ln ξ(t)− ln ξ0 ∼ N

((
µ− σ2

2

)
t, σ
√
t

)
From equation (24) the strong solution becomes

ξ(t) = ξ0 exp

[(
µ− σ2

2

)
t+ σε

√
t

]
(25)

which has the log-normal distribution given by

ξ(t) ∼ log-normal

(
ξ0 expµt, ξ0

√
exp(2µt), exp(σ2t)−1

)
such that if σ = 0 then equation (24) becomes

ξ(t) = ξ0 exp(µt)

Thus ξ(t) has the exponential growth with the expectation ξ0 exp(µt) and

variance zero.
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4 Extinction Growth Model Equation

In addition to competition for resources and predation. We consider the genetic

defect on the population growth rate for the roan antelopes. From the Verhulst

logistic growth rate equation (5) and adding genetic growth component to the

logistic growth model we have

dPt = λPt

(
1− Pt

M

)
dt−Ψ(Pt), (26)

where

λ is the growth ratio

Pt is the population at time t

M is the carrying capacity

Ψ(Pt) is the function of Pt representing genetic defect

Letting Ψ(Pt) = γ a constant then equation (26) becomes representing genetic

defect
dPt
dt

= λPt

(
1− Pt

M

)
− γ (27)

And equating equation (27) to zero we obtain

λP 2
t − λMPt + γM = 0 (28)

whose solution is given by

Pt =
λM ±

√
(λ2M2 − 4λγM)

2λ
: P (0) = P0 (29)

The nature of solution of equation (29) depends on the genetic defect γ such

that

γ > λM
4

there is no real valued function implying genetic defect rate leads to

extinction,

γ = λM
4

has unique solution thus absolute growth rate in the absence of

genetic defect and

γ < λM
4

has positive growth rate with genetic defect.
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Suppose we have a genetic defect at the rate proportional to Pt and if we let

Ψ = γPtdt then equation (26) becomes

dPt
dt

= λPt

(
1− Pt

M

)
− γPt (30)

Integrating equation (30) and solving for Pt we obtain the solution

Pt =
(λM − γ)P0

[λ(M − P0)− γ]e−(λM−γ)t + λP0

: P (0) = P0

As t→∞, Pt → P0 and t→∞, Pt → (λ−γ)M
λ

with the following steady states

Pt = 0, Pt =
(λ− γ)M

λ

Stochastic models are probabilistic in structure. This helps in solving the

effects of uncertainty in ecological models. Hence, analysis of systems with

white noise gives better results. If we consider population growth process

1

Pt

dP (t)

dt
= λ(M − Pt)

adding noise to the continuous growth process above, we obtain

1

Pt(M − Pt)
dPt
dt

= λdt+ noise (31)

If noise= σdWt = σε
√
dt, ε ∼ N(0, 1)., equation (31) can be written as

1

Pt

dPt
(M − Pt)

= λdt+ σdWt, M 6= Pt (32)

On making dPt the subject of the formula, we obtain the logistic stochastic

differential equation

dPt = λPt(M − Pt)dt+ σPt(M − Pt)dWt (33)

with the distribution[
dPt ∼ N(λPt)dt, σPt(M − Pt)

√
dt

]
On using the variable

Y (t) = log

(
P (t)

|M − P (t)|

)
M 6= Pt
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and simplifying equation (32) we obtain

dY = λMdt+ σMdWt (34)

Equation (34) is the generalised Weiner process with λMdt as drift and σMdt

as variance. Equation (34) has the explicit solution

Y (t) = Y (0) + λM(t− t0) + σMWt, W0 = 0 (35)

If we let

Y (t) = log

(
Pt

M − P (t)

)
and Y (0) =

(
P (0)

M − P (0)

)
Equation (34) becomes

log

(
P (t)

M − P (t)

)
= log

(
P (0)

M − P (0)

)
+ λM(t− t0) + σMWt (36)

and making Pt the subject of the formula we have the Verhulst Logistic Brow-

nian motion

Pt =
MP0

(M − P0)e−{λM(t−t0)+σMWt} + P0

: P (0) = P0 (37)

Considering roans resources whose population Pt varies randomly due to

natural factors (e.g predation, diseases) according to autonomous diffusion

process

dPt = λPt(M − Pt)dt+ σPt(M − Pt)dWt (38)

Equation (38) is an Ito process called logistic geometric Brownian motion, and

can be solved by use of Ito’s lemma. Let F (Pt, t) be function of Pt and t be

twice differentiable in Pt and once in t , we have

dF (Pt, t) =
∂F

∂t
dt+

∂F

∂Pt
dPt +

1

2

∂2F

∂Pt
dP 2

t

But

dPt = λPt(M − Pt)dt+ σPt(M − Pt)dWt

Hence dP 2
t = σ2P 2

t (M − Pt)2dt and by Ito’s calculus we obtain

dF (Pt, t) =
∂F

dt
dt+

∂F

dPt
λPt(M − Pt)dt+

∂F

dPt
σPt(M − Pt)dWt + (39)

1

2

∂F

dP 2
t

σ2P 2
t (M − Pt)2dt
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We can rewrite equation (39) in the form

dF (Pt, t) =

{
∂F

dt
+
∂F

dPt
λPt(M − Pt) +

1

2

∂F

dP 2
t

σ2P 2
t (M − Pt)2

}
dt+ (40)

