G-GRADED SECONDARY REPRESENTATION OF THE G-GRADED MODULES

${ }^{1}$ Dr. R.BHUVANA VIJAYA, ${ }^{2}$ P.RAMANA VIJAYA KUMAR \& ${ }^{3}$ Dr. SRINIVAS BEHARA

Abstract

Let A be a commutative ring which is graded by a finitely generated abelian group G. In this paper we introduce the G-graded secondary representation of a G-graded module M of A .

1. Introduction

The results that are presented here are a sort of dual of the theory of graded primary decomposition of a group graded module over a graded commutative ring graded over finitely generated abelian group which was discussed in [2] and [5].

We shall begin by recalling briefly the salient feature of the theory, in a form convenient to the present discussion. Throughout, all rings will be commutative graded rings graded over finitely generated abelian group, and all modules will be unital.

Let A be a G -graded ring, M an G -graded A -module where G is finitely generated abelian group. It is clear that there exists a family $\left\{\mathrm{A}_{\mathrm{g}}\right\}_{\mathrm{geG}}$ of additive subgroups of A such that $\mathrm{A}=\oplus_{\mathrm{geG}} \mathrm{Ag}$ and $\mathrm{A}_{\mathrm{g}} \mathrm{A}_{\mathrm{h}} \subseteq \mathrm{A}_{\mathrm{gh}}$ for all $\mathrm{g}, \mathrm{h} \in \mathrm{G}$ and similarly for the G-graded A -module M there exists a given family $\left\{\mathrm{M}_{\mathrm{g}}\right\}_{\mathrm{geG}}$ of additive subgroups of M such that $\mathrm{M}=\oplus_{\mathrm{geG}} \mathrm{Mg}$ and $\mathrm{A}_{\mathrm{g}} \mathrm{M}_{\mathrm{h}} \subseteq \mathrm{M}_{\mathrm{gh}}$ for all $\mathrm{g}, \mathrm{h} \in \mathrm{G}$. An element of a graded ring A is called homogeneous if it belongs to $\mathrm{U}_{\mathrm{geG}} \mathrm{Ag}$. Also, we write $h(A)=U_{g \in G} A g$. The summands Ag are called homogeneous components and elements of these summands are called homogeneous elements. If $\mathbf{a} \epsilon \mathrm{A}$, then \mathbf{a} can be written as $\sum_{\mathrm{g} \in \mathrm{G}} \mathbf{a}_{\mathbf{g}}$ where $\mathbf{a}_{\mathbf{g}}$ is the component of \mathbf{a} in Ag. In this case, Ae is a sub ring of A and $1_{\mathrm{A}} \in \mathrm{Ae}$. Also, we write $\mathrm{h}(\mathrm{M})=\mathrm{U}_{\mathrm{geG}} \mathrm{Mg}$.

A sub module N of M is G-graded if $N=\oplus_{g \in G} N g$, where $N g=N \cap M g$ for $g \epsilon G$. In this case Ng is called the g-component of N for $\mathrm{g} \epsilon \mathrm{G}$. More over M/N becomes a G-graded module with g-component $(\mathrm{M} / \mathrm{N})_{\mathrm{g}}=(\mathrm{Mg}+\mathrm{N}) / \mathrm{N}$ for $\mathrm{g} \epsilon \mathrm{G}$. Clearly 0 is G-graded sub module of M .

Also a graded ideal I of a G-graded ring A is an ideal verifying $I=\oplus_{g e G}(I \cap A g)=\oplus_{\text {geG }} I g$. An ideal I of G-graded ring A is said to be G-prime ideal if $I \neq A$ and whenever $a b \in I$, we have either $\mathrm{a} \epsilon \mathrm{I}$ or $\mathrm{b} \epsilon \mathrm{I}$, where $\mathrm{a}, \mathrm{b} \epsilon \mathrm{h}(\mathrm{A})$ or equivalently a G-graded ideal I of A is G-prime if and only if for every two G-graded ideals $\mathrm{J}, \mathrm{K}, \mathrm{J} \mathrm{K} \subset \mathrm{I}$ implies either $\mathrm{J} \subset \mathrm{I}$ or $\mathrm{K} \subset \mathrm{I}$.

[^0]For each $\mathbf{a} \mathbf{\epsilon} \mathbf{h}(\mathbf{A})$, Let $\lambda_{\mathrm{a}, \mathbf{M}}$ denote the endomorphism of M defined by multiplication by a i.e. $\boldsymbol{\lambda}_{\mathrm{a}}(\mathbf{x})=\mathbf{a x}$ for all $\mathbf{x} \boldsymbol{\epsilon} \mathbf{M}$. Let $\left(\boldsymbol{\lambda}_{a, M}\right)^{\mathbf{n}}=\left(\boldsymbol{\lambda}_{\mathrm{a}}\right)^{\mathbf{n}}(\mathrm{x})=\mathrm{a}^{\mathrm{n}} \mathrm{x}$ for some Natural number n and for all $x \in M$.Let $N^{G}(M)$ be that set of all $a \varepsilon h(A)$ such that $\lambda_{a, M}$ is nilpotent. We prove that $N^{G}(M)$ is a G-graded ideal.

