G-GRADED SECONDARY REPRESENTATION OF THE G-GRADED MODULES

¹Dr. R.BHUVANA VIJAYA, ²P.RAMANA VIJAYA KUMAR & ³Dr. SRINIVAS BEHARA

Abstract

Let A be a commutative ring which is graded by a finitely generated abelian group G. In this paper we introduce the G-graded secondary representation of a G-graded module M of A.

1. Introduction

The results that are presented here are a sort of dual of the theory of graded primary decomposition of a group graded module over a graded commutative ring graded over finitely generated abelian group which was discussed in [2] and [5].

We shall begin by recalling briefly the salient feature of the theory, in a form convenient to the present discussion. Throughout, all rings will be commutative graded rings graded over finitely generated abelian group, and all modules will be unital.

Let A be a G-graded ring, M an G-graded A-module where G is finitely generated abelian group. It is clear that there exists a family $\{A_g\}_{g\in G}$ of additive subgroups of A such that $A = \bigoplus_{g\in G} Ag$ and $A_gA_h \subseteq A_{gh}$ for all $g,h \in G$ and similarly for the G-graded A-module M there exists a given family $\{M_g\}_{g\in G}$ of additive subgroups of M such that $M = \bigoplus_{g\in G} Mg$ and $A_gM_h \subseteq M_{gh}$ for all $g,h \in G$. An element of a graded ring A is called homogeneous if it belongs to $\bigcup_{g\in G} Ag$. Also, we write $h(A) = \bigcup_{g\in G} Ag$. The summands Ag are called homogeneous components and elements of these summands are called homogeneous elements. If $\mathbf{a} \in A$, then \mathbf{a} can be written as $\sum_{g\in G} \mathbf{a}_g$ where \mathbf{a}_g is the component of \mathbf{a} in Ag. In this case, Ae is a sub ring of A and $1_A \in Ae$. Also, we write $h(M) = \bigcup_{g\in G} Mg$.

A sub module N of M is G-graded if $N = \bigoplus_{g \in G} Ng$, where $Ng = N \cap Mg$ for $g \in G$. In this case Ng is called the g-component of N for $g \in G$. More over M/N becomes a G-graded module with g-component $(M/N)_g = (Mg + N) / N$ for $g \in G$. Clearly 0 is G-graded sub module of M.

Also a graded ideal I of a G-graded ring A is an ideal verifying $I = \bigoplus_{g \in G} (I \cap Ag) = \bigoplus_{g \in G} Ig$. An ideal I of G-graded ring A is said to be G-prime ideal if $I \neq A$ and whenever $ab \in I$, we have either $a \in I$ or $b \in I$, where $a, b \in h(A)$ or equivalently a G-graded ideal I of A is G-prime if and only if for every two G-graded ideals J,K, J K \subset I implies either J \subset I or K \subset I.

¹Associate professor in Department of mathematics, JNTU-Anantapur.

²Research Scholar, in Department of mathematics, JNTU-Anantapur.(<u>vijaypachalla@gmail.com</u>)

³Sr.Assistant professor in Department of mathematics, Govt.Ploy Technique college-Guntur.

For each $\mathbf{a} \in \mathbf{h}(\mathbf{A})$, Let $\lambda_{\mathbf{a},\mathbf{M}}$ denote the endomorphism of M defined by multiplication by \mathbf{a} i.e. $\lambda_{\mathbf{a}}(\mathbf{x}) = \mathbf{a}\mathbf{x}$ for all $\mathbf{x} \in \mathbf{M}$. Let $(\lambda_{\mathbf{a},\mathbf{M}})^{\mathbf{n}} = (\lambda_{\mathbf{a}})^{\mathbf{n}}(\mathbf{x}) = \mathbf{a}^{\mathbf{n}}\mathbf{x}$ for some Natural number n and for all $\mathbf{x} \in \mathbf{M}$. Let $\mathbf{N}^{\mathrm{G}}(\mathbf{M})$ be that set of all $\mathbf{a} \in \mathbf{h}(\mathbf{A})$ such that $\lambda_{\mathbf{a},\mathbf{M}}$ is nilpotent. We prove that $\mathbf{N}^{\mathrm{G}}(\mathbf{M})$ is a G-graded ideal.

Proposition 1.1. If M is a G-graded module of the graded ring A, then the set

 $N^{G}(M) = \{ \mathbf{a} \in \mathbf{h}(\mathbf{A}) : \lambda_{\mathbf{a},\mathbf{M}} \text{ is nilpotent } \} \text{ a G-graded ideal.}$

Proof.