∂F

dPt
σPt(M − Pt)dWt

If we use the variable F = ln

(
Pt

M−Pt

)
then

∂F

dt
= 0,

∂F

∂Pt
=

M

Pt(M − Pt)
,

∂F

∂P 2
t

=
2M(Pt −M)

P 2
t (M − P 2

t )

Substituting this in equation (39), we obtain

dF (Pt, t) =

{
λM − 1

2
σ2(M2 − 2MPt)

}
dt+ σMdWt (41)

Equation (41) is similar to to the Brownian motion in equation (33). Its

solution is got by integration.Thus

dF (Pt, t) ∼ λM − 1

2
σ2(M − 2MPt)dt, σMdWt

It can be solved by Ito calculus.When σ = 0 then equation (41) is a determin-

istic differential equation given by

dF (Pt, t) = λMdt =

(
M

Pt(M − Pt)

)
dPt

and making dPt the subject of the subject of the formula, we obtain

dPt = λPt(M − Pt)dt

If we let

F (Pt, t) = ln

(
Pt

(M − Pt)

)
then dF (Pt, t) =

(
M

Pt(M − Pt)

)
dPt

and rewriting equation (38)

dPt = λPt(M − Pt)dt+ σPt(M − Pt)dWt
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we obtain
dPt

Pt(M − Pt)
= λdt+ σdWt (42)

But

dF (Pt, t)Pt(M − Pt) = MdPt

hence

dPt =
dF (Pt, t)Pt(M − Pt)

M

and when substituted in equation (42) we obtain

dF (Pt, t)Pt(M − Pt)
MPt(M − Pt)

= λdt+ σMdWt

dF (Pt, t) = λMdt+ σdWt (43)

This is a generalised Weiner process with λMdt as the drift and σMdt as the

variance. It has the explicit solution

F (Pt, t) = F (P0, 0) + λMt + σMdWt

which is equivalent to

ln

(
Pt

M − Pt

)
= ln

(
P0

M − P0

)
+ λMt + σMWt

Solving for Pt we obtain

Pt =
MP0

(M − P0)e−λMt−σMWt + P0

: P (0) = P0 (44)

When σ = 0 in equation (44) we obtain the deterministic logistic differential

equation given by

Pt =
MP0

(M − P0)e−λMt + P0

as t→∞, e−λMt−σMWt → 0

To take care of fluctuations in the roan antelopes population growth rate due

to genetic defect at the rate proportional to Pt(M−Pt) so as to ensure positive

population growth rate, we add genetic defect in equation (38) to obtain

dPt = (λ− γ)Pt(M − Pt)dt+ σPt(M − Pt)dWt (45)

where
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Pt roan antelopes population at time t,

λ roan antelope growth ratio,

γ genetic defect,

M carrying capacity,

σ diffusion rate and

Wt random variable.

Suppose F (Pt, t) = F is twice differentiable function in Pt and once in t, then

by Ito’s lemma

dF (Pt, t) =
∂F

∂t
dt+

∂F

∂Pt
dPt +

1

2

∂2F

∂P 2
t

dP 2
t

which is equivalent to

dF (Pt, t) =

{
∂F

∂t
dt+ (λ− γ)Pt(M − Pt)

∂F

∂Pt
+

1

2
σ2P 2

t (M − P 2
t )
∂2F

∂Pt

}
dt+ (46)

σPt(M − Pt)
∂F

∂Pt
dWt

Using the variable

F (Pt, t) = ln

(
Pt

M − Pt

)
(47)

where,
∂F

∂t
= 0,

∂F

∂Pt
=

M

Pt(M − Pt)
,
∂2F

∂P 2
t

=
2M(Pt −M)

P 2
t (M − Pt)2

We substitute the above results in equation (46) to obtain

dPt =
M

Pt(M − Pt)

[
(λ− γ)Pt(M − Pt)dt+ σPt(M − Pt)dWt

]
+

1

2
(

2Pt −M2

P 2
t (M − P 2

t )
)σP 2

t (M − Pt)2dt

⇒ dPt = M

{
(λ− γ) +

1

2
σ2(2Pt −M)

}
dt+ σMdWt (48)
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with

dPt ∼ N

{
M(λ− γ) +

1

2
σ2(2Pt −M)dt, σM

√
dt

}
On rewriting equation (45) as

dPt
Pt(M − Pt)

= (λ− γ)dt+ σdWt (49)

and using the variable in equation (46) we can rewrite equation (48) as

∂F (Pt, t) = (λ− γ)Mdt+ σdWt (50)

Integrating equation (50) with respect to t, we obtain

F (Pt, t) = F (P0, 0) + (λ− γ)Mt + σMWt, (51)

which on substitution with the variable in equation (47),yields

ln

(
Pt

M − Pt

)
= ln

(
P0

M − P0

)
+ (λ− γ)Mt + σMWt (52)

Solving equation (52), we obtain

Pt =
MP0

(M − P0)e−(λ−γ)Mt−σMWt + P0

: P (0) = P0 (53)

From equation (53) when λ = γ ,we have

Pt =
MP0

(M − P0)e−σMWt + P0

: P (0) = P0 (54)

Equation (54) is a function of random variable Wt only. This implies that the

population may approach extinction.
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