Proposition 1.1. If M is a G -graded module of the graded ring A , then the set $N^{G}(M)=\left\{\mathbf{a} \epsilon \mathbf{h}(\mathbf{A}): \lambda_{\mathbf{a}, \mathbf{M}}\right.$ is nilpotent $\}$ a G-graded ideal.
Proof.

Clearly for any ac $N^{G}(M)$ and for any homogeneous element $\mathbf{r} \boldsymbol{\epsilon} M$ we have (-a) $\boldsymbol{\epsilon} N^{G}(M)$ and $\operatorname{ar} \boldsymbol{\epsilon} \mathrm{N}^{\mathrm{G}}(\mathrm{M})$ Now let $\mathbf{a}, \mathbf{b} \in \mathrm{N}^{\mathrm{G}}(\mathrm{M})$. There exists $\mathbf{x}, \mathbf{y} \in \mathbf{M}$ and \mathbf{m}, \mathbf{n} be Natural numbers such that $\mathbf{a}^{\mathbf{m}} \mathbf{x}=\mathbf{0}$ and $\mathbf{b}^{\mathbf{n}} \mathbf{y}=\mathbf{0}$.

Let $\mathrm{z}=(\mathrm{x}+\mathrm{y}) \boldsymbol{\epsilon} \mathrm{M}$.
Consider $(a+b)^{m+n} \mathrm{z}=\sum_{i+j=m+n} a^{i} b^{j} Z$

$$
=0
$$

$$
\begin{aligned}
& =\sum_{i+j=m+n} a^{i} b^{j}(x+y) \\
& =\sum_{i+j=m+n} a^{i} b^{j} x+\sum_{i+j=m+n} a^{i} b^{j} y \\
& =0+0 \text { (By Binomial Theorem }(a+b)^{m+n}=\sum_{i+j=m+n} a^{i} b^{j} . \text { Each } \\
& \quad \text { term on the right hand side is as either } i \geq n \text { or } j \geq m .)
\end{aligned}
$$

Therefore $(a+b) \in N^{G}(M)$ and hence $N^{G}(M)$ is a G-graded ideal of M.
The graded ideal $\mathrm{N}^{\mathrm{G}}(\mathrm{M})$ is called the G-graded nilradical of the A-module M. Also, in view of Definition 1.1 of [6], it can be observed as G-graded radical of the annihilator of M i.e. $N^{G}(M)=\operatorname{Gr}(\operatorname{Ann}(M))$.

Definition 1.2. A G-graded module M is said to be G-graded coprimary or G-coprimary if $M \neq 0$ and if, for each a $\varepsilon \mathrm{h}(\mathrm{A})$, the endomorphism $\lambda_{\mathrm{a}, \mathrm{M}}$ is either injective or nilpotent.

By the analog of proposition 2.4 of [1] we can conclude that $\mathrm{N}^{\mathrm{G}}(\mathrm{M})$ is a G-prime ideal say \mathbf{p} and therefore \mathbf{M} is said to be G-graded \mathbf{p} - coprimary or G-p-coprimary. If M is any G-graded Amodule of the G-graded ring A and pany G-prime ideal of A, a submodule Q of M is called G graded p-primary or G-p-primary if the quotient M/Q is G-p-coprimary.

Now let M be a G-graded A-module, N a G-graded submodule of M. A G-graded primary decomposition of N in M is an expression of N as a finite intersection of G-p-primary submodules, say $\mathrm{N}=\mathrm{Q} 1 \cap \mathrm{Q} 2 \cap \ldots \cap \mathrm{Qn}$. The G-graded primary decomposition is minimal if (a) the G-prime ideals $\mathrm{p}_{\mathrm{i}}=\mathrm{N}^{\mathrm{G}}\left(\mathrm{M} / \mathrm{Q}_{\mathrm{i}}\right)=\operatorname{Gr}\left(\mathrm{Ann}\left(\mathrm{M} / \mathrm{Q}_{\mathrm{i}}\right)\right)$ are all distinct and (b) none of the