 $N^{G}(M) = \{ \mathbf{a} \in \mathbf{h}(\mathbf{A}) : \lambda_{\mathbf{a},\mathbf{M}} \text{ is nilpotent } \}$ = { $\mathbf{a} \in \mathbf{h}(\mathbf{A}) : (\lambda_{\mathbf{a},\mathbf{M}})^{\mathbf{n}} = 0 \text{ for some natural number } \mathbf{n} \}$ = { $\mathbf{a} \in \mathbf{h}(\mathbf{A}) : (\lambda_{\mathbf{a}})^{\mathbf{n}}(\mathbf{x}) = 0 \text{ f or all } \mathbf{x} \in \mathbf{M} \}$ = { $\mathbf{a} \in \mathbf{h}(\mathbf{A}) : a^{\mathbf{n}}\mathbf{x} = 0 \}$

Clearly for any $\mathbf{a} \in N^G(M)$ and for any homogeneous element $\mathbf{r} \in M$ we have $(-\mathbf{a}) \in N^G(M)$ and $\mathbf{ar} \in N^G(M)$ Now let $\mathbf{a}, \mathbf{b} \in N^G(M)$. There exists $\mathbf{x}, \mathbf{y} \in \mathbf{M}$ and \mathbf{m}, \mathbf{n} be Natural numbers such that $\mathbf{a}^m \mathbf{x} = \mathbf{0}$ and $\mathbf{b}^n \mathbf{y} = \mathbf{0}$.

Let
$$z = (x + y) \in M$$
.
Consider $(a + b)^{m+n} z = \sum_{i+j=m+n} a^i b^j z$
 $= \sum_{i+j=m+n} a^i b^j (x + y)$
 $= \sum_{i+j=m+n} a^i b^j x + \sum_{i+j=m+n} a^i b^j y$
 $= 0 + 0$ (By Binomial Theorem $(a + b)^{m+n} = \sum_{i+j=m+n} a^i b^j$. Each term on the right hand side is as either $i \ge n \text{ or } j \ge m$.)
Therefore $(a + b) \in N^G(M)$ and hence $N^G(M)$ is a G graded ideal of M

Therefore $(a + b) \in N^G(M)$ and hence $N^G(M)$ is a G-graded ideal of M.

The graded ideal $N^{G}(M)$ is called the G-graded nilradical of the A-module M. Also, in view of Definition 1.1 of [6], it can be observed as G-graded radical of the annihilator of M i.e. $N^{G}(M) = Gr(Ann(M))$.

Definition 1.2. A G-graded module M is said to be G-graded coprimary or G-coprimary if $M \neq 0$ and if, for each a ε h(A), the endomorphism $\lambda_{a,M}$ is either injective or nilpotent.

By the analog of proposition 2.4 of [1] we can conclude that $N^{G}(M)$ is a G-prime ideal say **p** and therefore **M** is said to be G-graded **p**- coprimary or G-**p**-coprimary. If M is any G-graded A-module of the G-graded ring A and **p** any G-prime ideal of A, a submodule Q of M is called G-graded p-primary or G-p-primary if the quotient M/Q is G-p-coprimary.

Now let M be a G-graded A-module, N a G-graded submodule of M. A G-graded primary decomposition of N in M is an expression of N as a finite intersection of G-p-primary submodules, say $N = Q1 \cap Q2 \cap \ldots \cap Qn$. The G-graded primary decomposition is minimal if (a) the G-prime ideals $p_i = N^G(M/Q_i) = Gr(Ann(M/Q_i))$ are all distinct and (b) none of the

components in the intersection is redundant. Any G-graded primary decomposition can be refined to a minimal one. See [2] for detailed discussion. If N has a G-graded primary decomposition in M, we shall say that N is decomposable graded submodule of M, If in particular the zero submodule of M is decomposable, we shall say that M is G-good. A graded submodule N of M is decomposable if and only if the quotient G-graded module M/N is G-good. The aim of this paper is to dualize the theory developed in [2] and [5].

Definition 1.3. A G-graded A-module M is said to be G-secondary if $M \neq 0$ and if, for each a ε h(A) the endomorphism $\lambda_{a,M}$ is either surjective or nilpotent.

Claim 1.4. If an A-module M is G-secondary, then $N^{G}(M) = Gr(Ann(M))$ is a G-prime ideal p. **Proof**.

For a, b \in h(A), let ab \in Gr(Ann(M)) \Rightarrow (ab)ⁿM = 0 for some Natural number n > 0. If b \notin Gr(Ann(M)) $\lambda_{b,M}$ is surjective, that is bⁿM = M. Then aⁿM = aⁿ(bⁿM) = (ab)ⁿM = 0 \Rightarrow a is nilpotent. Thus, a \in Gr(Ann(M)) and N^G(M) is G-prime.

Definition 1.5. Following Claim 1.4, M is said to be G-graded p-secondary or G-p-secondary.