$$
\begin{aligned}
& N^{G}(M)=\left\{\operatorname{ach}(\mathbf{A}): \lambda_{a, M} \text { is nilpotent }\right\} \\
& =\left\{\mathbf{a c h} \mathbf{h}(\mathbf{A}):\left(\lambda_{\mathbf{a}, \mathbf{M}}\right)^{\mathbf{n}}=0 \text { for some natural number } \mathbf{n}\right\} \\
& =\left\{\mathbf{a} \in \mathbf{h}(\mathbf{A}):\left(\lambda_{\mathrm{a}}\right)^{\mathbf{n}}(\mathrm{x})=0 \mathrm{f} \text { or all } \mathrm{x} \varepsilon \mathrm{M}\right\} \\
& =\left\{\boldsymbol{a} \boldsymbol{\epsilon} \mathbf{h}(\mathbf{A}): \mathrm{a}^{\mathrm{n}} \mathrm{x}=0\right\}
\end{aligned}
$$

components in the intersection is redundant. Any G-graded primary decomposition can be refined to a minimal one. See [2] for detailed discussion. If N has a G-graded primary decomposition in M , we shall say that N is decomposable graded submodule of M , If in particular the zero submodule of M is decomposable, we shall say that M is G-good. A graded submodule N of M is decomposable if and only if the quotient G-graded module M / N is G-good. The aim of this paper is to dualize the theory developed in [2] and [5].

Definition 1.3. A G-graded A-module M is said to be G-secondary if $M \neq 0$ and if, for each $a \epsilon h(A)$ the endomorphism $\lambda_{a, M}$ is either surjective or nilpotent.

Claim 1.4. If an A-module M is G-secondary, then $N^{G}(M)=\operatorname{Gr}(\operatorname{Ann}(M))$ is a G-prime ideal p. Proof.
For $\mathrm{a}, \mathrm{b} \in \mathrm{h}(\mathrm{A})$, let $\mathrm{ab} \in \operatorname{Gr}(\operatorname{Ann}(\mathrm{M})) \Rightarrow(\mathrm{ab})^{\mathrm{n}} \mathrm{M}=0$ for some Natural number $\mathrm{n}>0$.
If $b \notin \operatorname{Gr}(\operatorname{Ann}(M)) \lambda_{b, M}$ is surjective, that is $b^{n} M=M$. Then $a^{n} M=a^{n}\left(b^{n} M\right)=(a b)^{n} M=0 \Rightarrow a$ is nilpotent. Thus, $a \in \operatorname{Gr}(\operatorname{Ann}(M))$ and $N^{G}(M)$ is G-prime.

Definition 1.5. Following Claim 1.4, M is said to be G-graded p-secondary or G-p-secondary.
Let M be a G-graded A-module. A G-graded secondary representation of M is an expression of M as a sum of G-graded secondary submodules, say $M=N_{1}+N_{2}+\ldots+N_{n}$. This representation is said to be minimal if (a) the G-prime ideals $\mathrm{N}^{\mathrm{G}}\left(\mathrm{N}_{\mathrm{i}}\right)$ are all distinct and (b) none of the summands N_{i} is redundant. Any G-graded secondary representation of M can be refined to a minimal one. If M has a G-graded secondary representation, we shall say that M is G representable. Let M be a G-representable G-graded A-module and let $M=N_{1}+N_{2}+\ldots+N_{n}$ be a G-graded minimal secondary representation.
Our presentation and treatment of G-graded secondary representation and G-attached primes closely follows the one in MacDonald [3].

2. Graded Secondary representations

Let A be a G-graded commutative ring with identity where G is finitely generated abelian group. As stated in the introduction, a G-graded A-module M is said to be G-secondary if $\mathrm{M} \neq 0$ and if, for each $\mathrm{a} \in \mathrm{h}(\mathrm{A})$, the endomorphism on $\mathrm{M}, \boldsymbol{\lambda}_{\mathrm{a}, \mathrm{M}}$ (i.e., multiplication by a in M) is either surjective or nilpotent. It is immediate that the graded nilradical of M is a prime ideal p and M is said to be G-graded p-secondary.

Proposition 2.1. Finite direct sums and non-zero quotients of G-graded p-secondary modules are G-graded p-secondary.

Proof.