Let M be a G-graded A-module. A G-graded secondary representation of M is an expression of M as a sum of G-graded secondary submodules, say $M = N_1 + N_2 + \ldots + N_n$. This representation is said to be minimal if (a) the G-prime ideals $N^G(N_i)$ are all distinct and (b) none of the summands N_i is redundant. Any G-graded secondary representation of M can be refined to a minimal one. If M has a G-graded secondary representation, we shall say that M is G-representable. Let M be a G-representable G-graded A-module and let $M = N_1 + N_2 + \ldots + N_n$ be a G-graded minimal secondary representation.

Our presentation and treatment of G-graded secondary representation and G-attached primes closely follows the one in MacDonald [3].

2. Graded Secondary representations

Let A be a G-graded commutative ring with identity where G is finitely generated abelian group. As stated in the introduction, a G-graded A-module M is said to be G-secondary if $M \neq 0$ and if, for each $a \in h(A)$, the endomorphism on M, $\lambda_{a,M}$ (i.e., multiplication by a in M) is either surjective or nilpotent. It is immediate that the graded nilradical of M is a prime ideal p and M is said to be G-graded p-secondary.

Proposition 2.1. Finite direct sums and non-zero quotients of G-graded p-secondary modules are G-graded p-secondary.

Proof.

It is sufficient to prove the result for two G-graded p-secondary modules. Let L and M be any two G-graded p-secondary modules with p = Gr(Ann(L)) = Gr(Ann(M)). Let $a \in h(A)$, assume $\lambda_{a,M}$ is not surjective. Then $a(L \oplus M) \neq (L \oplus M)$ which implies that either $aL \neq L$ or $aM \neq M$. Suppose $aL \neq L$ then $\exists \ k > 0$ such that $a^k L = 0$, which implies $a^k \in Ann(L)$ which in turn implies

 $a \in p = Gr(Ann(L))$. But this means that $\exists 1 > 0$ such that $a^1 \in Ann(M)$, that is, $a^1M = 0$. So, taking n = max (k, l) then $a^n (L \oplus M) = 0$. Thus, $(L \oplus M)$ is secondary. To show that $(L \oplus M)$ is p-secondary, let $ab \in Gr(Ann(L \oplus M))$, which means that $\exists n > 0$ such that $(ab)^n (L \oplus M) = 0$. But L, M were G-p-secondary, so either $a \in p = Gr(Ann(L))$ or $b \notin p$, that is a is nilpotent. From claim 1.4 we have $L \oplus M$ is G-p-secondary. Hence by induction finite direct sums of G-graded p-secondary modules are G-graded p-secondary.

Let M be a G-graded p-secondary module, so that p = Gr(Ann(M)).Let $\lambda : M \to M' = M/N$ be the natural projection from M to a non-zero quotient of M. Let $a \in h(A)$, with $\lambda_{a,M}$ is surjective, that is aM = M which implies aM' = M' as aM + N = M. Otherwise, $\exists k > 0$ such that $a^kM = 0 \Rightarrow a^kM' = 0 \Leftrightarrow a^kM + N = N$ as $a^k M = 0$. This also shows that $a^k \in Am(M/N)$ $\Rightarrow x \in Gr(Ann(M/N))$. Then, as before Gr(Ann(M')) = p which implies that M is G-p-secondary.

Proposition 2.2. The annihilator of a G-graded p-secondary module is G-graded p-primary ideal. **Proof.**

Let M be a G-graded p-secondary module and let Ann(M) = I. Let $ab \in I$ and assume $b^n \notin I$ for all n. Then for $b \in h(A)$ either bM = M or $\exists n > 0$ such that $b^n \in Ann(M)$ which we assumed otherwise, so bM = M. Thus, $ab \in I \Rightarrow abM = 0 \Rightarrow aM = 0 \Rightarrow a \in I$. Thus, I is primary. Since $p = Gr(Ann(M) = \sqrt{I} \Rightarrow I$ is G-p-primary.

References

[1] S. Behara and S. D. Kumar, Group graded associated ideals with flat base change of rings and short exact sequences, Proceedings-Mathematical Sciences, (2011)

[2] S. D. Kumar, S. Behara, Uniqueness of graded primary decomposition of graded modules graded over finitely generated abelian groups, Communications in Algebra, 39, (2011).

[3] I.G.Macdonald,Secondary representation of modules over a commutative ring, Sympos.Math. XI, (1973), 23-43.

[4] C. Năstăsescu, F. van Oystaeyen, Methods of graded rings, LNM 1836, Springer, 2004.

[5] M. Perling and S. D. Kumar, Primary decomposition over rings graded by finitely generated Abelian groups, J. Algebra, 318 (2007), 553–561.

[6] M. Refai, K. Al-Zoubi, On Graded Primary Ideals, Truk. J. Math, 28 (2004), 217-229.

[7] R.Y. Sharp, Asymptotic behavior of certain sets of attached prime ideals. J. London Math. Soc., 34 (1986), 212-218.