It is sufficient to prove the result for two G-graded p-secondary modules. Let L and M be any two G-graded p-secondary modules with $p=\operatorname{Gr}(\operatorname{Ann}(\mathrm{L}))=\operatorname{Gr}(\operatorname{Ann}(\mathrm{M}))$. Let $\mathrm{a} \in \mathrm{h}(\mathrm{A})$, assume $\lambda_{a, M}$ is not surjective. Then $a(L \oplus M) \neq(L \oplus M)$ which implies that either $a L \neq L$ or $a M \neq M$. Suppose $\mathrm{aL} \neq \mathrm{L}$ then $\exists \mathrm{k}>0$ such that $\mathrm{a}^{\mathrm{k}} \mathrm{L}=0$, which implies $\mathrm{a}^{\mathrm{k}} \in \operatorname{Ann}(\mathrm{L})$ which in turn implies
$\mathrm{a} \in \mathrm{p}=\operatorname{Gr}(\operatorname{Ann}(\mathrm{L}))$. But this means that $\exists 1>0$ such that $\mathrm{a}^{1} \in \operatorname{Ann}(M)$, that is, $\mathrm{a}^{1} \mathrm{M}=0$. So, taking $n=\max (k, l)$ then $a^{n}(L \oplus M)=0$. Thus, $(L \oplus M)$ is secondary. To show that $(L \oplus M)$ is p-secondary, let $a b \in \operatorname{Gr}(\operatorname{Ann}(L \oplus M))$, which means that $\exists n>0$ such that $(a b)^{n}(L \oplus M)=$ 0 . But L, M were G-p-secondary, so either $a \in p=\operatorname{Gr}(\operatorname{Ann}(L))$ or $b \notin p$, that is a is nilpotent. From claim 1.4 we have $\mathrm{L} \oplus \mathrm{M}$ is G-p-secondary. Hence by induction finite direct sums of Ggraded p-secondary modules are G-graded p-secondary.

Let M be a G -graded p -secondary module, so that $\mathrm{p}=\operatorname{Gr}(\operatorname{Ann}(\mathrm{M}))$.Let $\lambda: \mathrm{M} \rightarrow \mathrm{M}^{\prime}=\mathrm{M} / \mathrm{N}$ be the natural projection from M to a non-zero quotient of M. Let $a \in h(A)$, with $\lambda_{\mathbf{a}, \mathbf{M}}$ is surjective, that is $\mathrm{aM}=\mathrm{M}$ which implies $\mathrm{aM}^{\prime}=\mathrm{M}^{\prime}$ as $\mathrm{aM}+\mathrm{N}=\mathrm{M}$. Otherwise, $\exists \mathrm{k}>0$ such that $a^{k} M=0 \Rightarrow a^{k} M^{\prime}=0 \Leftrightarrow a^{k} M+N=N$ as $a^{k} M=0$. This also shows that $a^{k} \in A m(M / N)$ $\Rightarrow x \in \operatorname{Gr}\left(\operatorname{Ann}(M / N)\right.$. Then, as before $\operatorname{Gr}\left(\operatorname{Ann}\left(M^{\prime}\right)\right)=p$ which implies that M is G-p-secondary.

Proposition 2.2. The annihilator of a G-graded p-secondary module is G-graded p-primary ideal. Proof.
Let M be a G-graded p-secondary module and let $\operatorname{Ann}(M)=I$. Let $a b \in I$ and assume $b^{n} \notin I$ for all n. Then for $b \in h(A)$ either $b M=M$ or $\exists n>0$ such that $b^{n} \in A n n(M)$ which we assumed otherwise, so $b M=M$. Thus, $a b \in I \Rightarrow a b M=0 \Rightarrow a M=0 \Rightarrow a \in I$. Thus, I is primary. Since $\mathrm{p}=\operatorname{Gr}(\operatorname{Ann}(\mathrm{M})=\sqrt{ } \mathrm{I} \Rightarrow \mathrm{I}$ is G-p-primary.

References

[1] S. Behara and S. D. Kumar, Group graded associated ideals with flat base change of rings and short exact sequences, Proceedings-Mathematical Sciences, (2011)
[2] S. D. Kumar, S. Behara, Uniqueness of graded primary decomposition of graded modules graded over finitely generated abelian groups, Communications in Algebra, 39, (2011).
[3] I.G.Macdonald,Secondary representation of modules over a commutative ring, Sympos.Math. XI, (1973), 23-43.
[4] C. Nǎstǎsescu, F. van Oystaeyen, Methods of graded rings, LNM 1836, Springer, 2004.
[5] M. Perling and S. D. Kumar, Primary decomposition over rings graded by finitely generated Abelian groups, J. Algebra, 318 (2007), 553-561.
[6] M. Refai, K. Al-Zoubi, On Graded Primary Ideals, Truk. J. Math, 28 (2004), 217-229.
[7] R.Y. Sharp, Asymptotic behavior of certain sets of attached prime ideals. J. London Math. Soc., 34 (1986), 212-218.

[^0]: ${ }^{1}$ Associate professor in Department of mathematics, JNTU-Anantapur.
 ${ }^{2}$ Research Scholar, in Department of mathematics, JNTU-Anantapur.(vijaypachalla@ gmail.com)
 ${ }^{3}$ Sr.Assistant professor in Department of mathematics, Govt.Ploy Technique college-Guntur.

